JPH07293816A - Control device for fluidized bed type boiler and controlling method - Google Patents

Control device for fluidized bed type boiler and controlling method

Info

Publication number
JPH07293816A
JPH07293816A JP8444394A JP8444394A JPH07293816A JP H07293816 A JPH07293816 A JP H07293816A JP 8444394 A JP8444394 A JP 8444394A JP 8444394 A JP8444394 A JP 8444394A JP H07293816 A JPH07293816 A JP H07293816A
Authority
JP
Japan
Prior art keywords
fluidized bed
bed height
fluidized
target value
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8444394A
Other languages
Japanese (ja)
Inventor
Tadao Uenaka
忠男 植中
Yasuisa Yamamoto
恭功 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8444394A priority Critical patent/JPH07293816A/en
Publication of JPH07293816A publication Critical patent/JPH07293816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To eliminate a delay in control of a height of a fluidized bed when a load is changed and to improve a load following-up characteristic. CONSTITUTION:This control device is comprised of an offset amount calculation element 1 for outputting an offset amount at each of a load increasing time and a load decreasing time; an adding element 2 for adding a target value of a height of a fluidized bed to an output of the offset amount calculation element 1; a subtracting element 3 for subtracting a detected value of the fluidized bed height sensing element from an output of the adding element 2 and adding an output of a control deviation; an air valve 8 for adjusting a supplying amount of fluidized medium in response to the controlling deviation; and an air valve 9 for adjusting a discharging amount of the fluidized medium in response to the controlling deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流動層ボイラの流動層高
制御に係り、負荷変化中の流動層高追従性を向上させる
のに好適な流動層ボイラの制御装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fluidized bed height control for a fluidized bed boiler, and more particularly to a fluidized bed boiler control apparatus and method suitable for improving fluidized bed height followability during load changes.

【0002】[0002]

【従来の技術】初めに一般的な流動層ボイラについて説
明する。
2. Description of the Related Art First, a general fluidized bed boiler will be described.

【0003】図3は一般的な流動層ボイラの火炉を示す
説明図である。
FIG. 3 is an explanatory view showing a furnace of a general fluidized bed boiler.

【0004】本図に示すように10は流動層を有する火
炉、11は珪砂等の流動媒体が流動する流動層、12は
流動媒体の流動用空気及び燃焼用空気、13は固形燃料
例えば石炭と石灰石の混合燃料、14は燃焼ガス、15
は流動媒体の供給系、16は流動媒体の排出系である。
As shown in the figure, 10 is a furnace having a fluidized bed, 11 is a fluidized bed in which a fluidized medium such as silica sand flows, 12 is fluid air and combustion air for the fluidized medium, and 13 is solid fuel such as coal. Limestone mixed fuel, 14 is combustion gas, 15
Is a fluid medium supply system, and 16 is a fluid medium discharge system.

【0005】流動層11の容積は、混合燃料のうちの燃
料の燃焼により生成する灰分、混合燃料のうちの石灰石
と硫黄酸化物との脱硫反応により生成する化合物が累積
して増加する要因と、流動媒体や灰分及び脱硫反応によ
る化合物が燃焼ガス14中に同伴して排出されて減少す
る要因とがある。流動層11の高さhは容積が増減する
要因間のバランスが崩れると変化し、制御目標値との間
に偏差が生じる。また、流動層ボイラの負荷変化をさせ
る場合に、流動層高を変えて伝熱面積を変化させ蒸気発
生量を制御するために制御目標値そのものが負荷変化に
応じて変化する。流動層ボイラの流動層高制御は基本的
に流動媒体を流動層11へ供給して流動層高hを高くす
る操作と、流動媒体、灰分及び化合物を流動層11から
排出して流動層高hを低くする操作とにより行う。混合
燃料、流動媒体の流動層11への供給は間歇的な気体搬
送により行う。
The volume of the fluidized bed 11 is caused by the cumulative increase of the ash produced by the combustion of the fuel of the mixed fuel and the compound produced by the desulfurization reaction of limestone and sulfur oxides of the mixed fuel. There is a factor that the fluidized medium, ash, and compounds due to the desulfurization reaction are accompanied and discharged in the combustion gas 14 and are reduced. The height h of the fluidized bed 11 changes when the balance between factors that increase or decrease the volume is lost, and a deviation from the control target value occurs. Further, when the load of the fluidized bed boiler is changed, the control target value itself changes according to the load change in order to change the fluidized bed height to change the heat transfer area and control the steam generation amount. The fluidized bed height control of the fluidized bed boiler is basically an operation of supplying a fluidized medium to the fluidized bed 11 to increase the fluidized bed height h, and discharging the fluidized medium, ash and compounds from the fluidized bed 11 to obtain the fluidized bed height h. To lower the temperature. The mixed fuel and the fluidized medium are supplied to the fluidized bed 11 by intermittent gas transfer.

