JPH07299149A - Evaluating apparatus for embedded electrode and evaluating method using the same - Google Patents

Evaluating apparatus for embedded electrode and evaluating method using the same

Info

Publication number
JPH07299149A
JPH07299149A JP9512194A JP9512194A JPH07299149A JP H07299149 A JPH07299149 A JP H07299149A JP 9512194 A JP9512194 A JP 9512194A JP 9512194 A JP9512194 A JP 9512194A JP H07299149 A JPH07299149 A JP H07299149A
Authority
JP
Japan
Prior art keywords
electrode
frequency
impedance
embedded
therapeutic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9512194A
Other languages
Japanese (ja)
Inventor
Nozomi Hoshimiya
望 星宮
Shigeo Oba
茂男 大庭
Yasunobu Handa
康延 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP9512194A priority Critical patent/JPH07299149A/en
Publication of JPH07299149A publication Critical patent/JPH07299149A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To estimate a defective move and a location of a defect in an embedded electrode for treatment used by a method wherein a control electrode is placed in a living body near the electrode for treatment and a fine sine wave signal is applied between the electrode for treatment and the control electrode to calculate an electrode impedance from the size and phase of a current flowing through the electrodes and a voltage thereof. CONSTITUTION:A fine sine wave signal is applied between an electrode 2 for treatment having an insulating cover 3 embedded in a living body 1 and a control electrode 4 placed in the living body 1 near the electrode 2 for treatment to calculate an electrode impedance from the value and the phase of a current flowing through the electrodes and a voltage thereof and an evaluation of the electrode 2 for treatment is performed. In the measurement of a frequency characteristic of the electrode impedance, a real number part and an imaginary number part of the impedance which is calculated from a voltage and a current to be applied to the embedded electrode for treatment under a specified frequency are calculated by a computation with a computer to change the frequency sequentially. The real number part and the imaginary number part of the electrode impedance under the frequency changed sequentially are calculated to obtain a locus of the impedance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脳卒中や脊髄損傷等に
よる運動機能麻痺の再建を目的とした、機能的電気刺激
(FES)や機能障害の回復を促すための治療的電気刺
激(TES)などによる治療において、生体内の神経・
筋系の近傍に埋め込まれた電極の様態を外部から評価す
る装置及びそれを用いた評価方法に関するものである。
FIELD OF THE INVENTION The present invention relates to functional electrical stimulation (FES) or therapeutic electrical stimulation (TES) for promoting recovery of functional disorder for the purpose of reconstructing motor paralysis due to stroke or spinal cord injury. In the treatment by
The present invention relates to an apparatus for externally evaluating the state of an electrode embedded near the muscular system and an evaluation method using the apparatus.

【0002】[0002]

【従来の技術】従来、脳卒中や脊髄損傷などによる運動
機能麻痺の再建を目的とした、機能的電気刺激(FE
S)や機能障害の回復を促すための治療的電気刺激(T
ES)などによる治療において、個々の筋を選択的に電
気刺激するために電極を生体内の神経・筋系の近傍に埋
め込み、留置している。ここで使用される電極の典型的
な例をあげれば、ステンレススチール(SUS316
L)の極細線(直径;25μm)を19本ロープ状に形
成したものに、約40μm厚のテフロンをコートし、そ
れをヘリカル状に巻いたものなどがある。
2. Description of the Related Art Conventionally, functional electrical stimulation (FE) for the purpose of reconstructing motor paralysis due to stroke or spinal cord injury.
S) or therapeutic electrical stimulation (T
In the treatment by ES, etc., electrodes are implanted and placed in the vicinity of the nerve / muscle system in the living body in order to selectively electrically stimulate individual muscles. A typical example of the electrode used here is stainless steel (SUS316
For example, there are 19 fine ropes (diameter: 25 μm) of L) formed in a rope shape, coated with Teflon having a thickness of about 40 μm, and wound in a helical shape.

【0003】[0003]

【発明が解決しようとする課題】機能的電気刺激(FE
S)による治療が本格化する中、これまでには、ここで
使用される経皮的埋め込み電極の埋め込み後の評価など
を行う有効な方法がなかった。よって、経皮的埋め込み
電極の移動、生体内での断線、端子における接触不良な
どを判断できなかった。
[Problems to be Solved by the Invention] Functional electrical stimulation (FE)
While the treatment by S) has been in full swing, there has not been an effective method to evaluate the percutaneous implantation electrode used here after the implantation. Therefore, it was not possible to determine the movement of the percutaneously embedded electrode, the disconnection in the living body, the poor contact at the terminal, and the like.

【0004】また、上記した経皮的埋め込み電極だけで
なく、完全埋め込み型機能的電気刺激(FES)システ
ムにおいても同様の問題を有する。本発明は、治療用埋
め込み電極のインピーダンスを、数十Hzから数十KH
zまでの周波数帯域で測定するという簡単な方法によ
り、使用中の治療用埋め込み電極の不良様態と不良箇所
の推定を行うことができる生体内への治療用埋め込み電
極の評価装置及びそれを用いた評価方法を提供すること
を目的とする。
Further, not only the above-mentioned percutaneous implantable electrode but also the full implantable functional electrical stimulation (FES) system has the same problem. The present invention changes the impedance of a therapeutic implant electrode from several tens of Hz to several tens of KH.
By using a simple method of measuring in a frequency band up to z, a defect state of a therapeutic implantation electrode in use and a defective portion can be estimated, and an evaluation device for a therapeutic implantation electrode in a living body is used. The purpose is to provide an evaluation method.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (A)埋め込み電極の評価装置において、生体内に埋め
込まれた絶縁被覆を有する治療用電極と、この治療用電
極の近傍の生体内に設けられる参照電極と、前記治療用
電極と参照電極間に微小な正弦波信号を印加する正弦波
電源と、前記電極に流れる電流と、電圧の大きさと位相
から電極インピーダンスを算出する測定手段とを設け
る。
In order to achieve the above-mentioned object, the present invention provides (A) a device for evaluating an embedded electrode, a therapeutic electrode having an insulating coating embedded in a living body, and the therapeutic electrode. , A reference electrode provided in the living body in the vicinity of, a sine wave power source for applying a minute sine wave signal between the treatment electrode and the reference electrode, a current flowing through the electrode, and an electrode impedance from the magnitude and phase of the voltage. A measuring means for calculating is provided.

