JPH0729716A - Plastic magnet and treatment method thereof - Google Patents

Plastic magnet and treatment method thereof

Info

Publication number
JPH0729716A
JPH0729716A JP5155067A JP15506793A JPH0729716A JP H0729716 A JPH0729716 A JP H0729716A JP 5155067 A JP5155067 A JP 5155067A JP 15506793 A JP15506793 A JP 15506793A JP H0729716 A JPH0729716 A JP H0729716A
Authority
JP
Japan
Prior art keywords
magnet
magnetization
plastic magnet
plastic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5155067A
Other languages
Japanese (ja)
Inventor
Terumi Nishinuma
沼 輝 美 西
Toshihiro Onodera
敏 浩 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANTO DENSHI KOGYO KK
Original Assignee
KANTO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANTO DENSHI KOGYO KK filed Critical KANTO DENSHI KOGYO KK
Priority to JP5155067A priority Critical patent/JPH0729716A/en
Publication of JPH0729716A publication Critical patent/JPH0729716A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide an electronic lens magnet which is manufactured at a low cost and excellent in magnetic properties and moldability and a treating method thereof. CONSTITUTION:Plastic magnet material containing 30 to 70% by weight of magnet powder which is mainly composed of iron, aluminum, nickel, and cobalt and as large in average grain diameter as 40 to 100mum is molded into a plastic magnet. Provided that a final magnetization value is 100%, a plastic magnet is magnetized higher than a final magnetization value b 110 to 140% in a primary magnetizing process, then magnetized lower than a final magnetization value by -10 to -30% in a second magnetizing process so as to be kept equal in remanence to a final magnetization value, and then subjected to an aging process at a temperatures of 80 to 120 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラスチックマグネット
とその処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic magnet and a method for treating the same.

【0002】[0002]

【従来の技術】陰極線管(ブラウン管)におけるコンバ
ーゼンス用またはセンタリング用のマグネットとして、
従来、アルニコ系マグネットが多用されている。アルニ
コ系マグネットというのは、周知のごとく、鉄(Fe
)、アルミニウム(Al )、ニッケル(Ni )および
コバルト(Co )を主成分として構成されたマグネット
のことである。この種の一般的なアルニコ系マグネット
に含有されているコバルト成分は24〜34%程度が普
通である。ところが、コバルトは高価であり、したがっ
て、コバルト成分を多く含んでいるアルニコ系マグネッ
トは高価になってしまう。
2. Description of the Related Art As a magnet for convergence or centering in a cathode ray tube (CRT),
Conventionally, alnico magnets are often used. Alnico magnets are, as is well known, iron (Fe)
), Aluminum (Al), nickel (Ni) and cobalt (Co) as the main components. The cobalt component contained in this type of general alnico magnet is usually about 24 to 34%. However, cobalt is expensive, and therefore, an alnico magnet containing a large amount of cobalt component becomes expensive.

【0003】一方、特に高周波用としてフェライト系マ
グネットが多用されている。このマグネットの粉末粒径
は、0.5〜3μm程度である。フェライトマグネット
は磁気的安定性が良く保磁力も大きいという特徴がある
反面、温度変化(高温)による特性劣化が激しく、用途
が制約されるという一面の欠点を持っている。図7は周
囲温度に対する磁力の変化を示すものである。アルニコ
系マグネットの温度変化による磁力変化は、特性線71
に示すように0.02%/℃程度であるのに対し、フェ
ライトマグネットのそれは特性線72に示すように0.
2%/℃程度であり、これはアルニコ系マグネットに比
較して1桁大きい値である。なお、直線70は変化零の
基準線を示すものである。
On the other hand, ferrite magnets are often used especially for high frequencies. The powder particle size of this magnet is about 0.5 to 3 μm. Ferrite magnets have the characteristics of good magnetic stability and large coercive force, but have the drawback of severely deteriorating their characteristics due to temperature changes (high temperatures) and limiting their applications. FIG. 7 shows changes in magnetic force with respect to ambient temperature. The change in magnetic force due to the temperature change of the Alnico magnet is indicated by the characteristic line 71.
0.02% / ° C. as shown in FIG. 7, whereas that of the ferrite magnet is 0.02% as shown by the characteristic line 72.
It is about 2% / ° C., which is an order of magnitude larger than that of Alnico magnets. It should be noted that the straight line 70 shows a reference line with no change.

