JPH07294233A - Preventive monitoring method of damage on buried pipe - Google Patents

Preventive monitoring method of damage on buried pipe

Info

Publication number
JPH07294233A
JPH07294233A JP6083224A JP8322494A JPH07294233A JP H07294233 A JPH07294233 A JP H07294233A JP 6083224 A JP6083224 A JP 6083224A JP 8322494 A JP8322494 A JP 8322494A JP H07294233 A JPH07294233 A JP H07294233A
Authority
JP
Japan
Prior art keywords
monitoring
buried pipe
electric wire
damage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6083224A
Other languages
Japanese (ja)
Inventor
Yasuharu Hosohara
靖治 細原
Kenji Suyama
憲次 須山
Takashi Imaoka
隆司 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6083224A priority Critical patent/JPH07294233A/en
Publication of JPH07294233A publication Critical patent/JPH07294233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Locating Faults (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

PURPOSE:To prevent a buried pipe from being damaged by the cutter of a drilling machine. CONSTITUTION:A band body 13 is arranged with wires 14 at an appropriate interval such that the wires 14 are conducted in the longitudinal direction of the band body 13 to constitute a long monitoring body 12 which is then buried in the vicinity of an object to be monitored, i.e., a buried pipe 11. A resonance characteristics measuring apparatus 16 for the wire 14 is disposed on one end side of the long monitoring body 12 and an AC monitoring signal is inputted while sweeping the wire 14 from one end side thereof thus measuring the resonance frequency of the wire 14 and monitoring the cut-off of the wire 14 due to damage of the long monitoring body 12 based on a resonance frequency. Since a damage alarm signal of the buried pipe 11 can be delivered at a moment when the cutter of a drilling machine approaches the buried pipe 11, the buried pipe 11 can be protected against damage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は埋設管の損傷防止監視方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring damage prevention of a buried pipe.

【0002】[0002]

【従来の技術】掘削工事においては、掘削機械により埋
設管が損傷を受けることがあり、これを監視するための
各種方法が提案されている。このような埋設管の損傷を
監視するための従来のシステムの一つとして、監視対象
の埋設管に送信器から監視用交流信号を入射し、これを
離れた位置に設置した受信器において受信して、その受
信電圧の低下から埋設管の損傷の発生を検出する監視方
法がある。
2. Description of the Related Art In excavation work, a buried pipe may be damaged by an excavating machine, and various methods have been proposed for monitoring this. As one of the conventional systems for monitoring such damage to the buried pipe, an AC signal for monitoring is injected from the transmitter to the buried pipe to be monitored and received by a receiver installed at a remote position. Then, there is a monitoring method for detecting the occurrence of damage to the buried pipe from the decrease in the received voltage.

【0003】この監視システムは例えば図9のような概
念的説明図で示される。符号1は送信器であり、この送
信器1において埋設管2に監視用交流信号を入射する。
監視用交流信号は、例えば500〜2500Hzの範囲から、525
Hz、2025Hz等の適宜の周波数を選択し、また電圧は埋設
管の設置環境に応じて、例えば1.0〜4.0Vの範囲で適宜
設定して入射する構成としている。
This monitoring system is shown in a conceptual explanatory view as shown in FIG. 9, for example. Reference numeral 1 is a transmitter, and in this transmitter 1, a monitoring AC signal is incident on the buried pipe 2.
The monitoring AC signal is, for example, 525 from the range of 500 to 2500 Hz.
A suitable frequency such as Hz or 2025 Hz is selected, and the voltage is appropriately set in the range of, for example, 1.0 to 4.0 V according to the installation environment of the buried pipe and incident.

【0004】符号3は送信器1から適宜離れた位置、例
えば2〜3km離れた埋設管2の位置に設置した受信器であ
り、送信器1から送信した監視用交流信号を、この受信
器3において受信し、その受信電圧(実効値)の変動に
より監視を行う。
Reference numeral 3 is a receiver installed at a position appropriately separated from the transmitter 1, for example, at a position of the buried pipe 2 separated by 2 to 3 km, and the monitoring AC signal transmitted from the transmitter 1 is supplied to the receiver 3. It is received at and is monitored by the fluctuation of the received voltage (effective value).

【0005】即ち、いま送信器1と受信器3の間で施工
されている掘削工事において、掘削機械4の、導電性を
有する掘削刃5が埋設管2の絶縁被覆を損傷すると、そ
の損傷個所は掘削刃5を介して接地されるので、この部
分のインピーダンスが低下して監視用交流信号が地中に
漏洩する。このため受信器3における監視用交流信号の
受信電圧が低下するので、この受信電圧の低下を監視す
ることにより埋設管2の損傷を検出することができる。
That is, in the excavation work currently being carried out between the transmitter 1 and the receiver 3, if the conductive excavating blade 5 of the excavating machine 4 damages the insulating coating of the buried pipe 2, the damaged portion will be damaged. Is grounded through the excavating blade 5, the impedance of this portion is lowered and the monitoring AC signal leaks into the ground. For this reason, the reception voltage of the monitoring AC signal in the receiver 3 decreases, and thus the damage to the buried pipe 2 can be detected by monitoring the decrease in the reception voltage.