【0006】(B)埋め込み電極の評価方法において、 (1)生体内に埋め込まれた絶縁被覆を有する治療用電
極と、この治療用電極の近傍の生体内に設けられる参照
電極間に微小な正弦波信号を印加し、前記電極に流れる
電流と、電圧の大きさと位相から電極インピーダンスを
算出し、治療用電極の評価を行う。
(B) In the method for evaluating an embedded electrode, (1) A minute sine is provided between a therapeutic electrode having an insulating coating embedded in a living body and a reference electrode provided in the living body near the therapeutic electrode. A wave signal is applied, the electrode impedance is calculated from the current flowing through the electrode, and the magnitude and phase of the voltage, and the therapeutic electrode is evaluated.

【0007】(2)前記正弦波信号の周波数を変化さ
せ、電極インピーダンスの周波数特性を測定する。 (3)前記電極インピーダンスの周波数特性の測定は、
所定の周波数下での埋め込み治療用電極に印加される電
圧と、電流のベクトルから0度成分(実数部)と90度
成分(虚数部)とに分離した後、コンピュータの演算に
よって、所定の周波数下での電極インピーダンスを算出
し、順次周波数を変化させて、順次変化した周波数下で
の電極インピーダンスを算出し、インピーダンス軌跡を
得る。
(2) The frequency of the sine wave signal is changed and the frequency characteristic of the electrode impedance is measured. (3) The frequency characteristic of the electrode impedance is measured by
After the voltage applied to the implantable therapeutic electrode under a predetermined frequency and the current vector are separated into a 0-degree component (real part) and a 90-degree component (imaginary part), a predetermined frequency is calculated by a computer. The electrode impedance under the frequency is calculated, the frequency is sequentially changed, the electrode impedance under the frequency that is sequentially changed is calculated, and the impedance locus is obtained.

【0008】(4)前記正弦波信号の周波数は、101
〜104 Hzである。 (5)前記正弦波信号の周波数は101 〜104 Hzで
あり、この周波数範囲にわたって電極インピーダンスZ
(Ω)が、102 〜103 Ω近傍の低い値を呈する場
合、治療用電極は金属電極及び絶縁被覆ともに正常と推
定する。 (6)前記正弦波信号の周波数は101 〜104 Hzで
あり、電極インピーダンスZ(Ω)が101 〜102
zの低周波数帯で106 〜107 Ω近傍の大きな値を呈
し、かつ103 〜104 Hzの高周波数帯でほぼ周波数
に反比例する変化を呈する場合、治療用電極の絶縁被覆
は正常であるが、金属電極は断線ありと推定する。
(4) The frequency of the sine wave signal is 10 1
-10 4 Hz. (5) The frequency of the sine wave signal is 10 1 to 10 4 Hz, and the electrode impedance Z is over this frequency range.
When (Ω) exhibits a low value in the vicinity of 10 2 to 10 3 Ω, both the metal electrode and the insulating coating of the therapeutic electrode are estimated to be normal. (6) The frequency of the sine wave signal is 10 1 to 10 4 Hz, and the electrode impedance Z (Ω) is 10 1 to 10 2 H.
When the z has a large value in the vicinity of 10 6 to 10 7 Ω in the low frequency band and exhibits a change that is almost inversely proportional to the frequency in the high frequency band of 10 3 to 10 4 Hz, the insulation coating of the therapeutic electrode is normal. However, it is presumed that the metal electrode has a wire break.

【0009】(7)前記正弦波信号の周波数は101
104 Hzであり、電極インピーダンスZ(Ω)が、前
記請求項6及び7の中間の値を呈して変化する場合、埋
め込み電極は金属電極及び絶縁被覆ともに断線ありと推
定する。
(7) The frequency of the sine wave signal is from 10 1 to
When it is 10 4 Hz and the electrode impedance Z (Ω) changes with an intermediate value between claims 6 and 7, it is presumed that the embedded electrode has a disconnection in both the metal electrode and the insulating coating.

【0010】[0010]

【作用】本発明によれば、生体(1)内に埋め込まれた
絶縁被覆(3)を有する治療用電極(2)と、この治療
用電極(2)の近傍の生体(1)内に設けられる参照電
極(4)間に微小な正弦波信号を印加し、前記電極に流
れる電流と、電圧の大きさと位相から電極インピーダン
スを算出し、治療用電極(2)の評価を行うようにした
ので、経皮的埋め込み電極又は完全埋め込み電極の良否
を簡単な方法で、測定することができる。
According to the present invention, the treatment electrode (2) having the insulating coating (3) embedded in the living body (1) and the living body (1) near the treatment electrode (2) are provided. Since a minute sine wave signal is applied between the reference electrodes (4), the electrode impedance is calculated from the magnitude and phase of the current flowing in the electrodes and the voltage, and the therapeutic electrode (2) is evaluated. It is possible to measure the quality of the percutaneously embedded electrode or the completely embedded electrode by a simple method.