【0004】プラスチックマグネットのマグネット粉末
の含有量は一般的に、フェライト系マグネットの場合で
70%程度、アルニコ系マグネットの場合で30%程度
であり、従来、この含有量の多様化はされておらず(含
有量は固定的であり)、磁気特性の多様化は着磁処理で
対応している。さらに、従来は、磁気安定化処理はフェ
ライト系マグネットの場合は行っておらず、アルニコ系
マグネットの場合で5%程度の安定化減磁あるいは加熱
エージングしか行っていない。
The content of magnet powder in plastic magnets is generally about 70% in the case of ferrite type magnets and about 30% in the case of alnico type magnets. Conventionally, the content has not been diversified. No (content is fixed), the diversification of magnetic characteristics is supported by the magnetization process. Further, conventionally, the magnetic stabilizing treatment is not performed in the case of the ferrite magnet, but only the stabilizing demagnetization or heat aging of about 5% is performed in the case of the alnico magnet.

【0005】ここで、一般的に行われているプラスチッ
クマグネットの着磁方法について説明しておく。
Here, a commonly used method of magnetizing a plastic magnet will be described.

【0006】いま図8に示すようなマグネットの一般的
なB−H特性を考える。横軸は起磁力Hc 、縦軸は着磁
量Br である。所定の着磁量をAとした場合、主として
フェライト系のマグネットでは、(1) フル着磁すること
はせず、特性線81,82に従って着磁する。アルニコ
系マグネットの場合は、(2) まず特性線81,83に従
ってフル着磁Bを行い、次に減磁処理を施してAの着磁
量にする。
Now, consider a general BH characteristic of a magnet as shown in FIG. The horizontal axis represents the magnetomotive force Hc, and the vertical axis represents the magnetization amount Br. When the predetermined amount of magnetization is A, the ferrite type magnet is not used for (1) full magnetization, but is magnetized according to the characteristic lines 81 and 82. In the case of an alnico magnet, (2) first, full magnetization B is performed according to the characteristic lines 81 and 83, and then demagnetization processing is performed to obtain the magnetization amount of A.

【0007】したがって、(1)の着磁方法では必ずし
も定格の保磁力Hc の状態で使用されるとは限らない。
Therefore, the magnetizing method (1) is not always used with the rated coercive force Hc.

【0008】安定化減磁率については必要最小限にする
方が良い。なぜならば、減磁率が高いと一次着磁量も高
くする必要があるが、それは含有させるマグネット粉末
の増量につながり、コスト的にも不利になるからであ
る。それにもらかわらず、従来安定化減磁率とコストと
の関係については、ほとんど考慮されていない。
The stabilized demagnetization rate should be minimized. The reason is that if the demagnetization rate is high, it is necessary to increase the amount of primary magnetization, but this leads to an increase in the amount of magnet powder contained, which is disadvantageous in terms of cost. Nevertheless, the relationship between the stabilized demagnetization rate and the cost has not been considered so far.

【0009】[0009]

【発明が解決しようとする課題】本発明は、より安価に
製造でき、磁気特性および成形性に優れたプラスチック
マグネットとその処理方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a plastic magnet which can be manufactured at a lower cost and has excellent magnetic properties and moldability, and a method for treating the plastic magnet.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明のプラスチックマグネットは、鉄、アルミニウ
ムおよびニッケルを主成分とするマグネットの平均粒径
40〜100μmのマグネット粉末を重量比で30〜7
0%含有するプラスチックマグネット材料で成形したも
のである。
In order to achieve the above object, the plastic magnet of the present invention comprises a magnet containing iron, aluminum and nickel as main components and having an average particle diameter of 40 to 100 μm in a weight ratio of 30 to 30. 7
It was molded from a plastic magnet material containing 0%.

【0011】さらに本発明のプラスチックマグネット
は、鉄、アルミニウム、ニッケルおよびコバルトを主成
分とするアルニコ系マグネットのコバルト成分を10%
以下とし、平均粒径40〜100μmのマグネット粉末
を重量比で30〜70%含有するプラスチックマグネッ
ト材料で成形したものである。
Further, the plastic magnet of the present invention contains 10% of the cobalt component of an alnico magnet mainly containing iron, aluminum, nickel and cobalt.
The following is formed by a plastic magnet material containing 30 to 70% by weight of magnet powder having an average particle diameter of 40 to 100 μm.

