JPH072992B2 - Phosphating method for metal surface - Google Patents

Phosphating method for metal surface

Info

Publication number
JPH072992B2
JPH072992B2 JP1276629A JP27662989A JPH072992B2 JP H072992 B2 JPH072992 B2 JP H072992B2 JP 1276629 A JP1276629 A JP 1276629A JP 27662989 A JP27662989 A JP 27662989A JP H072992 B2 JPH072992 B2 JP H072992B2
Authority
JP
Japan
Prior art keywords
ion
coating
film
treatment
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1276629A
Other languages
Japanese (ja)
Other versions
JPH02163384A (en
Inventor
正志 高橋
智志 宮本
正道 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP1276629A priority Critical patent/JPH072992B2/en
Publication of JPH02163384A publication Critical patent/JPH02163384A/en
Publication of JPH072992B2 publication Critical patent/JPH072992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/76Applying the liquid by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • C23C22/184Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属表面にリン酸塩皮膜を形成させる処理方法
に関し、更に詳しくは、カチオン型電着塗装に適した塗
装密着性と耐食性を有するリン酸亜鉛系皮膜を形成する
スプレー式処理法に関する。
TECHNICAL FIELD The present invention relates to a treatment method for forming a phosphate film on a metal surface, and more specifically, it has coating adhesion and corrosion resistance suitable for cationic electrodeposition coating. The present invention relates to a spray-type processing method for forming a zinc phosphate-based film.

[従来の技術] 塗装前処理のために、少量の亜鉛イオンに対して多量の
リン酸イオンを含有する酸性リン酸塩処理液を使用する
ことは従来公知である(特公昭50−6418号参照)。これ
によれば電着塗装に適した良好な性質を有する皮膜を提
供できるとされているが、リン酸塩処理をスプレー方式
で実施すると、得られる皮膜はホペイトを含有する針状
皮膜であり、その粒度も粗く、更に皮膜量および皮膜中
の鉄含有量共に低くて、特にカチオン型電着塗装の前処
理としては、浸漬方式によって得られる皮膜と同等また
はその以上の性能(特に耐食性)を有する皮膜を提供す
ることはできなかった。
[Prior Art] It is conventionally known to use an acidic phosphating solution containing a large amount of phosphate ions for a small amount of zinc ions for pretreatment of coating (see Japanese Examined Patent Publication No. 50-6418). ). According to this, it is said that it is possible to provide a film having good properties suitable for electrodeposition coating, but when the phosphate treatment is carried out by a spray method, the obtained film is a needle-shaped film containing Hopite, Its particle size is also coarse, and both the amount of coating and the iron content in the coating are low, and as a pretreatment for cationic electrodeposition coating, it has the same or higher performance (especially corrosion resistance) as the coating obtained by the dipping method. No coating could be provided.

[発明が解決しようとする課題] 本発明者等は上記問題点を解消するため鋭意研究を進め
た結果、上述の従来公知のリン酸塩処理液に比べて、そ
の遊離酸度を低くし且つリン酸イオン濃度を高めた処理
液を使用すれば、スプレー処理においても皮膜中の鉄含
有量の高い粒状皮膜が得られることを見出し、更に亜鉛
イオン以外にニッケル等のカチオンを配合することによ
り、皮膜性能が更に高められることを見出し、本発明を
完成するに至った。
[Problems to be Solved by the Invention] As a result of intensive studies conducted by the present inventors in order to solve the above-mentioned problems, the free acidity of phosphorus and the phosphorus content are lower than those of the above-described conventionally known phosphate treatment solutions. It was found that a granular coating with a high iron content in the coating can be obtained even by spraying if a treatment liquid with a high acid ion concentration is used, and by further incorporating a cation such as nickel in addition to zinc ion, the coating can be formed. The inventors have found that the performance can be further enhanced, and have completed the present invention.