【0011】また、印加される正弦波信号の周波数を変
化させ、電極インピーダンスの周波数特性を測定するこ
とができ、治療用電極(2)の移動、生体(1)内での
治療用電極(2)の絶縁の不良または端子での接触不良
を確実に評価することができる。更に、参照電極は治療
用電極の近傍の生体内に埋め込まれているので、皮膚表
面上に参照電極を形成する場合に比して、外部雰囲気か
らのノイズの影響を受けることがなく、信頼性の高い治
療用電極のインピーダンス測定を行うことができる。
Further, the frequency characteristics of the electrode impedance can be measured by changing the frequency of the applied sine wave signal, the movement of the treatment electrode (2), the treatment electrode (2) in the living body (1). ) Insulation failure or contact failure at the terminal can be reliably evaluated. Furthermore, since the reference electrode is embedded in the living body in the vicinity of the therapeutic electrode, it is less affected by noise from the external atmosphere and is more reliable than when the reference electrode is formed on the skin surface. It is possible to measure the impedance of the therapeutic electrode having high efficiency.

【0012】[0012]

【実施例】本発明の実施例について図を参照しながら説
明する。図1は本発明の実施例を示す埋め込み治療用電
極の評価装置の構成図である。この図において、1は機
能的電気刺激(FES)による治療を行うべき生体であ
り、この生体1内に、絶縁被覆3を有する治療用金属電
極2が経皮的に埋め込まれる。一方、参照電極4もこの
金属電極2の近傍の生体1内に埋め込まれる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an implantable therapeutic electrode evaluation apparatus according to an embodiment of the present invention. In this figure, reference numeral 1 is a living body to be treated by functional electrical stimulation (FES), and a therapeutic metal electrode 2 having an insulating coating 3 is percutaneously embedded in the living body 1. On the other hand, the reference electrode 4 is also embedded in the living body 1 near the metal electrode 2.

【0013】そこで、金属電極2の端子Aと参照電極4
の端子B間に、微小な正弦波信号を出力する電源を接続
し、端子A−B間の生体側の電極のインピーダンスZを
インピーダンス測定装置により求める。すなわち、生体
1の外部から微小な正弦波電圧を印加し、電極に流れる
電流と、電圧の大きさと位相から電極インピーダンスを
算出する。
Therefore, the terminal A of the metal electrode 2 and the reference electrode 4
A power source that outputs a minute sine wave signal is connected between the terminals B of 1 and the impedance Z of the electrode on the living body side between the terminals A and B is obtained by an impedance measuring device. That is, a minute sinusoidal voltage is applied from the outside of the living body 1, and the electrode impedance is calculated from the current flowing through the electrode and the magnitude and phase of the voltage.

【0014】更に、上記の正弦波信号の周波数を変化さ
せ、電極インピーダンスの周波数特性を得る。すなわ
ち、電極インピーダンスの周波数特性の測定は、図3に
示すように、所定の周波数f1 下での治療用埋め込み電
極に印加される電圧と、電流から算出されるインピーダ
ンスZの実数部R1 及び虚数部X1 をコンピュータ11
の演算によって算出し、順次周波数を変化させ、順次変
化した周波数f2 ,f3 …fn 下での電極インピーダン
スの実数部R2 ,R3 …Rn と、虚数部X2 ,X3 …X
nを算出し、インピーダンス軌跡を得ることができる。
なお、得られたデータはメモリ12に記憶することもで
きるし、表示装置13にて画面に表示させることもでき
る。
Further, the frequency of the sine wave signal is changed to obtain the frequency characteristic of the electrode impedance. That is, as shown in FIG. 3, the frequency characteristic of the electrode impedance is measured by measuring the voltage applied to the therapeutic implant electrode under a predetermined frequency f 1 and the real part R 1 of the impedance Z calculated from the current and The imaginary part X 1 is the computer 11
Was calculated by the calculation, it is changed sequentially frequency, a real part R 2, R 3 ... R n of successively changed frequency f 2, f 3 ... electrode impedance under f n, the imaginary part X 2, X 3 ... X
The impedance locus can be obtained by calculating n .
The obtained data can be stored in the memory 12 or can be displayed on the screen by the display device 13.

【0015】また、図示しないが、治療用電極の不良様
態毎に、標本となる周波数特性データを参照すべきデー
タとして、予めメモリに内蔵させておき、測定によって
得られた周波数特性データと、参照すべきデータとをコ
ンピュータ11において照合して、照合の結果、両者が
一致乃至類似する場合には、それに対応した治療用電極
の不良様態と推定するようにしてもよい。
Although not shown, the frequency characteristic data to be sampled is stored in advance in the memory as reference data for each failure state of the therapeutic electrode, and the frequency characteristic data obtained by the measurement is referred to. The data to be processed may be collated by the computer 11, and if the results of the collation are the same or similar, it may be presumed to be the defective state of the therapeutic electrode corresponding thereto.

