JPH07297456A - Dewar device - Google Patents

Dewar device

Info

Publication number
JPH07297456A
JPH07297456A JP6109104A JP10910494A JPH07297456A JP H07297456 A JPH07297456 A JP H07297456A JP 6109104 A JP6109104 A JP 6109104A JP 10910494 A JP10910494 A JP 10910494A JP H07297456 A JPH07297456 A JP H07297456A
Authority
JP
Japan
Prior art keywords
dewar
spherical
curvature
center
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6109104A
Other languages
Japanese (ja)
Other versions
JP2654497B2 (en
Inventor
Hisashi Kado
久 賀戸
Hisanao Ogata
久直 尾形
Masayuki Ueda
雅之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHODENDO SENSOR KENKYUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
CHODENDO SENSOR KENKYUSHO KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHODENDO SENSOR KENKYUSHO KK, Agency of Industrial Science and Technology filed Critical CHODENDO SENSOR KENKYUSHO KK
Priority to JP6109104A priority Critical patent/JP2654497B2/en
Publication of JPH07297456A publication Critical patent/JPH07297456A/en
Application granted granted Critical
Publication of JP2654497B2 publication Critical patent/JP2654497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To easily, freely, and finely adjust the position of a SQUID sensor by making a Dewar device which houses the sensor and its cooling medium in a heat-insulating state three-dimensionally rotatable around the center of curvature of a spherical convex or concave section. CONSTITUTION:A Dewar device 2A is equipped with an inner tank 11A for housing a SQUID sensor 21A which has a SQUID element composed of such a superconducting material, that indicates a superconducting state at the temperature 4K of liquid helium and liquid helium L, heat insulating tank l3A surrounding the tank 11A, and outer tank 12A. The Dewar device 2A can be easily rotated around the rotating shaft 42 of the device 2A passing through the center P of curvature of the spherical convex section 33A of a section 3A to be supported or the centers of curvature of the spherical concave sections 31L and 3lR of supporting sections 4L and 4R. In addition, the center P11 of curvature and the rotating shaft 42 itself of the device 2A can be rotated around a vertical axis 41 by + or -alpha Or, the device 2A can perform these two operations simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人体あるいは生物体か
ら発生する磁場の計測を行うための医療用診断装置、材
料の透磁率を測定するための物性測定装置、磁気的な信
号伝送のインターフェイスのための通信装置等に用いる
SQUID(Superconducting Quantum Interference D
evice :超伝導量子干渉デバイス)を格納することに適
したデュワー装置に関する。ここに、SQUIDとは、
液体ヘリウムや液体窒素等により断熱容器(クライオス
タット、デュワー等)内で低温状態に維持され、ループ
内にジョセフソン接合を含む超伝導ループであるSQU
IDループに直流電流をバイアス電流として印加して駆
動し、このSQUIDループ内に、ピックアップコイル
や入力コイル等を介して外部からの磁束を結合して印加
すると、SQUIDループに周回電流が誘起され、ルー
プ内のジョセフソン接合における量子的な干渉効果によ
り、印加された外部磁束の微弱な変化を出力電圧の大き
な変化に変換するトランスデューサとして動作すること
を利用して、微小磁束変化を測定する素子である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical diagnostic device for measuring a magnetic field generated from a human body or a living body, a physical property measuring device for measuring magnetic permeability of a material, and a magnetic signal transmission interface. SQUID (Superconducting Quantum Interference D)
evice: A dewar device suitable for storing a superconducting quantum interference device. Here, SQUID is
SQU, which is a superconducting loop that is maintained at a low temperature in a heat-insulating container (cryostat, dewar, etc.) by liquid helium, liquid nitrogen, etc. and that contains a Josephson junction in the loop.
When a DC current is applied as a bias current to the ID loop to drive it, and a magnetic flux from the outside is coupled and applied to this SQUID loop via a pickup coil, an input coil, etc., a circulating current is induced in the SQUID loop, An element that measures minute magnetic flux changes by utilizing the fact that it acts as a transducer that converts weak changes in the applied external magnetic flux into large changes in output voltage due to the quantum interference effect in the Josephson junction in the loop. is there.