[課題を解決するための手段および作用] 即ち、本発明によれば、亜鉛イオン0.01〜0.05W/V%、
ニッケルイオンおよび/またはマンガンイオン0.01〜0.
15W/V%、リン酸イオン1.5〜3.0W/V%および亜硝酸イオ
ン0.001〜0.02W/V%を含有し塩素酸イオンを含有しない
遊離酸度0.1〜0.3ポイントの酸性リン酸塩処理液にて金
属表面をスプレー処理することを特徴とする金属表面の
リン酸塩処理法が提供される。
[Means and Actions for Solving the Problems] That is, according to the present invention, zinc ions 0.01 to 0.05 W / V%,
Nickel ion and / or manganese ion 0.01-0.
15W / V%, phosphate ion 1.5-3.0W / V% and nitrite ion 0.001-0.02W / V% in free acidity 0.1-0.3 point acid phosphate treatment solution containing no chlorate ion A method for phosphating a metal surface is provided, which comprises spraying the metal surface.

本発明法の対象金属としては、鉄、亜鉛およびそれらの
合金が挙げられる。
Examples of metals to be subjected to the method of the present invention include iron, zinc and alloys thereof.

本発明法で使用する酸性リン酸塩処理液は、上記の如く
特定イオンを特定量含有し且つ遊離酸度を特定値にする
以外は、従来技術に基づいて調製されてよい。亜鉛イオ
ンについては0.01〜0.05、好ましくは0.02〜0.03W/V%
である。該イオン量が過少であると化成皮膜が形成され
難く、他方過剰であると目的とする良好な皮膜が得られ
ない。亜鉛イオン以外のカチオンとしてはニッケルイオ
ン、マンガンイオンおよびカルシウムイオンの1種以上
が各々0.01〜0.15W/V%の量で含有されていてよく、こ
れらは皮膜の性能(特に一次物性、二次物性、耐ソルト
スプレー性、耐暴露性能)を向上させることにおいて有
効である。
The acidic phosphating solution used in the method of the present invention may be prepared based on conventional techniques, except that it contains a specific amount of a specific ion and sets the free acidity to a specific value as described above. 0.01-0.05, preferably 0.02-0.03W / V% for zinc ions
Is. If the amount of ions is too small, a chemical conversion film will be difficult to form, while if it is too large, the desired good film cannot be obtained. As cations other than zinc ions, one or more of nickel ions, manganese ions, and calcium ions may be contained in an amount of 0.01 to 0.15 W / V%, respectively, and these properties of the coating (especially primary and secondary physical properties). , Salt spray resistance, and exposure resistance performance).

リン酸イオンについては上述の如く1.5〜3.0W/V%であ
り、この量が過少であると粒状の化成皮膜が得られず、
過剰であると該イオンが消費されるだけであって、経済
的に不利である。亜硝酸イオンについては0.001〜0.02W
/V%であって、この量が過少であると発錆をもたらし、
過剰であると分解により生ずる硝酸イオンが蓄積しす
ぎ、皮膜化成に悪影響を及ぼす。上記以外のアニオンと
しては錯フッ化物イオン(例:BF4 -、SiF6 --)および硝
酸イオンを1種以上含有していてもよく、前者にあって
はフッ素として0.02〜0.15W/V%の量が化成皮膜を細か
くする点で好ましく、後者の硝酸イオンについては従来
技術と同様の観点で含有せしめられてよい。なお、アニ
オンとして塩素酸イオンを含有せしめることは好ましく
ない。それは粒状の化成皮膜が得られず、化成皮膜の耐
食性の面から望ましくないからである。
As for the phosphate ion, it is 1.5 to 3.0 W / V% as described above, and if this amount is too small, a granular chemical conversion film cannot be obtained,
If it is excessive, only the ions are consumed, which is economically disadvantageous. 0.001 to 0.02W for nitrite ion
If it is / V% and this amount is too small, it causes rusting,
When it is excessive, nitrate ions generated by decomposition are excessively accumulated, which adversely affects the film formation. Complex fluoride ion as an anion other than the above (eg: BF 4 -, SiF 6 - ) and nitrate ions may also contain one or more, in the former 0.02~0.15W / V% as fluorine Is preferable from the viewpoint of making the chemical conversion film finer, and the latter nitrate ion may be contained from the same viewpoint as in the prior art. In addition, it is not preferable to include chlorate ion as an anion. This is because a granular conversion coating cannot be obtained, which is not desirable from the viewpoint of corrosion resistance of the conversion coating.