【0016】このように、電極インピーダンスの周波数
特性から生体内の電極の状態を抜去せずに、治療用金
属電極の移動、治療用金属電極の生体内での断線、
治療用金属電極の絶縁の不良または端子での接触不良等
を評価することができる。以下、これらの評価方法の詳
細に説明する。図1の端子A−B間の等価回路は図2の
ように表される。ここで、Rsは治療用金属電極2自体
の直列抵抗と、治療用金属電極2と参照電極4間との生
体組織による抵抗である。また、Re、Ceは評価対象
の金属電極の導電部2aの界面インピーダンスの実部と
虚部であり、表面積に依存するパラメータである。図1
で、端子A−Bからみた電極系のインピーダンス、すな
わち、図1に示す微小な正弦波信号を印加する正弦波電
源6と測定装置10からなる電極インピーダンス測定装
置5で測定されるインピーダンスZを次式で表すと、 Z=R−jX …(1) となり、実数部および虚数部は以下のようになる。
As described above, movement of the therapeutic metal electrode, disconnection of the therapeutic metal electrode in the living body, without removing the state of the electrode in the living body from the frequency characteristics of the electrode impedance,
It is possible to evaluate poor insulation of the therapeutic metal electrode or poor contact at the terminal. Hereinafter, these evaluation methods will be described in detail. An equivalent circuit between terminals A and B in FIG. 1 is represented as in FIG. Here, Rs is a series resistance of the therapeutic metal electrode 2 itself and a resistance due to a living tissue between the therapeutic metal electrode 2 and the reference electrode 4. Further, Re and Ce are the real part and the imaginary part of the interface impedance of the conductive part 2a of the metal electrode to be evaluated, and are parameters that depend on the surface area. Figure 1
Then, the impedance of the electrode system viewed from the terminals AB, that is, the impedance Z measured by the electrode impedance measuring device 5 including the sine wave power source 6 for applying the minute sine wave signal shown in FIG. When expressed by an equation, Z = R−jX (1), and the real part and the imaginary part are as follows.

【0017】 R=Rs+Re/〔1+(ωCeRe)2 〕 …(2) X=ωCeRe2 /〔1+(ωCeRe)2 〕 …(3) ここで、(1)式の実数部から治療用金属電極2と参照
電極4間の距離L1 と電極露出部の表面積で表される実
効抵抗が、また、虚数部からそのリアクタンスの変化が
わかる。
R = Rs + Re / [1+ (ωCeRe) 2 ] ... (2) X = ωCeRe 2 / [1+ (ωCeRe) 2 ] ... (3) Here, from the real part of the formula (1) to the therapeutic metal electrode 2 The effective resistance represented by the distance L 1 between the reference electrode 4 and the reference electrode 4 and the surface area of the electrode exposed portion, and the change in the reactance can be known from the imaginary part.

【0018】以下、(1)式に基づいて代表的な3種類
の治療用金属電極の各様態について述べる。 治療用金属電極に断線が無い場合 電極自体に変化が無いことから、Re、Ceは一定であ
り直流抵抗Rsにも変化が無い。
Hereinafter, each mode of three typical types of therapeutic metal electrodes will be described based on the equation (1). When there is no disconnection in the therapeutic metal electrode Since there is no change in the electrode itself, Re and Ce are constant and there is no change in DC resistance Rs.

【0019】もし、治療用金属電極2の移動があり、図
1における距離L1 に変化分ΔL1があれば、それに比
例して直流抵抗Rsの変化分ΔRsとして現れる。すな
わち 、 ΔRs∝ΔL1 ゆえに、インピーダンスの実数部Rの変化分ΔR ΔR∝ΔL1 (周波数に無関係) …(4) となり、治療用金属電極2の変化がインピーダンスの実
数部の変化に現れる。
[0019] If there is movement of the therapeutic metal electrode 2, if there is a change in [Delta] L 1 at a distance L 1 in FIG. 1, it appears as a change in ΔRs DC resistance Rs proportionally. That is, since ΔRs∝ΔL 1 , the change amount of the real part R of the impedance is ΔR ΔR∝ΔL 1 (regardless of frequency) (4), and the change of the therapeutic metal electrode 2 appears in the change of the real part of the impedance.

【0020】 絶縁被覆は正常で治療用金属電極2だ
けが断線した場合(図4の場合) 図4に示すように、治療用金属電極2の断線が絶縁被覆
3内だけで生じた場合、生体組織との導電的な電気的結
合がなくなり、端子A−B間は開放状態であり、抵抗値
は無限大となる。しかし、実際は生体組織と金属電極と
の間に形成される線間容量Csが存在するため、端子A
−B間は、単なる開放ではなく線間容量Csが接続され
た状態になる。よって、インピーダンスの大きさ|Z|
は、ほぼ、 |Z|=1/ωCs
…(5) となり、角周波数ωの単純な関数で表される。
When the insulation coating is normal and only the therapeutic metal electrode 2 is broken (in the case of FIG. 4) As shown in FIG. 4, when the treatment metal electrode 2 is broken only in the insulation coating 3, The conductive electrical connection with the tissue is lost, the terminals A and B are open, and the resistance value becomes infinite. However, in reality, since there is a line capacitance Cs formed between the living tissue and the metal electrode, the terminal A
Between −B, the line capacitance Cs is not connected but is connected. Therefore, the magnitude of impedance | Z |
Is approximately | Z | = 1 / ωCs
(5), which is represented by a simple function of the angular frequency ω.

【0021】一方、治療用金属電極2の長さL3 と線間
容量Csの関係は、図4から明らかなように、ほぼ、 Cs∝L3 よって、予め治療用金属電極2の単位長さ当たりの容量
を求めておくことにより、線間容量Csの大きさから断
線箇所までの電極の長さL3 が推定できる。
On the other hand, the relationship between the length L 3 of the therapeutic metal electrode 2 and the line capacitance Cs is approximately Cs∝L 3 as shown in FIG. By obtaining the capacitance per contact, the length L 3 of the electrode from the size of the line capacitance Cs to the disconnection point can be estimated.