【0006】[0006]

【発明が解決しようとする課題】このような監視方法
は、埋設管が損傷を受けたことを検出するものであるか
ら、これを未然に防止することはできない。また排流器
6の動作等に起因するノイズのために損傷の確実な検出
が困難な場合がある。そこで本発明は、掘削機械の掘削
刃が埋設管に近接した時点で所定の信号を発生させるこ
とにより、埋設管の損傷を確実に未然に防止することを
目的とするものである。
Since such a monitoring method detects that the buried pipe has been damaged, it cannot be prevented in advance. Further, it may be difficult to reliably detect damage due to noise caused by the operation of the drainage device 6 and the like. Therefore, an object of the present invention is to reliably prevent damage to the buried pipe by generating a predetermined signal when the excavating blade of the excavating machine approaches the buried pipe.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、まず帯状体に適宜間隔で電線を配
設し、この電線は帯状体の長さ方向に通電可能として監
視用長尺体を構成し、この監視用長尺体を監視対象の埋
設管の近傍、例えば少なくとも上側又は少なくとも横側
に埋設すると共に、監視用長尺体の一端側に前記電線の
共振特性測定装置を設置し、一端側から電線に周波数を
掃引しながら監視用交流信号を入射することにより電線
の共振特性を測定し、共振周波数により監視用長尺体の
損傷に起因する電線の切断を監視する埋設管の損傷防止
監視方法を提案する。
In order to solve the above-mentioned problems, in the present invention, electric wires are first arranged at appropriate intervals in a band, and the electric wires can be energized in the length direction of the band for monitoring. A long body is formed, and the long body for monitoring is buried near the buried pipe to be monitored, for example, at least on the upper side or at least the lateral side, and the resonance characteristic measuring device for the electric wire is provided on one end side of the long body for monitoring. Installed, and measuring the resonance characteristics of the electric wire by injecting a monitoring AC signal while sweeping the frequency from the one end side, and monitoring the cutting of the electric wire due to the damage of the long monitoring object by the resonance frequency. We propose a damage prevention monitoring method for buried pipes.

【0008】そして本発明では、上記構成において、電
線は複数チャンネルで帯状体の長さ方向に通電可能な構
成とし、各チャンネルの電線と大地間において電線に監
視用交流信号を入射して共振周波数を監視すること、又
は電線は複数チャンネルで帯状体の長さ方向に通電可能
な構成とすると共に、いずれかのチャンネルの少なくと
も1本の電線を共通線とし、共通線と、他の各チャンネ
ルの電線間において監視用交流信号を入射して共振周波
数を監視することを提案する。
According to the present invention, in the above-mentioned structure, the electric wire has a structure in which a plurality of channels can be energized in the lengthwise direction of the strip, and an AC signal for monitoring is incident on the electric wire between the electric wire of each channel and the ground to cause a resonance frequency. Or the electric wire has a structure in which a plurality of channels can be energized in the lengthwise direction of the strip, and at least one electric wire of any channel is used as a common line, and the common line and other channels We propose to monitor the resonant frequency by injecting a monitoring AC signal between the wires.

【0009】そして本発明では、電線を複数チャンネル
とした構成において、送受信装置は各チャンネル毎に構
成すること、又は送受信装置は各チャンネルに共通の構
成とすると共に、適宜時間毎に切り換えて各チャンネル
の電線に順次監視用交流信号を入射して共振周波数を監
視することを提案する。
Further, in the present invention, in the structure in which the electric wire has a plurality of channels, the transmission / reception device is configured for each channel, or the transmission / reception device is configured to be common to each channel, and the transmission / reception device is switched at each time as appropriate. It is proposed to sequentially monitor the resonance frequency by injecting the monitoring AC signal into the wire.

【0010】そして本発明では、以上の構成において、
帯状体の他端側の電線の端部は開放終端、短絡終端又は
無反射終端として構成することを提案する。
In the present invention, in the above constitution,
It is proposed that the end of the wire on the other end of the strip be configured as an open termination, a short termination or a non-reflective termination.

【0011】[0011]

【作用】監視用長尺体は、掘削作業において掘削機械の
掘削刃が埋設管に向かって前進して来る可能性の高い位
置、即ち通常の場合には少なくとも埋設管の上側に、ま
た埋設管の上側に防護板等が埋設されていて横側からの
損傷を防止したい場合には少なくとも横側に予め埋設し
ておく。このため掘削作業において掘削刃が埋設管に向
かって前進して来る場合には、埋設管が掘削刃により損
傷を受ける前に必ず監視用長尺体が損傷を受ける。
In the excavation work, the elongated monitoring body is located at a position where the excavating blade of the excavating machine is likely to advance toward the buried pipe, that is, at least above the buried pipe in the normal case, and the buried pipe. If a protective plate or the like is embedded on the upper side of the and you want to prevent damage from the side, it should be embedded at least on the side in advance. Therefore, in the excavation work, when the digging blade advances toward the buried pipe, the elongated monitoring body is always damaged before the buried pipe is damaged by the digging blade.

【0012】そこで本発明では、監視用長尺体の一端側
に前記電線の共振特性測定装置を設置し、一端側から電
線に周波数を掃引しながら監視用交流信号を入射して共
振特性を測定する。
Therefore, in the present invention, the resonance characteristic measuring device for the electric wire is installed on one end side of the monitoring long body, and the resonance characteristic is measured by injecting a monitoring AC signal while sweeping the frequency from the one end side to the electric wire. To do.

【0013】監視用帯状体に長さ方向に配設した電線は
監視用交流信号に対して分布定数回路として作用し、い
わゆる受電端開放の場合には、ここで全反射して定在波
を生じ、そして線路長に対応した波長の監視用交流信号
に対して共振現象を生じる。即ち、監視用交流信号の波
長λの1/4の奇数倍が線路長の場合に直列共振現象を生
じる。
The electric wire arranged in the lengthwise direction on the monitoring strip acts as a distributed constant circuit for the monitoring AC signal, and in the case where the so-called receiving end is open, it is totally reflected here to generate a standing wave. Then, a resonance phenomenon occurs with respect to the monitoring AC signal having a wavelength corresponding to the line length. That is, a series resonance phenomenon occurs when the line length is an odd multiple of 1/4 of the wavelength λ of the monitoring AC signal.