当該処理液の遊離酸度が0.1ポイント未満では皮膜化成
が行われず、0.3ポイントを超えると粒状結晶の皮膜が
得られずに針状結晶の皮膜となる。なと、遊離酸度につ
いては、処理液を10ml採取し、これに指示薬としてブロ
ムフェノールを1〜2滴加え、0.1規定苛性ソーダ水溶
液で液が黄色から青色に変色するまで滴定し、滴定に要
した苛性ソーダ水溶液のml数をポイントをする。リン酸
塩処理に供する処理液にあっては、遊離酸度が所定の値
になるまで苛性ソーダを処理液に加える。
If the free acidity of the treatment liquid is less than 0.1 point, film formation is not performed, and if it exceeds 0.3 point, a granular crystal film is not obtained and a needle crystal film is formed. Regarding the free acidity, 10 ml of the treated solution was sampled, 1 to 2 drops of bromphenol was added as an indicator to the solution, and the solution was titrated with a 0.1N caustic soda solution until the solution changed color from yellow to blue. Point to the number of ml of the aqueous solution. In the treatment liquid used for the phosphate treatment, caustic soda is added to the treatment liquid until the free acidity reaches a predetermined value.

化成処理前の表面調整はチタンコロイド含有液(チタン
コロイドとして0.7〜3.5mg/)によって行うことによ
り、従来公知の如く化成皮膜の結晶粒度を細かくするこ
とができ、皮膜性能を一段と向上させることができる。
By adjusting the surface before the chemical conversion treatment with a titanium colloid-containing liquid (0.7 to 3.5 mg / titanium colloid), the crystal grain size of the chemical conversion coating can be made finer as conventionally known, and the coating performance can be further improved. it can.

上述の酸性リン酸塩処理液を用いてのスプレー処理にあ
っては従来法が採用されてよく、例えば温度は40〜70
℃、好ましくは45〜55℃、スプレー圧は0.5〜3kg/cm2
好ましくは0.8〜1.5kg/cm2、処理時間は40秒以上、好ま
しくは90〜180秒である。化成処理後の後処理について
も従来公知のクロム系や非クロム系の処理を採用してよ
く、これにより皮膜性能は一段と向上する。
In the spray treatment using the above-mentioned acidic phosphate treatment liquid, a conventional method may be adopted, for example, the temperature is 40 to 70.
℃, preferably 45 ~ 55 ℃, spray pressure 0.5 ~ 3kg / cm 2 ,
The treatment time is preferably 0.8 to 1.5 kg / cm 2 , and the treatment time is 40 seconds or more, preferably 90 to 180 seconds. As the post-treatment after the chemical conversion treatment, a conventionally known chromium-based or non-chromium-based treatment may be adopted, which further improves the film performance.

[発明の効果] 以上の構成から成る本発明法によれば、粒状でその粒度
も細かく、且つ被覆量1.5g/m2以上で鉄または鉄−マン
ガンの含有量9wt%以上の化成皮膜が得られ、浸漬処理
で得られる化成皮膜と同等の性能が発揮され、その結果
カチオン型電着塗装において優れた塗膜密着性と耐食性
が達成される。
[Effects of the Invention] According to the method of the present invention having the above-mentioned constitution, a conversion coating having a granular and fine particle size and a coating amount of 1.5 g / m 2 or more and an iron or iron-manganese content of 9 wt% or more is obtained. The same performance as the chemical conversion coating obtained by the dipping treatment is exhibited, and as a result, excellent coating adhesion and corrosion resistance are achieved in cationic electrodeposition coating.