【0002】[0002]

【従来の技術】従来、この種のデュワー装置としては、
円筒状などのデュワーに、その筒軸回りの回転が可能な
支持機構を設け、筒軸を傾斜可能な支持機構をも設け
て、それぞれ独立に調整可能とした装置、あるいは、デ
ュワーをX方向およびY方向に移動可能に構成した装置
などが知られている。
2. Description of the Related Art Conventionally, as a dewar device of this type,
A device such as a cylindrical dewar that is provided with a support mechanism capable of rotating around the cylinder axis and a support mechanism that can tilt the cylinder axis so that the dewar can be adjusted independently, or the dewar can be adjusted in the X direction and A device or the like configured to be movable in the Y direction is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のデ
ュワー装置では、被験者等の姿勢、位置、状態等に合わ
せてデュワー先端部等のセンサ部位置を調整したい場合
であっても、座標位置を与える必要があったり、位置調
整機構が厳密かつ大掛かりである等の理由から、かえっ
て微妙な調整が困難であったり、微調整に長時間を要す
ることが多かった。本発明は、上記の問題点を解決する
ためになされたものであり、被験者等に合わせてセンサ
位置を容易かつ自在に微調整可能なデュワー装置を提供
することを目的とする。
However, in the above-mentioned conventional dewar device, even when it is desired to adjust the position of the sensor unit such as the dewar tip according to the posture, position, state, etc. of the subject, the coordinate position is adjusted. It is often difficult to make a delicate adjustment, or it takes a long time to make a fine adjustment, because of the necessity of giving it and the position adjusting mechanism being strict and large. The present invention has been made to solve the above problems, and an object of the present invention is to provide a dewar device in which the sensor position can be easily and freely finely adjusted according to the subject or the like.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係るデュワー装置は、球面の一部をなす球
状凹部を有する支持具と、当該球状凹部の球面と略同一
曲率の凸面の一部をなす球状凸部を有し当該球状凸部が
前記球状凹部にほぼ接するように載置され前記支持具に
より支持される被支持部が設けられかつSQUIDセン
サとその冷却媒体がその内部に収納され断熱状態に保持
されるデュワーと、を備え、前記球状凸部または球状凹
部の曲率中心を中心として前記デュワーを三次元的に回
転可能に構成される。
In order to solve the above-mentioned problems, a dewar device according to the present invention comprises a support having a spherical concave portion forming a part of a spherical surface, and a convex surface having substantially the same curvature as the spherical surface of the spherical concave portion. A supported portion which has a spherical convex portion forming a part of the spherical convex portion and is placed so that the spherical convex portion is substantially in contact with the spherical concave portion and is supported by the supporting tool, and the SQUID sensor and its cooling medium are provided inside the supported portion. And a dewar that is housed in and held in a heat-insulated state, and is configured to be three-dimensionally rotatable about the center of curvature of the spherical convex portion or spherical concave portion.

【0005】[0005]

【作用】上記構成を有する本発明によれば、上記球状凸
部又は球状凹部の曲率中心を通るデュワーの回転軸のま
わりにデュワーを回転させたり、上記球状凸部又は球状
凹部の曲率中心を回転中心としてデュワー回転軸自体を
回転させたり、上記の2つの動作を同時に行うことによ
り、SQUIDセンサ位置を被験者等に合わせて容易か
つ自在に微調整することができる。
According to the present invention having the above structure, the dewar is rotated around the rotation axis of the Dewar passing through the center of curvature of the spherical convex portion or the spherical concave portion, or the center of curvature of the spherical convex portion or spherical concave portion is rotated. The SQUID sensor position can be easily and freely fine-tuned according to the subject by rotating the Dewar rotary shaft itself as the center or performing the above two operations at the same time.

【0006】[0006]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。図1ないし図5は、本発明の第1実施例である
デュワー装置の構成を示した図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 are diagrams showing the configuration of a dewar device according to a first embodiment of the present invention.

【0007】図に示すように、このデュワー装置1A
は、試験室等の天井6から吊下支持され、その先端に支
持部4L,4Rが設けられたアーム5L,5Rと、支持
部4L,4Rによって支持される被支持部3Aと、被支
持部3Aのデュワー挿入孔32内に挿入されて支持され
るデュワー2Aとを備えて構成されている。ここに、支
持部4L,4Rとアーム5L,5Rとは支持具を構成し
ている。
As shown in the figure, this dewar device 1A
Is an arm 5L, 5R suspended and supported from a ceiling 6 of a test room or the like and provided with support portions 4L, 4R at its tip, a supported portion 3A supported by the support portions 4L, 4R, and a supported portion. The dewar 2A is inserted and supported in the dewar insertion hole 32 of the 3A. Here, the support portions 4L and 4R and the arms 5L and 5R form a support tool.