【0012】さらにまた本発明のプラスチックマグネッ
トの処理方法は、請求項1または2に記載のマグネット
を、最終着磁量を100%としたとき、一次着磁量を1
10〜140%と高く着磁した後、二次着磁により10
0%まで減磁し、さらに80〜120℃の温度でエージ
ングを行うことを特徴とするものである。
Furthermore, in the method for treating a plastic magnet according to the present invention, when the final magnetizing amount of the magnet according to claim 1 or 2 is 100%, the primary magnetizing amount is 1
After being magnetized as high as 10 to 140%, it becomes 10 by secondary magnetization.
It is characterized by demagnetizing to 0% and further aging at a temperature of 80 to 120 ° C.

【0013】[0013]

【作用および実施例】本発明によるマグネットは、鉄、
アルミニウムおよびニッケル並びに必要に応じてコバル
トを主成分とする平均粒径40〜100μmのマグネッ
ト粉末を重量比で30〜70%含有するプラスチックマ
グネット材料で成形するものである。
FUNCTION AND EXAMPLE The magnet according to the present invention is made of iron,
It is molded from a plastic magnet material containing aluminum and nickel and, if necessary, cobalt-based magnet powder having an average particle size of 40 to 100 μm in a weight ratio of 30 to 70%.

【0014】この種のプラスチックマグネットの磁気特
性と成形性との間にはマグネット粉末の粒径に関し相反
する特性傾向がある。図2に示すように、磁気特性21
は粒径との間に増加関数特性を有するのに対し、成形性
22は粒径との間に減少関数特性を持っている。このよ
うにマグネットの磁気特性と成形性との間にはマグネッ
ト粉末の粒径に関し相反する特性傾向がある。本発明に
よるマグネット粉末の平均粒径40〜100μmという
のは、磁気特性と成形性の両者を同時に満足する領域と
して選択されたものである。マグネット粉末の平均粒径
と磁気特性および成形性(高化式フロー)の関係を図1
に示す。図1は低コバルトのアルニコ系マグネット(含
有率50%)における粒径とB・Hmax との関係を示す
ものであって、縦軸左側はB・Hmax を、縦軸右側は高
化式フロー、横軸はマグネット粉末の平均粒径をそれぞ
れ示している。ここでB・Hmax というのは、着磁量B
と起磁力Hとの積B・Hの最大値を示すものである。本
発明においてマグネット粉末の平均粒径を40〜100
μmの範囲とするのは、その範囲が磁気特性B・Hmax
および高化式フローが特性的に実用上共存しうる領域と
判断されたからである。
Between the magnetic characteristics and the moldability of this type of plastic magnet, there is a contradictory tendency regarding the particle size of the magnet powder. As shown in FIG.
Has a function of increasing function with respect to the particle size, while the formability 22 has a function of decreasing function with the particle size. As described above, there is a contradictory tendency between the magnetic characteristics and the formability of the magnet regarding the particle size of the magnet powder. The average particle diameter of the magnet powder according to the present invention of 40 to 100 μm is selected as a region that simultaneously satisfies both the magnetic characteristics and the formability. Fig. 1 shows the relationship between the average particle size of magnet powder, magnetic properties, and moldability (Koka type flow).
Shown in. FIG. 1 shows the relationship between the particle size and B · Hmax in a low-cobalt alnico magnet (content rate 50%), where the left side of the vertical axis is B · Hmax, and the right side of the vertical axis is an elevation flow. The horizontal axis represents the average particle size of the magnet powder. Here, B · Hmax is the magnetization amount B
And the magnetomotive force H of the product B · H. In the present invention, the average particle size of the magnet powder is 40-100.
The range of μm is that the range is magnetic characteristics B · Hmax
This is because it was determined that the Koka type flow characteristically exists in a practically coexisting region.