【0014】このように共振周波数は、一端側から開放
端までの線路長に対応しているため、共振周波数を測定
することにより監視用長尺体の損傷に起因する電線の切
断を監視することができる。即ち、監視用長尺体が損傷
を受け、電線が切断されると、一端側から入射される監
視用交流信号に対する電線長は、一端側から切断個所ま
での長さに短縮されるので、共振特性測定装置により、
この長さに対応した共振周波数が測定され、これにより
電線の切断、従って監視用長尺体の損傷の検出と、切断
個所までの電線長を算出して、その位置を特定すること
ができる。
As described above, the resonance frequency corresponds to the line length from one end side to the open end. Therefore, by measuring the resonance frequency, it is possible to monitor the disconnection of the electric wire due to the damage of the monitoring elongated body. You can That is, when the monitoring long body is damaged and the electric wire is cut, the electric wire length for the monitoring AC signal incident from one end side is shortened to the length from the one end side to the cutting point. By the characteristic measuring device,
The resonance frequency corresponding to this length is measured, whereby it is possible to detect the disconnection of the electric wire, that is, the damage of the monitoring elongated body, calculate the electric wire length up to the cutting point, and specify the position.

【0015】掘削機械による埋設管の損傷は上方からの
ものが最も多いため、監視用長尺体は、通常では監視対
象の埋設管の少なくとも上側に対応して設置することに
より、多くの損傷を防止することができるが、埋設管の
横側に対応しても設置することにより、ほとんどの場合
の損傷を防止することができる。また上述したように埋
設管の上側に防護板等が埋設されていて横側からの損傷
を防止したい場合等には横側にのみ対応して設置するこ
とにより損傷の防止を確実に行うことができる。
Since most of the damage to the buried pipe by the excavating machine is from above, the elongated monitoring body is usually installed corresponding to at least the upper side of the buried pipe to be monitored, so that many damages are caused. Although it can be prevented, it is possible to prevent damage in most cases by installing it even if it corresponds to the side of the buried pipe. In addition, as mentioned above, when a protective plate etc. is buried above the buried pipe and it is desired to prevent damage from the lateral side, it is possible to prevent damage by installing it only on the lateral side. it can.

【0016】[0016]

【実施例】次に本発明の実施例を図について説明する。
図1は本発明の方法を適用した埋設管の損傷監視システ
ムを概念的に示す説明図で、図2は図1の模式図、図3
は本発明の動作例を概念的に示す共振特性図である。符
号11は監視対象の埋設管、符号12は監視用長尺体
で、この監視用長尺体12は帯状体13の内部に全面に
渡って適宜間隔で多数の電線14を配設しており、この
電線14は夫々帯状体13の長さ方向に通電可能に構成
している。そしてこの監視用長尺体12は、埋設管11
の横方向に対応する側壁部15を構成するように埋設管
11の所定の監視区間の上方に埋設している。符号aは
監視用長尺体12の一端側を示すもので、この一端側a
に対応する地上に共振特性測定装置16を設置してい
る。この共振特性測定装置16は夫々の電線14と大地
17間において周波数を掃引しながら監視用交流信号を
入射し、反射波の振幅レベルを測定することにより分布
定数回路と見做される電線の共振特性を測定する構成と
している。この共振特性測定装置16は例えばネットワ
ークアナライザ等を利用することができる。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is an explanatory view conceptually showing a damage monitoring system for a buried pipe to which the method of the present invention is applied, and FIG. 2 is a schematic view of FIG. 1 and FIG.
FIG. 4 is a resonance characteristic diagram conceptually showing an operation example of the present invention. Reference numeral 11 is a buried pipe to be monitored, reference numeral 12 is a monitoring elongated body, and the monitoring elongated body 12 has a large number of electric wires 14 disposed inside the strip 13 at appropriate intervals. The electric wires 14 are configured so that they can be energized in the lengthwise direction of the strip-shaped body 13. And this monitoring long body 12 is the buried pipe 11
Is buried above a predetermined monitoring section of the buried pipe 11 so as to form a side wall portion 15 corresponding to the lateral direction. The symbol a indicates one end side of the monitoring elongated body 12, and this one end side a
The resonance characteristic measuring device 16 is installed on the ground corresponding to. The resonance characteristic measuring device 16 inputs the monitoring AC signal while sweeping the frequency between the respective electric wires 14 and the ground 17, and measures the amplitude level of the reflected wave to resonate the electric wires which are regarded as a distributed constant circuit. It is configured to measure the characteristics. As the resonance characteristic measuring device 16, for example, a network analyzer or the like can be used.

【0017】以上の構成において監視用長尺体12の他
端側bの電線の端部は開放終端として、共振特性測定装
置16により電線14の一端側aから周波数を掃引しな
がら監視用交流信号を入射して、各周波数毎に反射波の
振幅レベルを測定する。上述したように監視用長尺体1
2の長さ方向に配設した電線14は監視用交流信号の波
長に対して無視できない長さであるので分布定数回路と
して作用し、従って監視用交流信号の入射波は他端側b
の開放端で全反射して定在波を生じ、一端側aから他端
側bまでの電線長Lに対応した波長の監視用交流信号に
対して共振現象を生じる。即ち、上述したように電線1
4の他端側bを開放終端とした場合には、監視用交流信
号の波長λの1/4の奇数倍が線路長の場合に直列共振現
象が生じ、この共振現象は反射波の振幅レベルを掃引し
た周波数毎に測定することにより測定することができ
る。
In the above structure, the end of the electric wire on the other end side b of the monitoring elongated body 12 is an open end, and the resonance characteristic measuring device 16 sweeps the frequency from the one end side a of the electric wire 14 to monitor the AC signal. And the amplitude level of the reflected wave is measured for each frequency. As described above, the monitoring elongated body 1
The electric wire 14 arranged in the length direction of 2 acts as a distributed constant circuit because it has a length that cannot be ignored with respect to the wavelength of the monitoring AC signal, and therefore the incident wave of the monitoring AC signal has the other end b
, A standing wave is generated and a resonance phenomenon occurs with respect to the monitoring AC signal having a wavelength corresponding to the wire length L from the one end side a to the other end side b. That is, as described above, the electric wire 1
When the other end side b of 4 is an open termination, a series resonance phenomenon occurs when the line length is an odd multiple of 1/4 of the wavelength λ of the monitoring AC signal, and this resonance phenomenon is caused by the amplitude level of the reflected wave. Can be measured by sweeping every frequency.