【0008】デュワー2Aは、液体ヘリウム温度約4K
で超伝導状態を示すニオブ等の超伝導材料で構成された
SQUID素子を有するSQUIDセンサ21Aとその
冷却媒体である液体ヘリウムLを収納可能な略円筒状の
内槽11Aと、この内槽11Aを包囲するとともに内槽
11Aとの間に真空層などの断熱層13Aを形成し、上
記SQUIDセンサ21Aおよび液体ヘリウムLを断熱
状態で保持する外槽12Aと、外槽12Aの外部に設け
られたコネクタ部24Aと、内槽11Aの首に相当する
部分に挿入されコネクタ部24Aと接続するネックプラ
グ23Aと、液体ヘリウムLとその蒸発ガスを外部空気
から遮断する蓋17Aと、SQUIDセンサ部21Aを
液体ヘリウムL中に支持するとともにSQUID21A
からの計測信号をデュワー2Aの外部に導く配線等を止
着または内蔵可能な配線部22Aと、を備えて構成され
る。このデュワー2Aの外槽12Aの中央付近の腹部に
は、被支持部3Aのデュワー挿入孔32内の係止用凹部
16により係止支持される鍔状の係止用凸部15が設け
られ、SQUIDセンサ部21A付近の外槽12Aおよ
び内槽11Aの底部は、被験者の頭部Hがすっぽり収納
可能な頭部収納用凹部14Aが設けられている(図1,
2)。
Dewar 2A has a liquid helium temperature of about 4K.
The SQUID sensor 21A having an SQUID element made of a superconducting material such as niobium that exhibits a superconducting state, a substantially cylindrical inner tank 11A that can store liquid helium L that is a cooling medium thereof, and the inner tank 11A are An outer tank 12A which surrounds and forms a heat insulating layer 13A such as a vacuum layer between the inner tank 11A and the SQUID sensor 21A and the liquid helium L in a heat insulating state, and a connector provided outside the outer tank 12A. The portion 24A, a neck plug 23A that is inserted into a portion corresponding to the neck of the inner tank 11A and is connected to the connector portion 24A, a lid 17A that shields liquid helium L and its evaporative gas from the external air, and a SQUID sensor portion 21A is a liquid. Support in helium L and SQUID21A
And a wiring portion 22A capable of fixing or incorporating wiring or the like for guiding the measurement signal from the outside of the dewar 2A. At the abdomen near the center of the outer tub 12A of the dewar 2A, a brim-shaped locking projection 15 is provided which is locked and supported by the locking recess 16 in the dewar insertion hole 32 of the supported portion 3A, At the bottoms of the outer tub 12A and the inner tub 11A near the SQUID sensor portion 21A, there is provided a head storage recess 14A in which the head H of the subject can be completely stored (FIG. 1, FIG.
2).

【0009】上記のデュワー2Aは、中央にデュワー挿
入孔32が開設された被支持部3Aに挿入され、デュワ
ー2A外側の係止用凸部15が、デュワー挿入孔32内
に設けられた係止用凹部16により係止支持される。上
記の被支持部3Aは、外側面が球表面の一部である球状
凸部33Aを形成している。
The dewar 2A is inserted into the supported portion 3A having a dewar insertion hole 32 formed in the center thereof, and the locking projection 15 on the outer side of the dewar 2A is locked in the dewar insertion hole 32. It is locked and supported by the recessed portion 16. The supported portion 3A has a spherical convex portion 33A whose outer surface is a part of the spherical surface.

【0010】上記のようにデュワー2Aをその内部に係
止支持した被支持部3Aの球状凸部33Aは、その球面
と略同一曲率の球面の一部をなす球状凹部31L,31
Rを有する支持部4L,4Rの凹部面上に載置され支持
される。この場合、上記の球状凸部33Aの凸面が球状
凹部31L,31Rの凹面にほぼ接触する。すなわち、
球状凹部31L,31Rの曲率半径は、球状凸部33A
の曲率半径より僅かに大きく設定され、デュワー2A及
び球状凸部33Aが支持部4L,4Rに搭載された状
態、すなわち、支持部4L,4Rに荷重のかかった状態
で、ほぼ曲率が一致するようにし、相互に容易に滑動可
能なように構成され、かつ相互の摩擦により相互の滑動
が妨げられることのないような一種のユニバーサルジョ
イントを形成している。
As described above, the spherical convex portion 33A of the supported portion 3A in which the dewar 2A is locked and supported therein has spherical concave portions 31L, 31 forming a part of a spherical surface having substantially the same curvature as the spherical surface.
The support portions 4L and 4R having R are placed and supported on the concave surfaces. In this case, the convex surface of the spherical convex portion 33A substantially contacts the concave surfaces of the spherical concave portions 31L and 31R. That is,
The radius of curvature of the spherical concave portions 31L and 31R is the same as the spherical convex portion 33A.
Is slightly larger than the radius of curvature of the dewar 2A and the spherical convex portion 33A mounted on the support portions 4L and 4R, that is, the curvatures are substantially the same when the support portions 4L and 4R are loaded. In addition, they form a kind of universal joint that is configured to be easily slidable with respect to each other and that does not hinder the mutual sliding due to mutual friction.