【0015】次に、マグネット粉末の含有量を30〜7
0%の範囲内で調整することにより最終製品の磁束密度
を広範囲に調整することができ、それにより必要磁束密
度の低いマグネットからそれの高いマグネットまで、高
範囲の磁束密度特性を有するマグネットを1種のマグネ
ットによって対応することができる。図3に示すよう
に、マグネット粉末含有量が多いとき(70%)は特性
線31で示す大きい着磁量を得ることができ、またマグ
ネット粉末含有量が少ないとき(30%)は特性線32
で示すように着磁量も小さくなる。磁力安定化のための
減磁率を−10%〜−30%見込むものとすれば、一次
着磁量は所定の着磁量を100%としたとき、110〜
140%となるが、本発明によれば現在生産されている
磁力の高い機種(直線33)から磁力の低い機種(直線
34)までを1種のマグネットで対応することができ、
それぞれの飽和磁力も確保することができる。
Next, the content of the magnet powder is 30 to 7
By adjusting the magnetic flux density within the range of 0%, the magnetic flux density of the final product can be adjusted over a wide range, so that a magnet having a high magnetic flux density characteristic from a magnet with a low required magnetic flux density to a magnet with a high magnetic flux density It can be handled by a kind of magnet. As shown in FIG. 3, when the magnet powder content is large (70%), a large magnetization amount shown by the characteristic line 31 can be obtained, and when the magnet powder content is small (30%), the characteristic line 32 is obtained.
As shown by, the magnetization amount also becomes small. Assuming that the demagnetization rate for stabilizing the magnetic force is -10% to -30%, the primary magnetization amount is 110 to 110 when the predetermined magnetization amount is 100%.
According to the present invention, one type of magnet can be applied to models with a high magnetic force (straight line 33) to models with a low magnetic force (straight line 34), which is 140%.
Each saturation magnetic force can also be secured.

【0016】アルニコ系のマグネットにおいても適当な
磁力安定化減磁を施せば、外部磁界に対する抗磁力も実
用上問題のないレベルにすることができる。
Even in the case of an alnico type magnet, the coercive force against an external magnetic field can be set to a level at which there is no problem in practice, if appropriate magnetic force stabilizing demagnetization is performed.

【0017】図4にアルニコ系マグネットの対外部磁界
(交流磁界)特性を示す。図4は、リング状に形成され
た4極マグネットにつき、安定化減磁なし(特性線4
1)、減磁率−10%(特性線42)、減磁率−30%
(特性線43)、減磁率−50%(特性線44)および
減磁率−70%(特性線45)のそれぞれについて測定
した磁力変化率を、マグネットと消磁器間の距離Lの関
数として示したものである。なお、参考までにフェライ
ト系マグネットの場合について、フル着磁したものにつ
いての測定結果を特性線46として示す。図から分かる
ように、アルニコ系マグネットの対外部磁界特性は、一
般的には90ガウス(G)の交流磁界中に10秒間放置
(照射)した時、減磁量5%以内という規格があるが、
本発明によるマグネットはそれを十分にクリアしている
ことが分かる。安定化減磁率については必要最小限にす
る方が良い。すでに述べたように、減磁率が高いと一次
着磁量も高くする必要があるが、それは含有させるマグ
ネット粉末の増量につながり、コスト的にも不利になる
からである。
FIG. 4 shows the characteristics of the alnico magnet with respect to the external magnetic field (AC magnetic field). Fig. 4 shows a ring-shaped 4-pole magnet without stabilizing demagnetization (characteristic line 4
1), demagnetization rate-10% (characteristic line 42), demagnetization rate-30%
(Characteristic line 43), demagnetization rate of -50% (characteristic line 44) and demagnetization rate of -70% (characteristic line 45), the rate of change in magnetic force measured was shown as a function of the distance L between the magnet and the degausser. It is a thing. For reference, a characteristic line 46 shows a measurement result of a fully magnetized ferrite magnet. As can be seen from the figure, the external magnetic field characteristics of Alnico magnets are generally specified to be within 5% demagnetization when left (irradiated) for 10 seconds in an alternating magnetic field of 90 Gauss (G). ,
It can be seen that the magnet according to the invention clears it sufficiently. It is better to minimize the stabilizing demagnetization rate. As described above, if the demagnetization rate is high, it is necessary to increase the primary magnetizing amount, but this leads to an increase in the amount of magnet powder contained, which is disadvantageous in terms of cost.