【0018】図3の実線は反射波の振幅レベルに現れた
共振現象を、高調波側を省略して示すもので、電線長L
に対応する周波数f0において直列共振が生じて、この
部分の反射波の振幅レベルが急激に低下している。上述
したように他端側bの電線14の端部が開放終端の場合
には、監視用交流信号の波長λの1/4の奇数倍が線路長
の場合に直列共振が生じるため、この共振条件は基本波
のみで示すと、λ=4Lであり、これを周波数f0で表す
と、f0=v/λ=v/4Lである。尚、vは電線中におけ
る監視用交流信号の伝搬速度である。
The solid line in FIG. 3 shows the resonance phenomenon appearing in the amplitude level of the reflected wave, omitting the higher harmonic side.
A series resonance occurs at a frequency f 0 corresponding to, and the amplitude level of the reflected wave at this portion sharply decreases. As described above, when the end of the electric wire 14 on the other end side b is an open termination, series resonance occurs when the line length is an odd multiple of 1/4 of the wavelength λ of the monitoring AC signal. The condition is λ = 4L when only the fundamental wave is shown, and f 0 = v / λ = v / 4L when this is represented by the frequency f 0 . Note that v is the propagation speed of the monitoring AC signal in the electric wire.

【0019】このような状態において、掘削機械18に
よる掘削作業において掘削刃19が埋設管11方向に前
進して行き、掘削刃19が埋設管11に至る前に監視用
長尺体12に至って帯状体13を損傷し、これと共に適
宜間隔で配設している電線14のいずれかの個所を損傷
して、これを切断すると、一端側aから入射される監視
用交流信号に対する電線長は、一端側aから切断個所2
0までの長さlに短縮されるので、共振周波数は図2の
破線で示すように高い周波数f1側にずれる。従って、
この共振周波数のずれを監視することにより、電線14
の切断、従って監視用長尺体12の損傷を検出すること
ができ、またずれた共振周波数f1に基づいて式l=v/
4f1から切断個所までの電線長lを算出することができ
る。そして算出した電線長lから監視用長尺体の損傷個
所を特定することができる。
In such a state, in the excavation work by the excavating machine 18, the excavating blade 19 advances toward the embedded pipe 11, and before the excavating blade 19 reaches the embedded pipe 11, reaches the monitoring elongated body 12 and forms a strip. When the body 13 is damaged, and any part of the electric wire 14 arranged at an appropriate interval is damaged and cut, the electric wire length for the monitoring AC signal incident from the one end side a becomes one end. Cutting point 2 from side a
Since the length l is shortened to 0, the resonance frequency is shifted to the high frequency f 1 side as shown by the broken line in FIG. Therefore,
By monitoring the deviation of the resonance frequency, the electric wire 14
Can be detected, and thus damage to the monitoring elongated body 12, can also be detected, and on the basis of the offset resonant frequency f 1 the equation l = v /
The wire length l from 4f 1 to the cut point can be calculated. Then, from the calculated wire length l, the damaged portion of the monitoring elongated body can be specified.

【0020】尚、監視用長尺体12の他端側bは、上述
したように開放終端とする他、場合によっては短絡終端
または無反射終端とすることもできる。前者の場合に
は、電線14が切断されていない場合の共振は、監視用
交流信号の波長λの1/4の偶数倍が線路長の場合に直列
共振現象を生じることになり、この場合の共振周波数
と、切断による上述した共振周波数とのずれにより監視
用長尺体12の損傷を監視することになる。また後者の
場合には、電線14が切断されて始めて共振現象を生じ
るので、共振特性が現れた時点で、電線の切断を検出す
ることができ、また上述と同様に共振周波数から切断個
所までの電線長lを算出することができる。
The other end b of the elongated monitoring body 12 may be an open termination as described above, or may be a short-circuit termination or a non-reflection termination in some cases. In the former case, the resonance when the electric wire 14 is not cut results in a series resonance phenomenon when the line length is an even multiple of 1/4 of the wavelength λ of the monitoring AC signal. Due to the difference between the resonance frequency and the above-described resonance frequency due to cutting, damage to the monitoring elongated body 12 is monitored. In the latter case, since the resonance phenomenon occurs only after the electric wire 14 is cut, it is possible to detect the disconnection of the electric wire at the time when the resonance characteristic appears. The wire length l can be calculated.

【0021】図4は図1に示されるような監視用長尺体
12の具体的実施例を示すもので、この監視用長尺体1
2は、多数の電線14を帯状体13の全面に渡って平行
に配設して構成しており、これを埋設管11の周囲に適
宜間隔を隔てて同心状に埋設している。従って、このよ
うな埋設の仕方では埋設管11の上方対応個所と共に側
壁部15が形成されるため、上方向はもとより、横方向
から前進して来る掘削刃に対しても上述した動作により
埋設管11の損傷防止を図ることができる。尚、この実
施例の監視用長尺体12は、平面状のものを埋設時に円
弧状に変形して埋設しても良いし、予め剛性を持たせて
円弧状に形成することもできる。
FIG. 4 shows a concrete example of the monitoring elongated body 12 as shown in FIG.
2, a large number of electric wires 14 are arranged in parallel over the entire surface of the band-shaped body 13, and the electric wires 14 are concentrically buried around the buried pipe 11 at appropriate intervals. Therefore, in such an embedding method, since the side wall portion 15 is formed together with the upper corresponding portion of the embedding pipe 11, the embedding pipe 11 is formed by the above-described operation not only in the upward direction but also in the laterally advancing drilling blade. The damage to 11 can be prevented. Note that the elongated monitoring body 12 of this embodiment may be embeded by deforming a planar object in an arc shape at the time of embedding, or may be formed in an arc shape with rigidity in advance.