【0022】 治療用金属電極ならびに絶縁被覆とも
に断線した場合(図5の場合) 図1に示す絶縁被覆3に、図5に示すような断線が生じ
た場合には、治療用金属電極2が生体組織と接触する表
面積が大幅に減少することになる。したがって、Ceの
値が大幅に減少し、Reの値が大幅に増大する。そのた
め、低周波数では、上記(2)式により、 |Z|≒Re また、高周波数では、上記(3)式により Z≒Rs−jX ≒Rs−j/ωCe となる。
When both the therapeutic metal electrode and the insulating coating are broken (in the case of FIG. 5) When the insulating coating 3 shown in FIG. 1 is broken as shown in FIG. The surface area in contact with the tissue will be significantly reduced. Therefore, the value of Ce is greatly reduced and the value of Re is significantly increased. Therefore, at low frequencies, | Z | ≈Re from the above equation (2), and at high frequencies, Z≈Rs−jX≈Rs−j / ωCe from the above equation (3).

【0023】以上、、、の場合について、インピ
ーダンスの大きさ|Z|の周波数依存性の概略をまとめ
ると図6のようになる。以下、具体的実験例について説
明する。訓練あるいは機能再建のため下肢に電極を埋め
込んだ患者2名において被測定電極である治療用埋め込
み電極と参照電極間を、図1に示すように、生体1の外
部から微小な正弦波電圧を印加し、電極に流れる電流
と、電圧の大きさと位相から電極インピーダンスを算出
し、更に、上記の正弦波信号の周波数を変化させ、電極
インピーダンスの周波数特性を得る方法でインピーダン
スの測定を行った結果を図7に示す。
In the above cases, and, the frequency dependence of the impedance magnitude | Z | is summarized as shown in FIG. Hereinafter, specific experimental examples will be described. As shown in FIG. 1, a small sinusoidal voltage is applied from the outside of the living body 1 between the therapeutically embedded electrode, which is the electrode to be measured, and the reference electrode in two patients who have electrodes embedded in their lower limbs for training or functional reconstruction. Then, calculate the electrode impedance from the current flowing through the electrode, the magnitude and phase of the voltage, and then change the frequency of the sine wave signal to obtain the frequency characteristic of the electrode impedance. It shows in FIG.

【0024】以下、この周波数特性の評価の具体例を示
す。 (1)治療用金属電極の断線が無い場合 図7に示される曲線、、は、刺激装置からの電気
刺激で筋収縮が認められ、所望の動作が得られているこ
とから、断線の無い正常な電極であると考えられる電極
の特性である。
A specific example of evaluation of this frequency characteristic will be shown below. (1) When there is no disconnection of the therapeutic metal electrode: The curves shown in FIG. 7 show normal contraction without disconnection because muscle contraction was recognized by electrical stimulation from the stimulator and desired movement was obtained. It is a characteristic of the electrode that is considered to be a perfect electrode.

【0025】ここで、電極のインピーダンスの大きさ|
Z|の違いは、埋め込まれた電極の長さL2 および電極
先端部と参照電極間との距離L1 の違いによるものと考
えられる。これらは、図6の、′に対応する。すな
わち、このモードでは、101 〜104 Hzの周波数範
囲にわたって電極インピーダンスZ(Ω)が、102
103 Ω近傍の低い値を呈しており、治療用電極は金属
電極及び絶縁被覆ともに正常と推定される。
Here, the magnitude of the impedance of the electrode |
The difference in Z | is considered to be due to the difference in the length L 2 of the embedded electrode and the distance L 1 between the electrode tip and the reference electrode. These correspond to ′ in FIG. That is, in this mode, the electrode impedance Z (Ω) is 10 2 to 10 4 over the frequency range of 10 1 to 10 4 Hz.
It exhibits a low value in the vicinity of 10 3 Ω, and it is estimated that both the metal electrode and the insulating coating of the therapeutic electrode are normal.

【0026】(2)絶縁被覆は正常で、治療用金属電極
だけが断線した場合 図7の特性曲線、は、電気刺激による筋収縮が認め
られない電極で、インピーダンス|Z|特性が周波数の
関数となり、生体組織と金属電極との間の線間容量CS
による特性と考えられる。さらに、低周波数におけるイ
ンピーダンスの大きさは非常に大きく、電極と生体組織
との接触は極微小な状態であり、断線がほぼ、絶縁被覆
膜内だけで生じたもの(図4の状態)に等しいと考えら
れる。これらは図6に示すに対応する。
(2) When the insulation coating is normal and only the therapeutic metal electrode is broken: The characteristic curve in FIG. 7 is an electrode in which no muscle contraction due to electrical stimulation is observed, and the impedance | Z | characteristic is a function of frequency. And the line capacitance C S between the living tissue and the metal electrode
It is thought to be due to the characteristics. Furthermore, the magnitude of the impedance at low frequencies is very large, the contact between the electrode and the living tissue is extremely small, and the disconnection occurs almost only in the insulating coating film (state in FIG. 4). Considered equal. These correspond to those shown in FIG.