【0011】上記のように構成すれば、図4に示すよう
に、被支持部3Aの球状凸部33A又は支持部4L,4
Rの球状凹部31L,31Rの曲率中心Pを通るデュワ
ー2Aの回転軸42のまわりにデュワー2Aを容易に回
転させることができる。また、上記曲率中心Pを回転中
心としてデュワー回転軸42自体を、垂直軸41を中心
に角度±αだけ回転させることもできる。あるいは、上
記の2つの動作を同時に行うこともできる。したがっ
て、図5に示すように、SQUIDセンサ21Aの位置
を被験者の頭部Hの位置や姿勢等に合わせて容易かつ自
在に微調整することができる。上記において、デュワー
2Aの重心と上記曲率中心Pとを一致させるように構成
すれば、デュワー2Aの微調整はさらに容易となる。
With the above construction, as shown in FIG. 4, the spherical protrusion 33A of the supported portion 3A or the supporting portions 4L, 4 are formed.
It is possible to easily rotate the dewar 2A around the rotation axis 42 of the dewar 2A passing through the center of curvature P of the spherical concave portions 31L and 31R of R. Further, the Dewar rotation shaft 42 itself can be rotated about the vertical axis 41 by the angle ± α with the center of curvature P as the rotation center. Alternatively, the above two operations can be performed simultaneously. Therefore, as shown in FIG. 5, the position of the SQUID sensor 21A can be easily and freely fine-tuned according to the position, posture, etc. of the head H of the subject. In the above, if the center of curvature of the dewar 2A and the center of curvature P are made to coincide with each other, fine adjustment of the dewar 2A becomes easier.

【0012】次に、本発明の第2実施例であるデュワー
装置について説明する。図6は、本発明の第2実施例の
デュワー装置の構成を示した図である。図に示すよう
に、このデュワー装置1Bは、試験室等の天井6から吊
下支持され、その先端に支持部4L,4Rが設けられた
アーム5L,5Rと、支持部4L,4Rによって支持さ
れる被支持部3Bが設けられたデュワー2Bとを備えて
構成されている。上記の第1実施例と異なる点は、デュ
ワー2Bの腹部の外側面自体が球状に突出して被支持部
3Bを形成している点である。ここに、支持部4L,4
Rとアーム5L,5Rとは支持具を構成している。
Next, a dewar device according to a second embodiment of the present invention will be described. FIG. 6 is a diagram showing the configuration of the dewar device according to the second embodiment of the present invention. As shown in the figure, this dewar device 1B is supported by being suspended from a ceiling 6 of a test room or the like, and arms 5L and 5R provided with supporting portions 4L and 4R at their tips, and supporting portions 4L and 4R. And a dewar 2B provided with a supported portion 3B. The difference from the first embodiment is that the outer surface of the abdomen of the dewar 2B protrudes spherically to form the supported portion 3B. Here, the support portions 4L, 4
The R and the arms 5L and 5R form a support tool.

【0013】デュワー2Bは、液体ヘリウム温度約4K
で超伝導状態を示すニオブ等の超伝導材料で構成された
SQUID素子を有するSQUIDセンサ21Bとその
冷却媒体である液体ヘリウムLを収納可能な両端が略円
筒状で中央付近が略球状の内槽11Bと、この内槽11
Bを包囲するとともに内槽11Bとの間に真空層などの
断熱層13Bを形成し、上記SQUIDセンサ21Bお
よび液体ヘリウムLを断熱状態で保持する外槽12B
と、外槽12Bの外部に設けられたコネクタ部24B
と、内槽11Bの首に相当する部分に挿入されコネクタ
部24Bと接続するネックプラグ23Bと、液体ヘリウ
ムLとその蒸発ガスを外部空気から遮断する蓋17B
と、SQUIDセンサ部21Bを液体ヘリウムL中に支
持するとともにSQUID21Bからの計測信号をデュ
ワー2Bの外部に導く配線等を止着または内蔵可能な配
線部22Bと、を備えて構成される。このデュワー2B
の外槽12Bおよび内槽11Bの中央付近の腹部は、上
述のように、その外側面が球表面の一部をなすように突
出し球状凸部33Bを形成し、被支持部3Bを形成して
いる。
Dewar 2B has a liquid helium temperature of about 4K.
The SQUID sensor 21B having a SQUID element made of a superconducting material such as niobium, which exhibits a superconducting state, and a liquid helium L that is a cooling medium for the SQUID sensor 21B have substantially cylindrical ends and a substantially spherical center. 11B and this inner tank 11
An outer tank 12B that surrounds B and forms a heat insulating layer 13B such as a vacuum layer with the inner tank 11B to hold the SQUID sensor 21B and the liquid helium L in a heat insulating state.
And a connector portion 24B provided outside the outer tank 12B
And a neck plug 23B inserted into a portion corresponding to the neck of the inner tank 11B and connected to the connector portion 24B, a lid 17B for blocking liquid helium L and its evaporative gas from the outside air.
And a wiring portion 22B which supports the SQUID sensor portion 21B in the liquid helium L and which can fix or incorporate a wiring or the like for guiding the measurement signal from the SQUID 21B to the outside of the dewar 2B. This Dewar 2B
As described above, the abdomen near the center of the outer tub 12B and the inner tub 11B of the outer tub 12B protrudes so that the outer surface thereof forms a part of the sphere surface, forms the spherical convex portion 33B, and forms the supported portion 3B. There is.