[実施例] 次に実施例および比較例を挙げて本発明を具体的に説明
する。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1 市販の冷間圧延鋼(70×150×0.8mm)の試験片をアルカ
リ性脱脂剤(日本ペイント社製「リドリンSD200」、2W/
V%)にて温度50℃で2分間スプレー脱脂し、水洗し、
チタンコロイド系表面調整液(日本ペイント社製「フイ
キソヂン5N−5」、0.03W/V%)にて常温で10秒間スプ
レー処理する。
Example 1 A commercially available cold-rolled steel (70 × 150 × 0.8 mm) test piece was treated with an alkaline degreasing agent (“Rydrin SD200” manufactured by Nippon Paint Co., Ltd., 2 W /
(V%) at a temperature of 50 ° C for 2 minutes by spray degreasing, washing with water,
Spray with a titanium colloidal surface conditioning solution (Nippon Paint Co., Ltd. "Fixogen 5N-5", 0.03W / V%) for 10 seconds at room temperature.

次いで該試験片を亜鉛イオン0.04W/V%、ニッケルイオ
ン0.03W/V%、リン酸イオン2.5W/V%および亜硝酸イオ
ン0.007W/V%を含有し遊離酸度0.1ポイントの酸性リン
酸塩処理液にて50℃で2分間スプレー処理し、水道水と
イオン交換水で水洗し、乾燥する。
Next, the test piece was treated with zinc ion 0.04 W / V%, nickel ion 0.03 W / V%, phosphate ion 2.5 W / V% and nitrite ion 0.007 W / V%, and an acid phosphate having a free acidity of 0.1 point. Spray treatment with the treatment liquid at 50 ° C. for 2 minutes, wash with tap water and ion-exchanged water, and dry.

得られる化成皮膜の形状は粒状であり、粒度は0.5〜3
μである。なお、皮膜結晶の構造を示す第1図の写真は
走査型電子顕微鏡(日本電子社製JSM−T20)で角度55
゜、倍率1500倍で撮影したものである(以下同様)。ま
た、その皮膜重量は2.01g/m2で、鉄含有率は9.2wt%で
ある。
The obtained chemical conversion film has a granular shape, and the particle size is 0.5 to 3
is μ. The photograph of Fig. 1 showing the structure of the film crystal was taken with a scanning electron microscope (JSM-T20 manufactured by JEOL Ltd.) at an angle of 55.
Photographed at a magnification of 1500x (the same applies below). The coating weight is 2.01 g / m 2 and the iron content is 9.2 wt%.

このようにして得られる化成処理試験片を次いでカチオ
ン型電着塗料(日本ペイント社製「パワートップU−3
0」)でもって250Vで3分間電着塗装し、180℃で30分間
焼付ける(膜厚20μ)。次いでポリエステル系中塗塗料
(日本ペイント社製「52Eシーラー」)を塗装し、140℃
で30分間焼付け(膜厚30μ)、そしてメラミンアルキド
系上塗塗料(日本ペイント社製「オルガG−25E」)を
塗装し、140℃で30分間焼付ける(膜厚40μ)。
The chemical conversion treatment test piece thus obtained was then subjected to a cationic electrodeposition coating (“Power Top U-3” manufactured by Nippon Paint Co., Ltd.).
0 ”), electrodeposition coating at 250V for 3 minutes and baking at 180 ° C for 30 minutes (film thickness 20μ). Next, apply a polyester-based intermediate coating ("52E Sealer" manufactured by Nippon Paint Co., Ltd.) at 140 ℃
Bake for 30 minutes (film thickness 30μ), and then apply a melamine alkyd top coat (“Olga G-25E” manufactured by Nippon Paint Co., Ltd.) and bake at 140 ° C. for 30 minutes (film thickness 40μ).

このようにして得られる試験片を以下に示す試験に付
し、その結果を第1表に示す。
The test pieces thus obtained were subjected to the tests shown below, and the results are shown in Table 1.