【0027】すなわち、このモードでは、電極インピー
ダンスZ(Ω)が、101 〜102Hzの低周波数帯で
106 〜107 Ω近傍の大きな値を呈し、かつ、103
〜104 Hzの高周波数帯でほぼ周波数に反比例する変
化を呈しており、治療用電極は絶縁被覆は正常である
が、金属電極は断線ありと推定する。 (3)治療用金属電極ならびに絶縁被覆ともに断線した
電極 図7に示す特性曲線は、前記特性曲線、の治療用
金属電極と同様に電気刺激による筋収縮が認められない
電極である。正常な治療用金属電極(図7に示す特性曲
線、、)のインピーダンス|Z|の大きさと比べ
ると、1桁以上大きな値となっている。これは、治療用
金属電極2とともに絶縁被覆3も断線し(図5の状
態)、生体組織との電気的な接触が大幅に減少すること
によって、インピーダンスの大きさが増加しているが、
図7に示す特性曲線、に比して十分小さい状態にあ
るものと考える。これは、図6に示すに対応する。
That is, in this mode, the electrode impedance Z (Ω) exhibits a large value in the vicinity of 10 6 to 10 7 Ω in the low frequency band of 10 1 to 10 2 Hz, and 10 3
In the high frequency band of -10 4 Hz, the change is almost inversely proportional to the frequency, and it is estimated that the therapeutic electrode has a normal insulating coating but the metal electrode has a wire break. (3) Metallic electrode for treatment and electrode with insulation coating disconnected The characteristic curve shown in FIG. 7 is an electrode in which muscle contraction due to electrical stimulation is not recognized, like the therapeutical metal electrode of the characteristic curve. Compared with the magnitude of the impedance | Z | of a normal therapeutic metal electrode (characteristic curve shown in FIG. 7), the value is one digit or more larger. This is because the insulation coating 3 is broken along with the therapeutic metal electrode 2 (state of FIG. 5), and the electrical contact with the living tissue is significantly reduced, so that the magnitude of impedance is increased.
It is assumed that the state is sufficiently smaller than the characteristic curve shown in FIG. This corresponds to that shown in FIG.

【0028】すなわち、このモードでは、電極インピー
ダンスZ(Ω)が、上記した(1)と(2)の中間の値
を呈し、金属電極及び絶縁被覆ともに断線ありと推定さ
れる。なお、上記実施例においては、経皮的埋め込み電
極の評価について述べたが、経皮的埋め込み電極だけで
なく、完全埋め込み型機能的電気刺激(FES)システ
ムにおいても同様に適用できることは言うまでもない。
That is, in this mode, the electrode impedance Z (Ω) exhibits an intermediate value between the above (1) and (2), and it is presumed that the metal electrode and the insulating coating are broken. In addition, although the evaluation of the transcutaneous implantable electrode is described in the above embodiment, it is needless to say that the present invention can be similarly applied to not only the transdermal implantable electrode but also a complete implantable functional electrical stimulation (FES) system.

【0029】[0029]

【発明の効果】以上、詳細に述べたように、本発明によ
れば、以下のような効果を奏することができる。 (1)生体内の治療用埋め込み電極を抜去せずに、その
埋め込み治療用埋め込み電極の的確な評価を行うことが
できる。
As described above in detail, according to the present invention, the following effects can be obtained. (1) It is possible to accurately evaluate the implantable therapeutic implant electrode without removing the implantable therapeutic implant electrode in the living body.

【0030】(2)特に、生体内に埋め込まれた絶縁被
覆を有する治療用電極と、この治療用電極の近傍の生体
内に設けられる参照電極間に微小な正弦波信号を印加
し、前記電極に流れる電流と、電圧の大きさと位相から
電極インピーダンスを算出し、埋め込み治療用電極の評
価を行うようにしたので、経皮的埋め込み電極又は完全
埋め込み電極の良否を簡単な方法で測定することができ
る。
(2) In particular, a minute sine wave signal is applied between the therapeutic electrode having an insulating coating embedded in the living body and a reference electrode provided in the living body in the vicinity of the therapeutic electrode, and the electrode is applied. Since the electrode impedance was calculated from the current and voltage magnitude and phase flowing through the electrode, and the implantable therapeutic electrode was evaluated, the quality of the percutaneous implantable electrode or the completely implantable electrode can be measured by a simple method. it can.

【0031】また、印加される正弦波信号の周波数を変
化させ、電極インピーダンスの周波数特性を測定するこ
とができ、埋め込み治療用電極の移動、生体内での埋め
込み治療用電極、埋め込み治療用電極の絶縁の不良また
は端子での接触不良を確実に評価することができる。更
に、参照電極は治療用電極の近傍の生体内に設けられて
いるので、皮膚表面上に参照電極を形成する場合に比し
て、外部雰囲気からのノイズの影響を受けることがな
く、信頼性の高い治療用電極のインピーダンス測定を行
うことができる。
Further, the frequency characteristics of the electrode impedance can be measured by changing the frequency of the applied sinusoidal signal, and the implantation treatment electrode can be moved, the implantation treatment electrode in the living body, and the implantation treatment electrode can be measured. It is possible to reliably evaluate poor insulation or poor contact at terminals. Furthermore, since the reference electrode is provided in the living body in the vicinity of the therapeutic electrode, it is less affected by noise from the external atmosphere and is more reliable than when the reference electrode is formed on the skin surface. It is possible to measure the impedance of the therapeutic electrode having high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す治療用埋め込み電極の評
価装置の構成図である。
FIG. 1 is a block diagram of an evaluation device for an implantable therapeutic electrode showing an embodiment of the present invention.

【図2】本発明の実施例を示す治療用埋め込み電極の評
価時の等価回路である。
FIG. 2 is an equivalent circuit at the time of evaluating a therapeutic embedded electrode showing an example of the present invention.

【図3】本発明の実施例を示す治療用埋め込み電極の評
価装置の測定装置のブロック図である。
FIG. 3 is a block diagram of a measuring device of an evaluation device for an implantable therapeutic electrode according to an embodiment of the present invention.

【図4】治療用埋め込み電極のみの断線状態を示す図で
ある。
FIG. 4 is a diagram showing a disconnection state of only a therapeutic embedded electrode.

【図5】治療用埋め込み電極及び絶縁被覆の断線状態を
示す図である。
FIG. 5 is a diagram showing a disconnection state of a therapeutic embedded electrode and an insulating coating.