【0018】最終製品の磁束密度の調整は、一次着磁
(正着磁)と二次着磁(減磁)をもって行われるが、図
3に示したように、マグネット粉末含有量が多いときは
大きい着磁量を得ることができ、マグネット粉末含有量
が少ないときは着磁量も小さくなる。しかるに、マグネ
ット粉末含有量一定という条件の下で得られる一定の着
磁特性、例えば図5の「含有量多」の特性線51に従っ
て所定の着磁量を得るための調整作業は、特に特性が立
っている部分、すなわち所定の着磁量変化量に対応する
着磁電圧の変化幅の「狭い」所、での調整作業が困難で
ある。本発明によるマグネット粉末含有量の調整により
適度の着磁量特性のものを容易に得ることができ、した
がって、所定の着磁量を得るための調整作業は、特に特
性の立っている部分によることなく、マグネット粉末含
有量の多いときでも(特性線51)少ないときでも(特
性線52)、所定の着磁量変化量に対応する着磁電圧の
変化幅の比較的「広い」所を用いて容易に調整し、安定
した着磁量を得ることができる。
The magnetic flux density of the final product is adjusted by primary magnetization (normal magnetization) and secondary magnetization (demagnetization), but as shown in FIG. 3, when the content of magnet powder is large. A large amount of magnetization can be obtained, and when the content of magnet powder is small, the amount of magnetization also becomes small. However, the constant magnetizing characteristics obtained under the condition that the magnet powder content is constant, for example, the adjustment work for obtaining the predetermined magnetizing quantity according to the characteristic line 51 of "high content" in FIG. It is difficult to perform the adjustment work in a standing portion, that is, in a place where the variation width of the magnetization voltage corresponding to the predetermined variation amount of the magnetization is “narrow”. By adjusting the content of the magnet powder according to the present invention, it is possible to easily obtain a magnetized product having an appropriate magnetizing amount characteristic. Therefore, the adjustment work for obtaining a predetermined magnetizing amount should be carried out by the part where the characteristic is particularly outstanding. Even if the magnet powder content is large (characteristic line 51) or small (characteristic line 52), a relatively wide range of the variation of the magnetization voltage corresponding to the predetermined variation in the amount of magnetization is used. It is possible to easily adjust and obtain a stable amount of magnetization.

【0019】次にコバルト成分を含むマグネットにおい
て、コバルト成分を10%以下にする理由について説明
する。コバルト(Co )を含有する種々のマグネット材
料の磁気特性について比較したところ、表1の結果が得
られた。表1において、Br は着磁磁束、bHc は起磁
力である。(B・H)max というのは、磁束密度Bと起
磁力Hとの積B・Hの最大値を示すものである。表1に
示すように、5種類の材料のうちCo 含有率の高い製品
(No.2)とそれの低い製品(No.5)とは、ほぼ
同様の磁気特性を示しており、低Co 品でも十分実用に
なることが分かる。
Next, the reason why the content of cobalt in the magnet containing cobalt is 10% or less will be described. When the magnetic properties of various magnet materials containing cobalt (Co) were compared, the results shown in Table 1 were obtained. In Table 1, Br is a magnetizing magnetic flux and bHc is a magnetomotive force. (B · H) max indicates the maximum value of the product B · H of the magnetic flux density B and the magnetomotive force H. As shown in Table 1, the product having a high Co content (No. 2) and the product having a low Co content (No. 5) among the five kinds of materials show almost the same magnetic characteristics, and thus the low Co product. However, it turns out that it will be fully practical.

【0020】[0020]

【表1】 さらに本発明によれば、最終用途での着磁量を100%
として、一次着磁量を110〜140%と高く着磁した
後、二次着磁により100%まで減磁し、さらに80〜
120℃の温度でエージングを行う。このようにして二
重の磁気安定化処理を施すことにより、磁気安定度を向
上させることができる。エージング温度80〜120℃
は次の理由によるものである。
[Table 1] Furthermore, according to the present invention, the amount of magnetization in the end use is 100%.
As a result, after the primary magnetization amount is set to a high value of 110 to 140%, the secondary magnetization is demagnetized to 100%, and then 80 to
Aging is performed at a temperature of 120 ° C. By thus performing the double magnetic stabilization treatment, the magnetic stability can be improved. Aging temperature 80-120 ℃
Is due to the following reasons.