(a)塩水噴霧試験 電着塗装板の表面にカッターで素地に達するまでクロス
カットを切り入れ、この塗装板について5%塩水噴霧試
験(JIS−Z−2371)を1000時間行い、カット部よりの
錆幅を測定する。
(A) Salt spray test A cross-cut is cut into the surface of the electrodeposition coated plate with a cutter until it reaches the substrate, and a 5% salt spray test (JIS-Z-2371) is performed on this coated plate for 1000 hours. Measure the rust width.

(b)暴露試験 上塗塗装板の表面にカッターで素地に達するまでクロス
カットを入れ、この塗装板を海岸において6ケ月間暴露
する。その後塗装板のカット部よりの塗膜のフクレ幅を
測定する。
(B) Exposure test Cross-cut is put on the surface of the top coated plate with a cutter until it reaches the substrate, and this coated plate is exposed on the coast for 6 months. After that, the blister width of the coating film from the cut portion of the coated plate is measured.

(c)折曲試験 上塗塗装板を直径10mmの棒の上にのせ、折曲げた後の塗
膜の状態を観察する(JIS−K−5400−6−11)。
(C) Bending test A top coated plate is placed on a rod having a diameter of 10 mm, and the state of the coating film after bending is observed (JIS-K-5400-6-11).

実施例2 亜鉛イオン0.04W/V%、ニッケルイオン0.03W/V%、リン
酸イオン2.5W/V%、ホウフッ化物イオン(BF4 -)(フッ
素として)0.035W/V%、硝酸イオン0.3W/V%および亜硝
酸イオン0.007W/V%を含有し遊離酸度0.1ポイントの酸
性リン酸塩処理液を使用して、50℃で2分間スプレー処
理を行い、皮膜重量1.87g/m2で鉄含有率9.7wt%の化成
皮膜を得る以外は、実施例1と同様に実施する。形成さ
れる化成皮膜は粒状で、粒度は0.3〜1μである。皮膜
結晶構造の電子顕微鏡写真を第2図として示す。塗装後
の試験結果を第1表に示す。
Example 2 zinc ions 0.04 W / V%, nickel ions 0.03 W / V%, phosphate 2.5 W / V%, fluoroborate hydride ion (BF 4 -) (as fluorine) 0.035W / V%, nitrate 0.3W / V% and 0.007W / V% nitrite ion, using an acidic phosphating solution with a free acidity of 0.1 point, spray treatment is performed for 2 minutes at 50 ° C, iron with a coating weight of 1.87g / m 2 The same procedure as in Example 1 is carried out except that a chemical conversion film having a content of 9.7 wt% is obtained. The formed chemical conversion film is granular and has a particle size of 0.3 to 1 µ. An electron micrograph of the film crystal structure is shown in FIG. The test results after coating are shown in Table 1.

実施例3 亜鉛イオン0.04W/V%、ニッケルイオン0.03W/V%、リン
酸イオン2.5W/V%、マンガンイオン0.06W/V%および亜
硝酸イオン0.007W/V%を含有し遊離酸度0.2ポイントの
酸性リン酸塩処理液を使用して、50℃で2分間スプレー
処理を行い、皮膜重量2.12g/m2で鉄含有率7.2wt%およ
びマンガン含誘率4.0wt%の化成皮膜を得る以外は、実
施例1と同様に実施する。形成される化成皮膜は粒状
で、粒度は0.5〜3μである。皮膜結晶構造の電子顕微
鏡写真を第3図として示す。塗装後の試験結果を第1表
に示す。
Example 3 Zinc ion 0.04 W / V%, nickel ion 0.03 W / V%, phosphate ion 2.5 W / V%, manganese ion 0.06 W / V% and nitrite ion 0.007 W / V% are contained, and free acidity is 0.2. Spray treatment at 50 ° C for 2 minutes using the acidic phosphate treatment solution of Point to obtain a chemical conversion coating with iron content of 7.2 wt% and manganese content of 4.0 wt% at a coating weight of 2.12 g / m 2. Other than that, it implements like Example 1. The formed chemical conversion film is granular and has a particle size of 0.5 to 3 µ. An electron micrograph of the film crystal structure is shown in FIG. The test results after coating are shown in Table 1.