【図6】本発明の実施例を示す治療用埋め込み電極の評
価における周波数特性概略図である。
FIG. 6 is a frequency characteristic schematic diagram in evaluation of an implantable electrode for treatment showing an example of the present invention.

【図7】本発明の実施例を示す治療用埋め込み電極の評
価における具体的周波数特性図である。
FIG. 7 is a specific frequency characteristic diagram in evaluation of a therapeutic embedded electrode showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1 生体 2 治療用金属電極 3 絶縁被覆 4 参照電極 5 電極インピーダンス測定装置 6 正弦波電源 10 測定装置 11 コンピュータ 12 メモリ 13 表示装置 DESCRIPTION OF SYMBOLS 1 Living body 2 Treatment metal electrode 3 Insulation coating 4 Reference electrode 5 Electrode impedance measuring device 6 Sine wave power supply 10 Measuring device 11 Computer 12 Memory 13 Display device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】(a)生体内に埋め込まれた絶縁被覆を有
する治療用電極と、(b)該治療用電極の近傍の生体内
に設けられる参照電極と、(c)前記治療用電極と参照
電極間に微小な正弦波信号を印加する正弦波電源と、
(d)前記電極に流れる電流と、電圧の大きさと位相か
ら電極インピーダンスを算出する測定手段とを具備する
埋め込み電極の評価装置。
1. A therapeutic electrode having an insulating coating embedded in a living body, (b) a reference electrode provided in the living body in the vicinity of the therapeutic electrode, and (c) the therapeutic electrode. A sine wave power supply that applies a minute sine wave signal between the reference electrodes,
(D) A device for evaluating an embedded electrode, which comprises a current flowing through the electrode and a measuring means for calculating the electrode impedance from the magnitude and phase of the voltage.
【請求項2】(a)生体内に埋め込まれた絶縁被覆を有
する治療用電極と該治療用電極の近傍の生体内に設けら
れる参照電極間に微小な正弦波信号を印加し、(b)前
記電極に流れる電流と、電圧の大きさと位相から電極イ
ンピーダンスを算出し、治療用電極の評価を行う埋め込
み電極の評価方法。
2. A small sinusoidal signal is applied between (a) a therapeutic electrode having an insulating coating embedded in a living body and a reference electrode provided in the living body near the therapeutic electrode, and (b). An embedded electrode evaluation method for evaluating a therapeutic electrode by calculating an electrode impedance from the magnitude and phase of a current flowing through the electrode and the voltage.
【請求項3】 前記正弦波信号の周波数を変化させ、電
極インピーダンスの周波数特性を測定する請求項2記載
の埋め込み電極の評価方法。
3. The embedded electrode evaluation method according to claim 2, wherein the frequency characteristic of the electrode impedance is measured by changing the frequency of the sine wave signal.
【請求項4】 前記電極インピーダンスの周波数特性の
測定は、所定の周波数下での埋め込み治療用電極に印加
される電圧と、電流のベクトルから0度成分(実数部)
と90度成分(虚数部)とに分離した後、コンピュータ
の演算によって、所定の周波数下での電極インピーダン
スを算出し、順次周波数を変化させて、順次変化した周
波数下での電極インピーダンスを算出し、インピーダン
ス軌跡を得る請求項3記載の埋め込み電極の評価方法。
4. The frequency characteristic of the electrode impedance is measured by measuring a voltage applied to the implantable therapeutic electrode under a predetermined frequency and a vector of a current and a 0 degree component (real part).
And the 90-degree component (imaginary part) are separated, the electrode impedance under a predetermined frequency is calculated by a computer calculation, the frequency is sequentially changed, and the electrode impedance under the sequentially changed frequency is calculated. The method for evaluating an embedded electrode according to claim 3, wherein the impedance locus is obtained.
【請求項5】 前記正弦波信号の周波数は101 〜10
4 Hzである請求項3又は4記載の埋め込み電極の評価
方法。
Frequency of claim 5 wherein said sinusoidal signal 10 1 to 10
The method for evaluating an embedded electrode according to claim 3, wherein the frequency is 4 Hz.
【請求項6】 前記正弦波信号の周波数は101 〜10
4 Hzであり、この周波数範囲にわたって電極インピー
ダンスZ(Ω)が、102 〜103 Ω近傍の低い値を呈
する場合、治療用電極は金属電極及び絶縁被覆ともに正
常と推定する請求項4記載の埋め込み電極の評価方法。
Wherein the frequency of the sinusoidal signal 10 1 to 10
It is 4 Hz, and when the electrode impedance Z (Ω) exhibits a low value in the vicinity of 10 2 to 10 3 Ω over this frequency range, both the metal electrode and the insulating coating are presumed to be normal for the therapeutic electrode. Evaluation method of embedded electrodes.
【請求項7】 前記正弦波信号の周波数は101 〜10
4 Hzであり、電極インピーダンスZ(Ω)が101
102 Hzの低周波数帯で106 〜107 Ω近傍の大き
な値を呈し、かつ103 〜104 Hzの高周波数帯でほ
ぼ周波数に反比例する変化を呈する場合、治療用電極の
絶縁被覆は正常であるが、金属電極は断線ありと推定す
る請求項4記載の埋め込み電極の評価方法。
Frequency of wherein said sinusoidal signal 10 1 to 10
4 Hz, electrode impedance Z (Ω) is 10 1 ~
In the case where a large value in the vicinity of 10 6 to 10 7 Ω is exhibited in the low frequency band of 10 2 Hz and a change substantially inversely proportional to the frequency is exhibited in the high frequency band of 10 3 to 10 4 Hz, the insulation coating of the therapeutic electrode is The method for evaluating an embedded electrode according to claim 4, wherein it is estimated that the metal electrode is normal but has a wire break.
【請求項8】 前記正弦波信号の周波数は101 〜10
4 Hzであり、電極インピーダンスZ(Ω)が、前記請
求項6及び7の中間の値を呈して変化する場合、埋め込
み電極は金属電極及び絶縁被覆ともに断線ありと推定す
る請求項4記載の埋め込み電極の評価方法。
Frequency of wherein said sinusoidal signal 10 1 to 10
5. The embedded electrode according to claim 4, wherein the embedded electrode is presumed to have a break in both the metal electrode and the insulating coating when the electrode impedance Z (Ω) changes at a frequency of 4 Hz and exhibits an intermediate value between the aforementioned claims 6 and 7. Electrode evaluation method.
JP9512194A 1994-05-09 1994-05-09 Evaluating apparatus for embedded electrode and evaluating method using the same Pending JPH07299149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9512194A JPH07299149A (en) 1994-05-09 1994-05-09 Evaluating apparatus for embedded electrode and evaluating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9512194A JPH07299149A (en) 1994-05-09 1994-05-09 Evaluating apparatus for embedded electrode and evaluating method using the same