【0006】図4は従来技術による流動層ボイラの流動
層高制御を説明する説明図である。本図に示すように、
負荷上昇時には流動層高を高くする操作を行うが流動層
高が目標値−α以下で流動媒体の供給操作を開始し、流
動層高が目標値−βまで上昇した時点で供給操作を停止
させる。一方、負荷降下時には流動層高を低くする操作
を行うが流動層高が目標値+α以上で流動媒体の排出操
作を開始し、流動層高が目標値+βまで低下した時点で
排出操作を停止させる。
FIG. 4 is an explanatory view for explaining a fluidized bed height control of a fluidized bed boiler according to the prior art. As shown in this figure,
When the load rises, the operation of increasing the fluidized bed height is performed, but when the fluidized bed height is equal to or less than the target value -α, the supply operation of the fluidized medium is started, and when the fluidized bed height rises to the target value -β, the supply operation is stopped. . On the other hand, when the load drops, the operation of lowering the fluidized bed height is performed, but when the fluidized bed height is equal to or higher than the target value + α, the discharge operation of the fluidized medium is started, and when the fluidized bed height drops to the target value + β, the discharge operation is stopped. .

【0007】流動層ボイラの流動層高制御において比例
制御を行わず、操作開始と操作停止を行う流動層高が異
なるオン、オフ制御を行うのは制御対象が他のプラント
のように液体では無く流動が不安定な粒体であり、流動
層高が絶えず変動し安定したプロセス値を検出できない
ためである。また、供給操作、排出操作それぞれの操作
を停止させる流動層高が目標値からβだけ離れているの
は、操作動作が行き過ぎて目標値を越える流動層ボイラ
に特有の現象に配慮したものである。
The fluidized bed height control of the fluidized bed boiler does not perform proportional control but performs on / off control with different fluidized bed heights for starting and stopping the operation. The control target is not a liquid like other plants. This is because the fluidized particles are unstable and the height of the fluidized bed constantly fluctuates, and a stable process value cannot be detected. In addition, the fact that the fluidized bed height at which each of the supply operation and the discharge operation is stopped is separated from the target value by β is due to the phenomenon peculiar to the fluidized bed boiler in which the operation operation goes too far and exceeds the target value. .

【0008】[0008]

【発明が解決しようとする課題】上記流動層高の制御技
術は、負荷変化時における流動層高の挙動変化におい
て、負荷上昇時に流動層高目標値が増加する場合、流動
層高制御は供給操作のみであり、流動層高は概ね目標値
−αから目標値−βの間で制御される。また負荷降下時
に流動層高目標値が減少する場合、流動層高制御は排出
操作のみであり、流動層高は概ね目標値+βから目標値
+αの間で制御される。
The above-mentioned fluidized bed height control technique is to control the fluidized bed height control operation when the fluidized bed height target value increases when the load rises due to the behavior change of the fluidized bed height when the load changes. The height of the fluidized bed is generally controlled between the target value −α and the target value −β. When the fluidized bed height target value decreases when the load drops, the fluidized bed height control is only the discharge operation, and the fluidized bed height is generally controlled between the target value + β and the target value + α.

【0009】図5は従来の負荷変化時における流動層ボ
イラの時間と流動層高の関係を説明する図表である。
FIG. 5 is a table for explaining the relationship between the time and the fluidized bed height of the conventional fluidized bed boiler when the load changes.

【0010】負荷変化時の負荷上昇、負荷降下の何れの
場合も、図5に示すように平均して流動層高が(α+
β)/2の遅れが生じることとなり、結果として負荷追
従性、制御安定性を阻害する要因となる。
As shown in FIG. 5, the fluidized bed height is (α +) on average in both cases of load increase and load decrease when the load changes.
This results in a delay of β) / 2, which results in a factor that hinders load followability and control stability.