【0022】図5に示される監視用長尺体12は、下面
を切り欠いた剛性を有する角筒状に帯状体13を形成
し、この全面に渡って平行に電線14を配設して構成し
ている。そして埋設管11の上方及び横側を覆って埋設
する構成としている。
The elongated monitoring body 12 shown in FIG. 5 is formed by forming a strip-shaped body 13 in the shape of a rectangular tube having a notched lower surface and having rigidity, and arranging electric wires 14 in parallel over the entire surface. is doing. The buried pipe 11 is embedded so as to cover the upper side and the lateral side of the buried pipe 11.

【0023】以上の図4、図5に示すものでは、帯状体
13の全面に電線14を配設しているが、この他、少な
くとも埋設管11の上側(又は横側)対応個所に電線1
4を配設する構成において側壁部15(又は上側)に電
線を配設しなかったり、配設間隔を広くするように構成
することもできる。また埋設管11に対する埋設の方法
は、上述したように曲面状または樋状等に曲がった構成
で埋設する他、埋設管11の上側(又は横側)等に平面
状に埋設することもできる。
4 and 5, the electric wire 14 is provided on the entire surface of the band-shaped body 13, but in addition to this, the electric wire 1 is provided at least at a position corresponding to the upper side (or the lateral side) of the buried pipe 11.
It is also possible to dispose the electric wires on the side wall portion 15 (or the upper side) in the structure in which the four wires are arranged, or to widen the arrangement interval. As a method of burying the buried pipe 11, the buried pipe 11 may be buried in a curved shape or a trough shape as described above, or may be buried in a flat shape on the upper side (or the lateral side) of the buried pipe 11 or the like.

【0024】次に図6は監視用長尺体12と共振特性測
定装置16の具体例を示す系統図であり、監視用長尺体
12は上述した構成と同様、帯状体13の全面に渡って
複数の電線14を平行に配設した構成であり、夫々の電
線14が独立したチャンネルを構成している。そして監
視用長尺体12の一端a側において各電線14の端部に
夫々の共振特性測定装置16に連なる電線21を接続し
ている。この電線21は図中は太い単線で描いている
が、夫々の独立した電線を集合して示すもの、例えば多
芯線等の集合電線を示すものである。一方、監視用長尺
体12の他端b側の各電線14の端部は開放終端として
おり、そして共振特性測定装置16は夫々の電線14毎
に設けて複数チャンネルで独立して電線14に監視用交
流信号を入射し、反射波を受信する構成としている。
Next, FIG. 6 is a system diagram showing a specific example of the monitoring elongated body 12 and the resonance characteristic measuring device 16. The monitoring elongated body 12 has an entire surface of the belt-shaped body 13 as in the above-mentioned configuration. A plurality of electric wires 14 are arranged in parallel, and each electric wire 14 constitutes an independent channel. Then, the electric wires 21 connected to the respective resonance characteristic measuring devices 16 are connected to the ends of the electric wires 14 on the one end a side of the monitoring elongated body 12. Although the electric wire 21 is drawn as a thick single wire in the drawing, it is a collective electric wire such as a multi-core wire, which is a collection of individual electric wires. On the other hand, the end portion of each electric wire 14 on the other end b side of the elongated monitoring body 12 is an open end, and the resonance characteristic measuring device 16 is provided for each electric wire 14 and independently connected to the electric wires 14 in a plurality of channels. The monitoring AC signal is incident and the reflected wave is received.

【0025】図6に示す共振特性測定装置16は、監視
用交流信号の掃引発振器22と、受信器23と、方向性
結合器24と、掃引発振器22からの入射波信号と受信
器23からの反射波信号から反射波の振幅レベルを測定
するレベル測定器25とから構成しており、レベル測定
器25の出力信号は共通の監視装置26に入力して上述
した共振周波数の監視を行う構成としている。
The resonance characteristic measuring apparatus 16 shown in FIG. 6 includes a sweeping oscillator 22, a receiver 23, a directional coupler 24, an incident wave signal from the sweeping oscillator 22, and a receiver 23 for monitoring AC signals. And a level measuring device 25 for measuring the amplitude level of the reflected wave from the reflected wave signal. The output signal of the level measuring device 25 is input to a common monitoring device 26 to monitor the resonance frequency described above. There is.

【0026】図7は図6と同様な監視用長尺体12の構
成における監視用交流信号の入射及び受信方式の他例を
上述した例と共に概念的に示すものである。即ち、実線
で描かれている方式は、複数チャンネルの電線14のう
ちのいずれかを共通線14cとして構成し、この共通線
14cと、他の各チャンネルの電線14間に共振特性測
定装置16を接続して、これらの間に監視用交流信号を
入射し、反射波を受信する構成である。また2点鎖線で
示されている方式は、上述したように複数チャンネルの
電線14の全てに対応して共振特性測定装置16を設
け、各電線14と大地17間に監視用交流信号を入射
し、反射波を受信する構成である。
FIG. 7 conceptually shows another example of the method of inputting and receiving the monitoring AC signal in the structure of the monitoring elongated body 12 similar to that of FIG. 6 together with the above-mentioned example. That is, in the method drawn by the solid line, one of the electric wires 14 of the plurality of channels is configured as the common line 14c, and the resonance characteristic measuring device 16 is provided between the common line 14c and the electric wires 14 of the other channels. The connection is made so that a monitoring AC signal is incident between them and a reflected wave is received. Further, in the method shown by the two-dot chain line, as described above, the resonance characteristic measuring device 16 is provided corresponding to all the electric wires 14 of the plurality of channels, and a monitoring AC signal is injected between each electric wire 14 and the ground 17. , A configuration for receiving a reflected wave.