【0014】そして、上記の被支持部3Bの球状凸部3
3Bは、その球面と略同一曲率の球面の一部をなす球状
凹部31L,31Rを有する支持部4L,4Rの凹部面
上に載置され支持される。この場合、上記の球状凸部3
3Bの凸面が球状凹部31L,31Rの凹面にほぼ接触
する。すなわち、球状凹部31L,31Rの曲率半径
は、球状凸部33Bの曲率半径より僅かに大きく設定さ
れ、デュワー2A及び球状凸部33Aが支持部4L,4
Rに搭載された状態、すなわち、支持部4L,4Rに荷
重のかかった状態で、ほぼ曲率が一致するようにし、相
互に容易に滑動可能なように構成され、かつ相互の摩擦
により相互の滑動が妨げられることのないような一種の
ユニバーサルジョイントを形成している。
Then, the spherical convex portion 3 of the supported portion 3B described above.
3B is placed and supported on the concave surface of the supporting portions 4L and 4R having spherical concave portions 31L and 31R forming a part of a spherical surface having substantially the same curvature as the spherical surface. In this case, the spherical projection 3
The convex surface of 3B substantially contacts the concave surfaces of the spherical concave portions 31L and 31R. That is, the radius of curvature of the spherical concave portions 31L and 31R is set to be slightly larger than the radius of curvature of the spherical convex portion 33B, and the dewar 2A and the spherical convex portion 33A are supported portions 4L and 4L.
When mounted on the R, that is, in a state where a load is applied to the support portions 4L and 4R, the curvatures are substantially the same, and the slide portions are configured to be easily slidable with each other, and are slidable by mutual friction. Form a kind of universal joint that is not disturbed.

【0015】上記のように構成すれば、上記第1実施例
と同様に、被支持部3Bの球状凸部33B又は支持部4
L,4Rの球状凹部31L,31Rの曲率中心(図示せ
ず)を通るデュワー2Bの回転軸(図示せず)のまわり
にデュワー2Bを容易に回転させることができる。ま
た、上記曲率中心を回転中心としてデュワー回転軸自体
を、垂直軸を中心に所定の角度だけ回転させることもで
きる。あるいは、上記の2つの動作を同時に行うことも
できる。したがって、SQUIDセンサ21Bの位置を
被験者の頭部Hの位置や姿勢等に合わせて容易かつ自在
に微調整することができる。また、さらに、第2実施例
の場合は、第1実施例と異なり被支持部3Bがデュワー
2Bに一体化されているので、可動機構がさらに簡易化
され、デュワー2B内に収納しうる液体ヘリウムの容量
も増大させることができる。上記において、デュワー2
Bの重心と上記曲率中心とを一致させるように構成すれ
ば、デュワー2Bの微調整はさらに容易となる。
With the above structure, the spherical projection 33B of the supported portion 3B or the supporting portion 4 is formed as in the first embodiment.
It is possible to easily rotate the dewar 2B around the rotation axis (not shown) of the dewar 2B passing through the centers of curvature (not shown) of the spherical recesses 31L and 31R of the L and 4R. Further, the Dewar rotation shaft itself can be rotated about the vertical axis by a predetermined angle with the center of curvature as the rotation center. Alternatively, the above two operations can be performed simultaneously. Therefore, the position of the SQUID sensor 21B can be easily and freely fine-tuned according to the position, posture, etc. of the head H of the subject. Further, in the case of the second embodiment, unlike the first embodiment, the supported portion 3B is integrated with the dewar 2B, so that the movable mechanism is further simplified, and liquid helium that can be stored in the dewar 2B is provided. The capacity of can also be increased. In the above, Dewar 2
If the center of gravity of B and the center of curvature are matched, fine adjustment of the dewar 2B becomes easier.