【0011】本発明の目的は、上記従来技術の欠点を改
善し、負荷変化時の流動層高さ制御の遅れを解消し、負
荷追従性を向上させることにある。
An object of the present invention is to improve the drawbacks of the above-mentioned prior art, eliminate the delay of the fluidized bed height control when the load changes, and improve the load followability.

【0012】[0012]

【課題を解決するための手段】上記目的は、流動層の流
動層高さを検出する流動層高検出手段と、負荷に応じて
定められる流動層高さを目標値として設定する流動層高
目標設定手段と、該流動層高目標設定手段が出力する目
標値と前記流動層高検出手段が出力する流動層高さとを
入力し制御偏差を出力する第1の加算手段と、負荷上昇
時に該制御偏差を入力し前記流動層へ供給する流動媒体
を制御する流動媒体供給制御手段と、負荷降下時に前記
制御偏差を入力し前記流動層から排出する流動媒体を制
御する流動媒体排出制御手段とを備えた流動層ボイラの
制御装置において、負荷上昇時に流動媒体の供給を開始
する流動層高と前記目標値からの流動層高差をα、流動
媒体の供給を停止する流動層高と前記目標値からの流動
層高差をβとし(α+β)/2で表されるオフセット
量、負荷降下時に流動媒体の排出を開始する流動層高と
前記目標値からの流動層高差をα、流動媒体の排出を停
止する流動層高と前記目標値からの流動層高差をβとし
−(α+β)/2で表されるオフセット量を出力するオ
フセット量出力手段と、該オフセット出力手段が出力す
るオフセット量と前記流動層高目標設定手段が出力する
目標値とを加算して前記第1の加算手段へ出力する第2
の加算手段とを設けたことにより達成される。
[Means for Solving the Problems] The above objects are a fluidized bed height detecting means for detecting a fluidized bed height of a fluidized bed and a fluidized bed height target for setting a fluidized bed height determined according to a load as a target value. Setting means, first adding means for inputting the target value output by the fluidized bed height target setting means and the fluidized bed height output by the fluidized bed height detecting means and outputting a control deviation, and the control when the load is increased A fluid medium supply control means for inputting a deviation and controlling a fluid medium supplied to the fluidized bed, and a fluid medium discharge control means for inputting the control deviation and controlling a fluid medium discharged from the fluidized bed when a load drops. In the controller of the fluidized bed boiler, the fluidized bed height at which the supply of the fluidized medium is started when the load is increased and the fluidized bed height difference from the target value are α, and the fluidized bed height at which the supply of the fluidized medium is stopped and the target value are Let β be the fluidized bed height difference of (α β) / 2, the fluidized bed height at which the discharge of the fluidized medium starts when the load drops and the fluidized bed height difference from the target value α, and the fluidized bed height at which the discharge of the fluidized medium stops and the target The fluidized bed height difference from the value is β, the offset amount output means outputs the offset amount represented by − (α + β) / 2, the offset amount output by the offset output means and the fluidized bed height target setting means output A target value to be added and output to the first adding means.
It is achieved by the addition means of.

【0013】上記目的は、流動層の流動層高さを検出す
る流動層高検出手段と、負荷上昇時に流動媒体の供給を
開始する流動層高と前記目標値からの流動層高差をα、
流動媒体の供給を停止する流動層高と前記目標値からの
流動層高差をβとし(α+β)/2で表されるオフセッ
ト量、負荷降下時に流動媒体の排出を開始する流動層高
と前記目標値からの流動層高差をα、流動媒体の排出を
停止する流動層高と前記目標値からの流動層高差をβと
し−(α+β)/2で表されるオフセット量を出力する
オフセット量出力手段と、該オフセット出力手段が出力
するオフセット量と前記流動層高検出手段が出力する流
動層高さとを加算する第1の加算手段と、負荷に応じて
定められる流動層高さを目標値として設定する流動層高
目標設定手段と、該流動層高目標設定手段が出力する目
標値と前記第1の加算手段が出力するオフセット量と流
動層高検出値の和を入力し制御偏差を出力する第2の加
算手段と、負荷上昇時に該第2の加算手段が出力する制
御偏差を入力し前記流動層へ供給する流動媒体を制御す
る流動媒体供給制御手段と、負荷降下時に前記第2の加
算手段が出力する制御偏差を入力し前記流動層から排出
する流動媒体を制御する流動媒体排出制御手段とを備え
たことにより達成される。
The above-mentioned objects are as follows: a fluidized bed height detecting means for detecting the fluidized bed height of the fluidized bed, a fluidized bed height for starting the supply of the fluidized medium when the load rises, and a fluidized bed height difference from the target value α,
The fluidized bed height at which the supply of the fluidized medium is stopped and the fluidized bed height difference from the target value are set to β, and the offset amount is represented by (α + β) / 2. An offset for outputting an offset amount represented by-(α + β) / 2, where α is a fluidized bed height difference from a target value, and β is a fluidized bed height from which the fluid medium is stopped to be discharged. Quantity output means, first addition means for adding the offset amount output by the offset output means and fluidized bed height output by the fluidized bed height detection means, and a fluidized bed height determined according to the load The fluidized bed height target setting means set as a value, the target value output by the fluidized bed height target setting means, the sum of the offset amount and the fluidized bed height detected value output by the first adding means are input and the control deviation is set. Second adding means for outputting and when the load increases The fluidized medium supply control means for inputting the control deviation output by the second adding means to control the fluidized medium supplied to the fluidized bed, and the control deviation output by the second adding means at the time of load drop are input. And a fluidized medium discharge control means for controlling the fluidized medium discharged from the fluidized bed.