【0027】図8は、図6と同様な監視用長尺体12の
構成における監視用交流信号の入射及び受信方式の更に
他の例を示すものであり、この構成では共振特性測定装
置16は複数チャンネルの電線14に共通の構成として
いる。即ち、共振特性測定装置16は図6に示す構成と
同様な構成とし、その方向性結合器24に接続した共通
電線27と各電線14間に切換スイッチ回路28を介装
して構成している。この構成では監視装置26は、制御
回路29により共振特性測定装置16の上記各要素を制
御して上述したような動作により、ある電線14に対す
る共振周波数の監視を行った後、切換スイッチ回路28
を制御して接続する電線を切換えて再び他の電線14に
対する監視を行う動作を順次連続的に行うことにより全
てのチャンネルの電線14に対しての共振周波数の監視
を行う構成である。
FIG. 8 shows still another example of the method of inputting and receiving the monitoring AC signal in the structure of the elongated monitoring body 12 similar to that of FIG. 6, and in this structure, the resonance characteristic measuring device 16 is The configuration is common to the electric wires 14 of a plurality of channels. That is, the resonance characteristic measuring device 16 has the same structure as that shown in FIG. 6, and the changeover switch circuit 28 is interposed between the common electric wire 27 connected to the directional coupler 24 and each electric wire 14. . In this configuration, the monitoring device 26 controls each element of the resonance characteristic measuring device 16 by the control circuit 29 to monitor the resonance frequency of a certain electric wire 14 by the above-described operation, and then the changeover switch circuit 28.
The resonance frequency of the electric wires 14 of all the channels is monitored by sequentially and continuously performing the operation of switching the electric wires to be connected and monitoring the other electric wires 14 by controlling.

【0028】[0028]

【発明の効果】本発明は以上の通り、電線を長さ方向に
配設した監視用長尺体を予め埋設管に沿って少なくとも
上側、または少なくとも横側に埋設して監視することに
より、掘削機械の掘削刃が埋設管に近接した時点で埋設
管の損傷警報信号を発することができ、従って埋設管の
損傷を未然に防止することができるという効果がある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a monitoring elongated body having electric wires arranged in the length direction is buried in advance at least on the upper side or at least on the lateral side along the buried pipe to monitor the excavation. When the excavating blade of the machine comes close to the buried pipe, it is possible to issue a damage warning signal for the buried pipe, and thus it is possible to prevent damage to the buried pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を適用した埋設管損傷監視システ
ムの構成例を概念的に示す説明図である。
FIG. 1 is an explanatory view conceptually showing a configuration example of a buried pipe damage monitoring system to which the method of the present invention is applied.

【図2】図1の模式図である。FIG. 2 is a schematic diagram of FIG.

【図3】図1の構成における本発明の動作例を概念的に
示すものである。
FIG. 3 conceptually shows an operation example of the present invention in the configuration of FIG.

【図4】本発明の方法における監視用長尺体の埋設例を
示す斜視図である。
FIG. 4 is a perspective view showing an embedding example of a monitoring elongated body in the method of the present invention.

【図5】本発明の方法における監視用長尺体の他の埋設
例を示す斜視図である。
FIG. 5 is a perspective view showing another embedding example of the monitoring elongated body in the method of the present invention.

【図6】本発明の方法における監視用長尺体と監視用交
流信号の送受信装置の構成を監視用長尺体を展開図とし
て表した系統図である。
FIG. 6 is a system diagram showing the configuration of a monitoring elongated body and a monitoring AC signal transmitting / receiving apparatus in the method of the present invention as a development of the monitoring elongated body.

【図7】本発明の方法における監視用交流信号の入射及
び反射波の受信の方式を概念的に示す系統図である。
FIG. 7 is a system diagram conceptually showing a system of incidence of a monitoring AC signal and reception of a reflected wave in the method of the present invention.

【図8】本発明の方法における監視用交流信号の入射及
び反射波の受信の方式の他例を概念的に示す系統図であ
る。
FIG. 8 is a system diagram conceptually showing another example of the method of receiving the monitoring AC signal and the reflected wave in the method of the present invention.

【図9】従来の埋設管損傷監視システムの構成例を示す
概念的説明図である。
FIG. 9 is a conceptual explanatory diagram showing a configuration example of a conventional buried pipe damage monitoring system.

【符号の説明】[Explanation of symbols]