【0016】上記の支持部や被支持部の材料としては、
FRPやジュラコン等の樹脂が適している。また、これ
らの球状凸部または球状凹部のいずれかあるいは両方の
面にフッ素樹脂系の潤滑剤を塗布しておけば、相互の摩
擦抵抗を相当程度低減することが可能である。あるい
は、球状凸部または球状凹部のいずれかの面に多数の微
小孔を開設しておき、その孔から空気等を噴出させるこ
とにより面摩擦を断つことができる。また、球状凹部表
面側の支点となる範囲にボールベアリング等を埋設して
おけば、ボールベアリングのころがり運動により支持部
と被支持部の相互の摩擦抵抗はきわめて小さくなる。
The material of the supporting portion and the supported portion is as follows.
Resins such as FRP and Duracon are suitable. If a fluororesin-based lubricant is applied to either or both of the spherical convex portions or the spherical concave portions, mutual frictional resistance can be considerably reduced. Alternatively, the surface friction can be cut off by forming a large number of minute holes on either surface of the spherical convex portion or the spherical concave portion and ejecting air or the like from the holes. Further, if a ball bearing or the like is embedded in a range serving as a fulcrum on the surface side of the spherical recess, the rolling resistance of the ball bearing makes the mutual frictional resistance between the supporting portion and the supported portion extremely small.

【0017】また、支持部と被支持部の滑りが良すぎ
て、所定の姿勢で静止しない場合等も考慮し、デュワー
を所定位置で所定の傾斜状態のまま物理的に固定可能な
手段、例えば、ワイヤー、ボルト締結機構等を備えても
よい。また、デュワーの位置や傾斜角度等を正確に知る
ために、球状凸部の適宜位置に緯度、経度、角度等の目
盛等を設け、静止している支持部側に基準線や指針等を
設けておいてもよい。
In consideration of the case where the supporting portion and the supported portion are too slippery to stand still in a predetermined posture, a means which can physically fix the dewar at a predetermined position in a predetermined inclined state, for example, , A wire, a bolt fastening mechanism or the like may be provided. In addition, in order to accurately know the position and inclination angle of the dewar, scales such as latitude, longitude, and angle are provided at appropriate positions on the spherical convex portion, and a reference line and pointer are provided on the stationary support side. You may keep it.

【0018】なお、本発明は、上記実施例に限定される
ものではない。上記実施例は、例示であり、本発明の特
許請求の範囲に記載された技術的思想と実質的に同一な
構成を有し、同様な作用効果を奏するものは、いかなる
ものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-mentioned embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0019】例えば、上記の実施例においては、冷却媒
体として液体ヘリウムを用いる例について説明したが、
これには限定されず、SQUIDセンサを高臨界温度超
伝導材料であるイットリウム・バリウム・銅酸化物など
により形成し、冷却媒体として液体窒素等を用いてもよ
い。また、上記実施例では、デュワー形状が円筒状であ
る例について説明したが、これには限定されず、デュワ
ーの支持部付近が球状であれば、デュワー自体は他の立
体形状であってもかまわない。また、上記実施例におい
ては、デュワーが天井から吊下支持される例について説
明したが、これには限定されず、床面や壁面から支持さ
れてもかまわない。また、支持部の数についても、上記
実施例のように2個には限定されず、3個以上であって
もよいし、底部が開口した1個の椀状の支持部などであ
ってもよい。
For example, in the above embodiment, an example of using liquid helium as the cooling medium has been described.
The SQUID sensor is not limited to this, and the SQUID sensor may be formed of yttrium / barium / copper oxide, which is a high critical temperature superconducting material, and liquid nitrogen or the like may be used as the cooling medium. Further, in the above embodiment, an example in which the dewar shape is a cylindrical shape has been described, but the dewar shape is not limited to this, and the dewar itself may have another three-dimensional shape as long as the vicinity of the supporting portion of the dewar is spherical. Absent. Further, in the above embodiment, an example in which the dewar is suspended and supported from the ceiling has been described, but the dewar is not limited to this and may be supported from the floor surface or the wall surface. Further, the number of supporting portions is not limited to two as in the above embodiment, and may be three or more, or one bowl-shaped supporting portion having an open bottom. Good.

【0020】また、上記実施例は、デュワーの傾斜角度
があまり大きくない場合を例にとって説明したが、デュ
ワーの傾斜角度がかなり大きい範囲でもよく、その場合
には、球状凸部自体を傾けてセットしておけばよい。例
えば、上記実施例では各支持部は天井から同一の高さに
保持されていたが、この支持部の高さを異ならせておく
ことにより、当初からデュワーを所定角度で傾斜させて
おくことができる。
In the above embodiment, the case where the dewar inclination angle is not so large has been described as an example, but the dewar inclination angle may be in a considerably large range. In that case, the spherical convex portion itself is inclined and set. Just keep it. For example, in the above-mentioned embodiment, the respective support portions are held at the same height from the ceiling, but by making the heights of the support portions different, it is possible to incline the dewar from the beginning. it can.