【0021】カラーテレビジョンやディスプレイ等のセ
ット内温度(例えばコンバーゼンスマグネット取付部分
の温度)は、CRTネック内のヒータからの距離やセッ
ト内の空間状態、放熱状態などにより変化するが、環境
温度40℃の場合で、80〜110℃程度まで上昇す
る。また、マグネットの熱変形温度であるが、これはマ
グネット粉末の含有率や、難燃剤ないし難燃助剤などの
配合度によっても変わるが、通常140〜160℃程度
であり、安全度を15〜25%見込めば、エージングの
最高温度は120℃前後になる。因みに、従来、100
℃の温度によるエージングで実用化している。
The temperature inside the set of a color television, a display or the like (for example, the temperature at the portion where the convergence magnet is attached) changes depending on the distance from the heater inside the CRT neck, the space condition inside the set, the heat radiation condition, etc. In the case of ° C, it rises to about 80-110 ° C. Also, the heat deformation temperature of the magnet, which varies depending on the content of the magnet powder and the blending degree of the flame retardant or flame retardant auxiliary agent, is usually about 140 to 160 ° C, and the safety degree is 15 to If 25% is expected, the maximum aging temperature will be around 120 ° C. Incidentally, 100
It has been put to practical use by aging at a temperature of ℃.

【0022】図6は種々のアルニコ系マグネットの経時
特性、すなわち経過時間と磁力変化の状況を示すもので
ある。特性線61は安定化処理なしのもの、特性線62
は少なめの減磁処理のみを施した場合のもの、特性線6
3は減磁処理とエージング処理の両方を施した場合のも
の、特性線64は多すぎる減磁処理を施した場合のもの
をそれぞれ示したものである。これから分かることは、
適度の減磁処理と適度のエージング処理を施すことによ
り(特性線63)、マグネットの経時特性を理想に近付
けうるということである。
FIG. 6 shows the characteristics of various alnico magnets over time, that is, the elapsed time and the change in magnetic force. Characteristic line 61 is the one without stabilization treatment, characteristic line 62
Is the one after only a little demagnetization treatment, characteristic line 6
3 shows the case where both demagnetization processing and aging processing were performed, and the characteristic line 64 shows the case where too much demagnetization processing was performed, respectively. What we can see is
This means that the time-dependent characteristics of the magnet can be made closer to ideal by performing appropriate demagnetization processing and appropriate aging processing (characteristic line 63).

【0023】[0023]

【発明の効果】以上詳述したように、本発明によれば磁
気特性および成形性に優れたプラスチックマグネットを
安価に提供することができる。
As described above in detail, according to the present invention, it is possible to inexpensively provide a plastic magnet having excellent magnetic characteristics and moldability.

【図面の簡単な説明】[Brief description of drawings]

【図1】平均粒径と磁気特性および成形性との関係を示
す線図。
FIG. 1 is a diagram showing the relationship between the average particle size and magnetic properties and moldability.

【図2】平均粒径と磁気特性および成形性との関係を一
般的に示す線図。
FIG. 2 is a diagram generally showing the relationship between the average particle size and the magnetic properties and formability.

【図3】マグネット粉末の含有量と着磁特性の関係を示
す線図。
FIG. 3 is a diagram showing the relationship between the content of magnet powder and the magnetization characteristics.

【図4】アルニコ系マグネットの対外部磁界特性を示す
線図。
FIG. 4 is a diagram showing an external magnetic field characteristic of an alnico magnet.

【図5】マグネットの着磁量を調整する方法を説明する
ための線図。
FIG. 5 is a diagram for explaining a method of adjusting a magnetizing amount of a magnet.

【図6】アルニコ系マグネットの磁力の経時特性を示す
線図。
FIG. 6 is a diagram showing a time-dependent characteristic of magnetic force of an alnico magnet.

【図7】マグネットの周囲温度と磁力との関係を示す線
図。
FIG. 7 is a diagram showing a relationship between ambient temperature of a magnet and magnetic force.