11 埋設管 12 監視用長尺体 13 帯状体 14 電線 14c 共通線 15 側壁部 16 共振特性測定装置 17 大地 18 掘削機械 19 掘削刃 20 切断個所 21 電線 22 掃引発振器 23 受信器 24 方向性結合器 25 反射波レベル測定器 26 監視装置 27 共通電線 28 切換スイッチ回路 29 制御回路 11 Buried Pipe 12 Long Body for Monitoring 13 Band 14 Electric Wire 14c Common Line 15 Sidewall 16 Resonance Characteristic Measurement Device 17 Earth 18 Excavation Machine 19 Excavation Blade 20 Cutting Point 21 Electric Wire 22 Sweep Oscillator 23 Receiver 24 Directional Coupler 25 Reflected wave level measuring instrument 26 Monitoring device 27 Common electric wire 28 Changeover switch circuit 29 Control circuit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 帯状体に適宜間隔で電線を配設し、この
電線は帯状体の長さ方向に通電可能として監視用長尺体
を構成し、この監視用長尺体を監視対象の埋設管の近傍
に埋設すると共に、監視用長尺体の一端側に前記電線の
共振特性測定装置を設置し、一端側から電線に周波数を
掃引しながら監視用交流信号を入射することにより電線
の共振特性を測定し、共振周波数により監視用長尺体の
損傷に起因する電線の切断を監視することを特徴とする
埋設管の損傷防止監視方法
1. A strip-shaped body is provided with electric wires at appropriate intervals, the electric wire is capable of being energized in the lengthwise direction of the strip-shaped body to form a monitoring elongated body, and the monitoring elongated body is embedded in a monitored object. Resonance of the wire by burying it near the tube and installing the resonance characteristic measuring device of the wire on one end side of the monitoring long body and inputting the monitoring AC signal while sweeping the frequency from the one end side to the wire Damage prevention monitoring method for buried pipe, characterized by measuring characteristics and monitoring disconnection of electric wire due to damage of monitoring long body by resonance frequency
【請求項2】 監視用長尺体は、埋設管の少なくとも上
側の近傍に埋設することを特徴とする請求項1記載の埋
設管の損傷防止監視方法
2. The method for monitoring and preventing damage to a buried pipe according to claim 1, wherein the monitoring elongated body is buried near at least an upper side of the buried pipe.
【請求項3】 監視用長尺体は、埋設管の少なくとも横
側の近傍に埋設することを特徴とする請求項1記載の埋
設管の損傷防止監視方法
3. The method for monitoring and preventing damage to a buried pipe according to claim 1, wherein the monitoring elongated body is buried near at least a lateral side of the buried pipe.
【請求項4】 電線は複数チャンネルで帯状体の長さ方
向に通電可能な構成とし、各チャンネルの電線と大地間
において電線に監視用交流信号を入射して共振周波数を
測定することを特徴とする請求項1〜3記載の埋設管の
損傷防止監視方法
4. The electric wire is configured so that it can be energized in the lengthwise direction of the strip in a plurality of channels, and a monitoring AC signal is incident on the electric wire between the electric wire of each channel and the ground to measure the resonance frequency. A method for monitoring damage prevention of a buried pipe according to claim 1.
【請求項5】 電線は複数チャンネルで帯状体の長さ方
向に通電可能な構成とすると共に、いずれかのチャンネ
ルの少なくとも1本の電線を共通線とし、この共通線
と、他の各チャンネルの電線間において電線に監視用交
流信号を入射して共振周波数を測定することを特徴とす
る請求項1〜3記載の埋設管の損傷防止監視方法
5. The electric wire has a structure in which a plurality of channels can be energized in the lengthwise direction of the band-shaped body, and at least one electric wire of any channel is used as a common line, and this common line and other channels are connected. 4. A method for monitoring damage prevention of a buried pipe according to claim 1, wherein a resonance frequency is measured by injecting a monitoring AC signal between the wires.
【請求項6】 送受信装置は各チャンネル毎に構成した
ことを特徴とする請求項4又は5記載の埋設管の損傷防
止監視方法
6. A method for monitoring damage prevention of a buried pipe according to claim 4, wherein the transmitter / receiver is configured for each channel.
【請求項7】 送受信装置は各チャンネルに共通の構成
とし、適宜時間毎に切り換えて各チャンネルの電線に監
視用交流信号を入射して共振周波数を測定することを特
徴とする請求項4又は5記載の埋設管の損傷防止監視方
7. The transmitter / receiver is configured to be common to each channel, and is switched at appropriate time intervals to inject a monitoring AC signal into the electric wire of each channel to measure the resonance frequency. Damage prevention monitoring method for the buried pipe described
【請求項8】 帯状体の他端側の電線の端部は開放終端
として構成したことを特徴とする請求項1〜7記載の埋
設管の損傷防止監視方法
8. The method for monitoring damage prevention of a buried pipe according to claim 1, wherein the end of the electric wire on the other end side of the strip is an open end.
【請求項9】 帯状体の他端側の電線の端部は短絡終端
として構成したことを特徴とする請求項1〜7記載の埋
設管の損傷防止監視方法
9. The method for monitoring damage prevention of a buried pipe according to claim 1, wherein an end of the electric wire on the other end side of the strip is configured as a short-circuit termination.
【請求項10】 帯状体の他端側の電線の端部は無反射
終端として構成したことを特徴とする請求項1〜7記載
の埋設管の損傷防止監視方法
10. The buried pipe damage prevention monitoring method according to claim 1, wherein the end of the electric wire on the other end side of the strip is formed as a non-reflective end.
JP6083224A 1994-04-21 1994-04-21 Preventive monitoring method of damage on buried pipe Pending JPH07294233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6083224A JPH07294233A (en) 1994-04-21 1994-04-21 Preventive monitoring method of damage on buried pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6083224A JPH07294233A (en) 1994-04-21 1994-04-21 Preventive monitoring method of damage on buried pipe

Publications (1)

Publication Number Publication Date
JPH07294233A true JPH07294233A (en) 1995-11-10

Family

ID=13796354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6083224A Pending JPH07294233A (en) 1994-04-21 1994-04-21 Preventive monitoring method of damage on buried pipe

Country Status (1)