【0021】[0021]

【発明の効果】以上説明したように、上記構成を有する
本発明によれば、上記球状凸部又は球状凹部の曲率中心
を通るデュワーの回転軸のまわりにデュワーを回転させ
たり、上記球状凸部又は球状凹部の曲率中心を回転中心
としてデュワー回転軸自体を回転させたり、上記の2つ
の動作を同時に行うことにより、SQUIDセンサ位置
を被験者等に合わせて容易かつ自在に微調整することが
できる、という利点がある。
As described above, according to the present invention having the above-described structure, the dewar is rotated around the rotation axis of the dewar passing through the center of curvature of the spherical convex portion or the spherical concave portion, or the spherical convex portion is rotated. Alternatively, the SQUID sensor position can be easily and freely fine-tuned according to the subject by rotating the Dewar rotating shaft itself with the center of curvature of the spherical recess as the center of rotation or performing the above two operations simultaneously. There is an advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例であるデュワー装置の構成
を示す正断面図である。
FIG. 1 is a front sectional view showing a configuration of a dewar device according to a first embodiment of the present invention.

【図2】図1に示すデュワー装置の構成を示す図1のA
−A断面図である。
FIG. 2A in FIG. 1 showing the configuration of the dewar device shown in FIG.
FIG.

【図3】図1に示すデュワー装置における球状凸部と支
持部との関係を示す斜視図(1)である。
FIG. 3 is a perspective view (1) showing a relationship between a spherical convex portion and a support portion in the Dewar device shown in FIG.

【図4】図1に示すデュワー装置における球状凸部と支
持部との関係を示す斜視図(2)である。
4 is a perspective view (2) showing a relationship between a spherical convex portion and a support portion in the dewar device shown in FIG.

【図5】図1に示すデュワー装置の実施時の態様を示す
斜視図である。
5 is a perspective view showing a mode of implementation of the dewar device shown in FIG. 1. FIG.

【図6】本発明の第2実施例であるデュワー装置の構成
を示す正断面図である。
FIG. 6 is a front sectional view showing a configuration of a dewar device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1A,1B デュワー装置 2A,2B デュワー 3A,3B 被支持部 4L,4R 支持部 5L,5R アーム 6 天井 11A,11B 内槽 12A,12B 外槽 13A,13B 断熱層 14A,14B 頭部収納用凹部 15 係止用凸部 16 係止用凹部 17A,17B 蓋 21A,21B センサ部 22A,22B 配線部 23A,23B ネックプラグ 24A,24B コネクタ部 31L,31R 球状凹部 32 デュワー挿入孔 33A,33B 球状凸部 41 垂直軸 42 デュワー軸 H 被験者頭部 L 液体ヘリウム P 曲率中心 1A, 1B Dewar device 2A, 2B Dewar 3A, 3B Supported part 4L, 4R Support part 5L, 5R Arm 6 Ceiling 11A, 11B Inner tank 12A, 12B Outer tank 13A, 13B Thermal insulation layer 14A, 14B Head recess 15 Locking convex part 16 Locking concave part 17A, 17B Lid 21A, 21B Sensor part 22A, 22B Wiring part 23A, 23B Neck plug 24A, 24B Connector part 31L, 31R Spherical concave part 32 Dewar insertion hole 33A, 33B Spherical convex part 41 Vertical axis 42 Dewar axis H Subject head L Liquid helium P Center of curvature

───────────────────────────────────────────────────── フロントページの続き (72)発明者 賀戸 久 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 尾形 久直 千葉県印旛郡印西町武西学園台2−1200 株式会社超伝導センサ研究所内 (72)発明者 上田 雅之 千葉県印旛郡印西町武西学園台2−1200 株式会社超伝導センサ研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisashi Kado 1-4-1 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Inoue Hisao Nagisa Inzai-cho, Inba-gun, Chiba Prefecture Tai 2-1200 Co., Ltd. Superconducting Sensor Laboratory (72) Inventor Masayuki Ueda Takenishi Gakuen, Inzai-cho, Inba-gun, Chiba Stand 2-1200 Superconducting Sensor Laboratory, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 球面の一部をなす球状凹部を有する支持
具と、 当該球状凹部の球面と略同一曲率の凸面の一部をなす球
状凸部を有し当該球状凸部が前記球状凹部にほぼ接する
ように載置され前記支持具により支持される被支持部が
設けられかつSQUIDセンサとその冷却媒体がその内
部に収納され断熱状態に保持されるデュワーと、を備
え、 前記球状凸部または球状凹部の曲率中心を中心として前
記デュワーを三次元的に回転可能に構成したことを特徴
とするデュワー装置。
1. A support having a spherical concave portion forming a part of a spherical surface, and a spherical convex portion forming a part of a convex surface having substantially the same curvature as the spherical surface of the spherical concave portion, the spherical convex portion being the spherical concave portion. The SQUID sensor is provided with a supported portion that is placed so as to be substantially in contact with each other and is supported by the supporting tool, and the dewar that has a cooling medium stored therein and is held in a heat-insulated state is provided. A dewar device characterized in that the dewar can be rotated three-dimensionally around a center of curvature of a spherical recess.
JP6109104A 1994-04-26 1994-04-26 Dewar device Expired - Lifetime JP2654497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6109104A JP2654497B2 (en) 1994-04-26 1994-04-26 Dewar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6109104A JP2654497B2 (en) 1994-04-26 1994-04-26 Dewar device