比較例1 亜鉛イオン0.03W/V%、リン酸イオン1.0W/V%および塩
素酸イオン0.3W/V%を含有し遊離酸度0.3ポイントで亜
硝酸イオン0.007W/V%を含有する酸性リン酸塩処理液を
使用して、50℃で2分間スプレー処理を行い、皮膜重量
1.20g/m2で鉄含有率8.2wt%の化成皮膜を得る以外は、
実施例1と同様に実施する。皮膜結晶構造の電子顕微鏡
写真を第4図として示す。塗装後の試験結果を第1表に
示す。
Comparative Example 1 Acidic phosphoric acid containing zinc ion 0.03 W / V%, phosphate ion 1.0 W / V% and chlorate ion 0.3 W / V% and free acidity 0.3 point and nitrite ion 0.007 W / V% Using salt treatment solution, spray treatment at 50 ° C for 2 minutes, coating weight
Except for obtaining a conversion coating of iron content 8.2 wt% at 1.20 g / m 2,
The same procedure as in Example 1 is carried out. An electron micrograph of the film crystal structure is shown in FIG. The test results after coating are shown in Table 1.

比較例2 亜鉛イオン0.05W/V%、リン酸イオン1.2W/V%、硝酸イ
オン0.7W/V%および亜硝酸イオン0.007W/V%を含有し遊
離酸度0.3ポイントの酸性リン酸塩処理液を使用して、5
0℃で2分間スプレー処理を行い、皮膜重量1.5g/m で鉄
含有率7.8wt%の化成皮膜を得る以外は、実施例1と同
様に実施する。皮膜結晶構造の電子顕微鏡写真を第5図
として示す。塗装後の試験結果を第1表に示す。
Comparative Example 2 Zinc ion 0.05 W / V%, phosphate ion 1.2 W / V%, nitrate nitrate
On 0.7 W / V% and 0.007 W / V% nitrite ion
Using an acidic phosphating solution with an acidity of 0.3 points,
Spray treatment at 0 ℃ for 2 minutes, coating weight 1.5g / m With iron
Same as Example 1 except that a chemical conversion coating with a content of 7.8 wt% is obtained.
To carry out. Fig. 5 shows an electron micrograph of the crystal structure of the film.
Show as. The test results after coating are shown in Table 1.

比較例3 亜鉛イオン0.01W/V%、ニッケルイオン0.05W/V%、リン
酸イオン1.5W/V%および亜硝酸イオン0.01W/V%を含有
し遊離酸度1.1ポイントの酸性リン酸塩処理液を使用し
て、50℃で2分間浸漬処理を行い、皮膜重量2.0g/m2
鉄含有率10.2wt%の化成皮膜を得る以外は、実施例1と
同様に実施する。皮膜結晶構造の電子顕微鏡写真を第6
図として示す。塗装後の試験結果を第1表に示す。
Comparative Example 3 Acidic phosphate treatment solution containing zinc ion 0.01 W / V%, nickel ion 0.05 W / V%, phosphate ion 1.5 W / V% and nitrite ion 0.01 W / V% and free acidity 1.1 points Is carried out at 50 ° C. for 2 minutes to obtain a chemical conversion coating having an iron content of 10.2 wt% at a coating weight of 2.0 g / m 2 and is carried out in the same manner as in Example 1. Electron micrograph of crystal structure of film No. 6
Shown as a diagram. The test results after coating are shown in Table 1.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第6図は、本発明の実施例および比較例で各々
得られたリン酸塩皮膜の結晶構造を示す電子顕微鏡写真
である。
1 to 6 are electron micrographs showing crystal structures of the phosphate coatings obtained in Examples and Comparative Examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】亜鉛イオン0.01〜0.05W/V%、ニッケルイ
オンおよび/またはマンガンイオン0.01〜0.15W/V%、
リン酸イオン1.5〜3.0W/V%および亜硝酸イオン0.001〜
0.02W/V%を含有し塩素酸イオンを含有しない遊離酸度
0.1〜0.3ポイントの酸性リン酸塩処理液にて金属表面を
スプレー処理することを特徴とする金属表面のリン酸塩
処理法。
1. Zinc ion 0.01 to 0.05 W / V%, nickel ion and / or manganese ion 0.01 to 0.15 W / V%,
Phosphate ion 1.5 to 3.0 W / V% and nitrite ion 0.001 to
Free acidity containing 0.02 W / V% and no chlorate ion
A phosphating method for a metal surface, which comprises spraying the metal surface with an acidic phosphating solution of 0.1 to 0.3 points.
JP1276629A 1989-10-24 1989-10-24 Phosphating method for metal surface Expired - Lifetime JPH072992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1276629A JPH072992B2 (en) 1989-10-24 1989-10-24 Phosphating method for metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1276629A JPH072992B2 (en) 1989-10-24 1989-10-24 Phosphating method for metal surface