Country Link
JP (1) JPH07294233A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614917B1 (en) * 2006-05-22 2006-08-25 주식회사 대명전기기술단 Protection tube of wire using underground laying object for a common housing
JP2011102741A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Piping length measurement system and piping length calculating device
WO2012026138A1 (en) * 2010-08-23 2012-03-01 三菱電機株式会社 Conductor length measurement device and conductor length measurement method
WO2012101744A1 (en) * 2011-01-24 2012-08-02 三菱電機株式会社 Piping length measuring system and piping length calculating apparatus
KR20140133503A (en) * 2012-02-08 2014-11-19 크레사테크 리미티드 Metallic conductor disturbance detection device and method
CN106405334A (en) * 2016-10-31 2017-02-15 国网山东省电力公司济南市长清区供电公司 Direct-buried type power transmission line protection device
CN107727970A (en) * 2017-10-27 2018-02-23 青岛钢研纳克检测防护技术有限公司 A kind of detection method and system of buried steel pipe exchange drain means
CN112134245A (en) * 2020-09-03 2020-12-25 王生东 Underground cable leakage protection early warning device and using method
CN112186611A (en) * 2020-09-25 2021-01-05 国网山东省电力公司莒县供电公司 Outer broken location early warning device of cable management corridor passageway

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614917B1 (en) * 2006-05-22 2006-08-25 주식회사 대명전기기술단 Protection tube of wire using underground laying object for a common housing
JP2011102741A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Piping length measurement system and piping length calculating device
JP5649654B2 (en) * 2010-08-23 2015-01-07 三菱電機株式会社 Conductor length measuring device and conductor length measuring method
WO2012026138A1 (en) * 2010-08-23 2012-03-01 三菱電機株式会社 Conductor length measurement device and conductor length measurement method
EP2610584A4 (en) * 2010-08-23 2017-01-25 Mitsubishi Electric Corporation Conductor length measurement device and conductor length measurement method
CN103069248A (en) * 2010-08-23 2013-04-24 三菱电机株式会社 Conductor length measurement device and conductor length measurement method
US9335150B2 (en) 2010-08-23 2016-05-10 Mitsubishi Electric Corporation Conductor length measurement device and conductor length measurement method
CN103328920A (en) * 2011-01-24 2013-09-25 三菱电机株式会社 Piping length measuring system and piping length calculating apparatus
EP2669620A4 (en) * 2011-01-24 2017-01-25 Mitsubishi Electric Corporation Piping length measuring system and piping length calculating apparatus
US9644937B2 (en) 2011-01-24 2017-05-09 Mitsubishi Electric Corporation Piping length measuring system and piping length calculating apparatus
WO2012101744A1 (en) * 2011-01-24 2012-08-02 三菱電機株式会社 Piping length measuring system and piping length calculating apparatus
US9728065B2 (en) 2012-02-08 2017-08-08 Cresatech Limited Metallic conductor disturbance detection device and method
KR20140133503A (en) * 2012-02-08 2014-11-19 크레사테크 리미티드 Metallic conductor disturbance detection device and method
JP2015511359A (en) * 2012-02-08 2015-04-16 クレサテック リミテッド Metal conductor turbulence detection apparatus and method
CN106405334A (en) * 2016-10-31 2017-02-15 国网山东省电力公司济南市长清区供电公司 Direct-buried type power transmission line protection device
CN107727970A (en) * 2017-10-27 2018-02-23 青岛钢研纳克检测防护技术有限公司 A kind of detection method and system of buried steel pipe exchange drain means
CN107727970B (en) * 2017-10-27 2024-02-06 青岛钢研纳克检测防护技术有限公司 Detection method and system for alternating current drainage device of buried steel pipeline
CN112134245A (en) * 2020-09-03 2020-12-25 王生东 Underground cable leakage protection early warning device and using method
CN112134245B (en) * 2020-09-03 2021-09-21 广东电网有限责任公司肇庆供电局 Underground cable leakage protection early warning device and using method
CN112186611A (en) * 2020-09-25 2021-01-05 国网山东省电力公司莒县供电公司 Outer broken location early warning device of cable management corridor passageway
CN112186611B (en) * 2020-09-25 2022-05-17 国网山东省电力公司莒县供电公司 Outer broken location early warning device of cable management corridor passageway

Similar Documents

Publication Publication Date Title
EP0298479B1 (en) Leak detector and locator utilizing time domain reflectometry and sampling techniques
US3600674A (en) Method of determining leaks from buried pipelines using a time-sharing transmission line
US6215314B1 (en) Wire break locator and method of use
JPH07294233A (en) Preventive monitoring method of damage on buried pipe
US4829284A (en) Procedure for monitoring of an object using a signal line, together with a pulse measuring apparatus to carry out this procedure
US4721945A (en) Simulated targets for detection systems
JPH052690A (en) Intrusion detection system
JP3400255B2 (en) Piping equipment abnormality detection method and abnormality diagnosis device
JP2004045218A (en) Detector and method for detecting leakage of water
JP3150765B2 (en) Transmission line proximity monitoring system
JPH07264758A (en) Method of preventing and monitoring damage on embedded pipe
JPH10239262A (en) Method for diagnosing damage of pile and underground pile whose damage can be detected
JP3063878B2 (en) Buried pipe damage monitoring device
JP3159761B2 (en) Object detection device
KR100660156B1 (en) Wireless third-party damage monitoring system using gas pipe as wave guide
JP3102537B2 (en) Noise suppression method for damage monitoring system of buried pipe
JPS59131177A (en) Detector for fault position of power-transmission line
US20020166397A1 (en) Method and a device for detecting an internal arc in a metal-clad electrical link
JPH0853878A (en) Measuring cover antenna for underground embedded article
JP2905834B2 (en) Monitoring method for damage to underground pipes
JPH0755750A (en) Monitoring method for prevention of damage of buried pipe
KR19990055739A (en) Location detection method of underground pipeline
JPH11173998A (en) Distribution measuring apparatus
KR100378530B1 (en) Foil Sensor Equipment Type Insulating Connecting Case
KR101410735B1 (en) Avoidance method for detection of reflected waves partial discharge in cables