【図8】マグネットの一般的な着磁方法を説明するため
の線図。
FIG. 8 is a diagram for explaining a general magnetizing method for magnets.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 29/64 A H04N 9/28 D 9187−5C Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01J 29/64 A H04N 9/28 D 9187-5C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄、アルミニウムおよびニッケルを主成分
とするマグネットの平均粒径40〜100μmのマグネ
ット粉末を重量比で30〜70%含有するプラスチック
マグネット材料で成形したプラスチックマグネット。
1. A plastic magnet formed of a plastic magnet material containing 30 to 70% by weight of magnet powder having an average particle diameter of 40 to 100 μm of a magnet containing iron, aluminum and nickel as main components.
【請求項2】鉄、アルミニウム、ニッケルおよびコバル
トを主成分とするアルニコ系マグネットのコバルト成分
を10%以下とし、平均粒径40〜100μmのマグネ
ット粉末を重量比で30〜70%含有するプラスチック
マグネット材料で成形したプラスチックマグネット。
2. A plastic magnet containing 10% or less of a cobalt component of an alnico magnet containing iron, aluminum, nickel and cobalt as main components, and 30 to 70% by weight of magnet powder having an average particle diameter of 40 to 100 μm. Plastic magnet molded from material.
【請求項3】請求項1または2に記載のマグネットを、
最終着磁量を100%としたとき、一次着磁量を110
〜140%と高く着磁した後、二次着磁により100%
まで減磁し、さらに80〜120℃の温度でエージング
を行う、プラスチックマグネットの処理方法。
3. The magnet according to claim 1 or 2,
When the final magnetization amount is 100%, the primary magnetization amount is 110
After being magnetized as high as ~ 140%, 100% by secondary magnetization
Demagnetization and further aging at a temperature of 80 to 120 ° C. is a method for treating a plastic magnet.
JP5155067A 1993-06-25 1993-06-25 Plastic magnet and treatment method thereof Pending JPH0729716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5155067A JPH0729716A (en) 1993-06-25 1993-06-25 Plastic magnet and treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5155067A JPH0729716A (en) 1993-06-25 1993-06-25 Plastic magnet and treatment method thereof

Publications (1)

Publication Number Publication Date
JPH0729716A true JPH0729716A (en) 1995-01-31

Family

ID=15597949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5155067A Pending JPH0729716A (en) 1993-06-25 1993-06-25 Plastic magnet and treatment method thereof

Country Status (1)

Country Link
JP (1) JPH0729716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083066A (en) * 2007-12-05 2008-04-10 Ntn Corp Bearing for wheel
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method
JP2008083066A (en) * 2007-12-05 2008-04-10 Ntn Corp Bearing for wheel

Similar Documents

Publication Publication Date Title
US4369075A (en) Method of manufacturing permanent magnet alloys
US4211585A (en) Samarium-cobalt-copper-iron-titanium permanent magnets
JPH0729716A (en) Plastic magnet and treatment method thereof
US20220344083A1 (en) R-t-b series permanent magnet material, raw material composition preparation method and application
Chen et al. Behavior of some heavy and light rare earth-cobalt magnets at high temperature
US4497672A (en) Method for the preparation of a rare earth-cobalt based permanent magnet
JP2522841Y2 (en) Electron beam adjustment device
JPS61221353A (en) Material for permanent magnet
Fukuno et al. Coercivity mechanism of sintered NdFeB magnets having high coercivities
JPH11340021A (en) Bonded magnet material and molded bonded magnet
JPS61140106A (en) Method for magnetizing and assembling permanent magnet
TW498363B (en) Display device comprising a deflection unit, and a deflection unit for a display device
Bottoni et al. Evolution of the interactions effects with Co-doping of iron oxide particles
Joe et al. Design optimization of coil distributions in deflection yoke for color picture tube
Wallace et al. Structures and Magnetism of Some Polycomponent 2: 17 Rare Earth-Transition Metal Systems
JPH03263736A (en) Color cathode-ray tube
JPS61119651A (en) Rare earth element-iron type permanent magnet
JPH02148704A (en) Method of demagnetizing rare-earth permanent magnet
JP2001076926A (en) Method for manufacturing magnet for electron-beam control system, and the magnet for the electron-beam control system and electron beam control system manufactured by the same
JPH08138922A (en) Bonded magnet material, molded body of bonded magnet, and static convergence device equipped therewith
JPS6077952A (en) Samarium-cobalt magnetic alloy containing praseodymium and neodymium
JP2000150256A (en) Dust core
US20060273708A1 (en) Display device comprising a deflection unit and a deflection unit for a display device
JPH0666186B2 (en) Electron beam adjusting cylindrical molded body and electronic beam adjusting magnet formed of the same
JPS61166949A (en) Alloy for permanent magnet