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2647682A Division JPS58144477A (en) 1982-02-20 1982-02-20 Phosphating process of metal surface

Publications (2)

Publication Number Publication Date
JPH02163384A JPH02163384A (en) 1990-06-22
JPH072992B2 true JPH072992B2 (en) 1995-01-18

Family

ID=17572106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1276629A Expired - Lifetime JPH072992B2 (en) 1989-10-24 1989-10-24 Phosphating method for metal surface

Country Status (1)

Country Link
JP (1) JPH072992B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974745B (en) * 2010-10-27 2013-01-23 大连三达奥克化学股份有限公司 Normal temperature bonderite for renovating flow string and manufacture method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506418A (en) * 1973-05-21 1975-01-23
JPS52119435A (en) * 1976-04-01 1977-10-06 Nippon Packaging Kk Phosphating process
JPS555590A (en) * 1978-06-29 1980-01-16 Mitsubishi Electric Corp Remote monitor unit
JPS5620356A (en) * 1979-07-27 1981-02-25 Hitachi Ltd Backup system of signal transmission system

Also Published As

Publication number Publication date
JPH02163384A (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US4865653A (en) Zinc phosphate coating process
US8956468B2 (en) Zr-/Ti-containing phosphating solution for passivation of metal composite surfaces
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
CA2234819C (en) Zinc phosphate conversion coating compositions and process
JP3063920B2 (en) How to treat metal surfaces with phosphate
WO2005085497A1 (en) Agent for reducing coating film overall friction coefficient for trivalent chromate treating solution, trivalent chromate treating solution and method for production thereof, and trivalent chromate coating film reduced in overall friction coefficient and method for production thereof
JP2845246B2 (en) Method of forming phosphate film
CA1322147C (en) Zinc-nickel phosphate conversion coating composition and process
JP2000515586A (en) Microcrystalline and / or short-term phosphate conversion coating composition and coating method
CA1224121A (en) Process for phosphating metals
JP3940174B2 (en) Aqueous solution and method for phosphating metal surfaces
CA1200471A (en) Zinc phosphate conversion coating composition
GB2203453A (en) Phosphate coating solutions and processes
JPH08501829A (en) Method for phosphating steel with zinc coating on one side
GB2169620A (en) Phosphate coatings
JPH08504890A (en) Compositions and methods for forming a substantially nickel-free phosphatized coating
JP3088623B2 (en) Method for forming zinc phosphate film on metal surface
JP5584922B2 (en) Trivalent chromium chemical conversion treatment solution for forming a trivalent chromium chemical conversion coating on zinc or zinc alloy plating
JP2004149896A (en) Composition for surface treatment, treatment liquid for surface treatment, surface treatment method, and product comprising metal material
SK12352000A3 (en) Aqueous solution and method for phosphatizing metallic surfaces
JPH072992B2 (en) Phosphating method for metal surface
US5234509A (en) Cold deformation process employing improved lubrication coating
JPH0314908B2 (en)
JPH0674508B2 (en) Corrosion resistant film
WO2008054016A1 (en) Phosphate-treated galvanized steel sheet and method for producing the same