Publications (1)

Publication Number Publication Date
JPH07299149A true JPH07299149A (en) 1995-11-14

Family

ID=14129007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9512194A Pending JPH07299149A (en) 1994-05-09 1994-05-09 Evaluating apparatus for embedded electrode and evaluating method using the same

Country Status (1)

Country Link
JP (1) JPH07299149A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028039A3 (en) * 1996-12-20 1998-10-15 Ep Technologies Unified switching system for electrophysiological stimulation and signal recording and analysis
JP2012515593A (en) * 2009-01-26 2012-07-12 ユニバーシティ・カレッジ・ダブリン,ナショナル・ユニバーシティ・オブ・アイルランド,ダブリン Method and apparatus for stimulating pelvic floor muscles
JP2016193210A (en) * 2012-06-08 2016-11-17 メドトロニック・ミニメッド・インコーポレーテッド Application of electrochemical impedance spectroscopy in sensor systems, devices and related methods
CN107096129A (en) * 2016-02-19 2017-08-29 创领心律管理医疗器械(上海)有限公司 Impedance measurement device and its method of work

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028039A3 (en) * 1996-12-20 1998-10-15 Ep Technologies Unified switching system for electrophysiological stimulation and signal recording and analysis
US6101410A (en) * 1996-12-20 2000-08-08 Scimed Life Systems, Inc. Unified switching system with floating substrate for electrophysiological stimulation and signal recording and analysis
US6615073B1 (en) 1996-12-20 2003-09-02 Scimed Life Systems, Inc. Unified switching system for electrophysiological stimulation and signal recording and analysis
JP2012515593A (en) * 2009-01-26 2012-07-12 ユニバーシティ・カレッジ・ダブリン,ナショナル・ユニバーシティ・オブ・アイルランド,ダブリン Method and apparatus for stimulating pelvic floor muscles
JP2016193210A (en) * 2012-06-08 2016-11-17 メドトロニック・ミニメッド・インコーポレーテッド Application of electrochemical impedance spectroscopy in sensor systems, devices and related methods
JP2016195770A (en) * 2012-06-08 2016-11-24 メドトロニック・ミニメッド・インコーポレーテッド Application of electrochemical impedance spectroscopy in sensor systems, devices and related methods
CN107096129A (en) * 2016-02-19 2017-08-29 创领心律管理医疗器械(上海)有限公司 Impedance measurement device and its method of work

Similar Documents

Publication Publication Date Title
US10952627B2 (en) Apparatus and method for optimized stimulation of a neurological target
Mills et al. Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach.
US6032060A (en) Method for conditioning skin and an electrode by passing electrical energy
KR20170066351A (en) Methods of fabricating a multi-electrode array for spinal cord epidural stimulation
WO1992002273A1 (en) Method for determining absolute current density
Clemente et al. Characterization of human skin impedance after electrical treatment for transdermal drug delivery
US5795293A (en) Reducing artifact in bioelectric signal monitoring
KR20170139082A (en) Detection of activity in peripheral nerves
US6949763B2 (en) Semiconductor and non-semiconductor non-diffusion-governed bioelectrodes
Cui et al. Electrochemical characteristics of microelectrode designed for electrical stimulation
CN112315446A (en) Instrument and method for dynamic measurement and correction of skin impedance
JPH07299149A (en) Evaluating apparatus for embedded electrode and evaluating method using the same
EP1530946B1 (en) Human skin impedance model representing a skin impedance response at high frequency
JP2649160B2 (en) Therapeutic electrostatic load device
Levy et al. Definition of the geometric area of a microelectrode tip by plasma etching of Parylene
Brennen The characterization of transcutaneous stimulating electrodes
Pachnis Neutralisation of myoelectric interference from recorded nerve signals using models of the electrode impedance
US20230301710A1 (en) Multi-Sensor Ablation Probe with Treatment Electrode
KR101743843B1 (en) A circuit of the electronic which eliminate the noise of an electric stimulus plate
Koo et al. Experimental factors effecting stability of Electrochemical Impedance Spectroscopy Measurements
Loniza et al. Development the Design of Foot Reflexology For Stroke Patient Based on Body Resistance Using Low Frequency
Rodrigues Microelectrodes for biomedical devices
Ohba et al. Evaluation of percutaneous electrode after implantation for FES
Crenner et al. Selective recording of thin muscular layers with improved Ag-AgCI electrodes
Park et al. Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830