Publications (2)

Publication Number Publication Date
JPH07297456A true JPH07297456A (en) 1995-11-10
JP2654497B2 JP2654497B2 (en) 1997-09-17

Family

ID=14501684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6109104A Expired - Lifetime JP2654497B2 (en) 1994-04-26 1994-04-26 Dewar device

Country Status (1)

Country Link
JP (1) JP2654497B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275719B1 (en) 1998-09-09 2001-08-14 Hitachi, Ltd. Biomagnetic field measurement apparatus
EP1911398A2 (en) 2006-10-05 2008-04-16 Hitachi, Ltd. Biomagnetic field measurement apparatus
JP2009056232A (en) * 2007-09-03 2009-03-19 Toshiba Corp Magnetic particle imaging apparatus and coil arrangement method
JP2010503983A (en) * 2006-09-15 2010-02-04 シーメンス マグネット テクノロジー リミテッド Supported superconducting magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022660B2 (en) * 2006-10-06 2012-09-12 株式会社日立ハイテクノロジーズ Magnetic field measuring device
US11439336B2 (en) 2018-10-02 2022-09-13 Ricoh Company, Ltd. Biological information measurement system and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275719B1 (en) 1998-09-09 2001-08-14 Hitachi, Ltd. Biomagnetic field measurement apparatus
JP2010503983A (en) * 2006-09-15 2010-02-04 シーメンス マグネット テクノロジー リミテッド Supported superconducting magnet
US8729990B2 (en) 2006-09-15 2014-05-20 Siemens Plc Supported superconducting magnet
EP1911398A2 (en) 2006-10-05 2008-04-16 Hitachi, Ltd. Biomagnetic field measurement apparatus
US8010178B2 (en) 2006-10-05 2011-08-30 Hitachi, Ltd. Biomagnetic field measurement apparatus having a plurality of magnetic pick-up coils
JP2009056232A (en) * 2007-09-03 2009-03-19 Toshiba Corp Magnetic particle imaging apparatus and coil arrangement method

Also Published As

Publication number Publication date
JP2654497B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
FI89131C (en) MAGNETOMETER DETECTOR OVER DERAS MONTAGE I EN FLORKANALIG ANORDNING FOER MAETNING AV MAENSKANS HJAERNFUNKTIONER ALSTRANDE MAGNETFAELT
JPH08191807A (en) Equipment and method for living animal body magnetic measurement
US5444372A (en) Magnetometer and method of measuring a magnetic field
US4700135A (en) Apparatus for measuring weak magnetic fields having several gradiometers with associated SQUID array
JP2662639B2 (en) Magnetometer
US10076234B2 (en) Apparatus and method for controlling movement of a capsule endoscope in digestive tract of a human body
JP2654497B2 (en) Dewar device
US4613816A (en) Cryogenic magnetic probe having new substrate
CN111902671B (en) Low-temperature sphere
US3225608A (en) Diamagnetic suspension system
US6094991A (en) Auto-orienting motion sensing device
US6079267A (en) Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing
JP4077945B2 (en) Biomagnetic measurement device
US4848002A (en) Self-centering needle-less magnetic compass
JP4034429B2 (en) Biomagnetic measurement device
US3611785A (en) Spherical air bearing test carriage having unlimited angular motion
JP2008205401A (en) Cooling system for superconductive magnetic sensor
KR20210153844A (en) Multimodal Position Transformation Dual Helmet MEG Apparatus
JP3306508B2 (en) 3-axis superconducting accelerometer
US6504372B1 (en) High field open magnetic resonance magnet with reduced vibration
JPH0621441Y2 (en) Brain magnetic wave measurement device
JPH02243981A (en) Magnetic field detecting device
JPH05343884A (en) Superconducting magnetic shielding device
JP3909413B2 (en) Brain magnetometer
JP3616388B2 (en) Transfer tube moving support device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term