【0014】上記目的は、負荷要求に応じた流動層高を
目標値として設定し、流動層内の流動媒体を排出または
流動層へ流動媒体を供給することで流動層高を制御する
流動層ボイラの制御方法において、負荷上昇時には流動
媒体の供給を開始する流動層高と停止する流動層の平均
値であるオフセット量を前記流動層高の目標値に加算
し、負荷降下時には前記流動層高の目標値から流動媒体
の排出を開始する流動層高と停止する流動層高との平均
値であるオフセット量を減算することにより達成され
る。
The above object is to set a fluidized bed height according to a load demand as a target value, and discharge the fluidized medium in the fluidized bed or supply the fluidized medium to the fluidized bed to control the fluidized bed height. In the control method, when the load rises, the offset amount, which is the average value of the fluidized bed height at which the fluidized medium starts to be supplied and the fluidized bed stop, is added to the target value of the fluidized bed height, and when the load falls, the fluidized bed height This is achieved by subtracting the offset amount, which is the average value of the fluidized bed height at which the discharge of the fluidized medium is started and the fluidized bed height at which it is stopped, from the target value.

【0015】[0015]

【作用】上記構成によれば、流動層高の目標値にオフセ
ット量を加えることにより、負荷上昇中においては、
(α+β)/2がバイアスされた目標値に対し偏差−α
から−βの間で供給操作が行われ、目標値±(α−β)
/2の偏差内に制御される。負荷降下時も同様に、−
(α+β)/2がバイアスされた目標値に対し偏差αか
らβの間で排出操作が行われ、目標値±(α−β)/2
の偏差内に制御される。 従って、流動層高の偏差は目
標値を中心にして生じることから、流動層高は平均して
目標値に対し遅れなく制御される。
According to the above construction, by adding the offset amount to the target value of the fluidized bed height, during the load increase,
Deviation −α from the target value where (α + β) / 2 is biased
The target value ± (α-β)
Controlled within a deviation of / 2. Similarly when the load drops,
The discharging operation is performed between the deviations α and β with respect to the target value in which (α + β) / 2 is biased, and the target value ± (α−β) / 2
Controlled within the deviation of. Therefore, since the deviation of the fluidized bed height occurs around the target value, the fluidized bed height is controlled on average without delay with respect to the target value.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施例の流動層高制御系を
示すブロック図である。
FIG. 1 is a block diagram showing a fluidized bed height control system according to an embodiment of the present invention.

【0018】まず、本実施例の構成を説明する。First, the structure of this embodiment will be described.

【0019】1は負荷上昇時と負荷降下時のそれぞれに
オフセット量を出力するオフセット量演算要素、2は流
動層高の目標値とオフセット量演算要素1の出力を加算
する加算要素、3は加算要素2の出力から図示せざる流
動層高検出要素の検出値を減算して制御偏差を出力を加
算する減算要素、4は負荷上昇時に流動層高が目標値−
αでオン、目標値−βでオフを出力するヒステリシス要
素、5は負荷降下時に流動層高が目標値+αでオン、目
標値+βでオフを出力するヒステリシス要素、6はヒス
テリシス要素の出力により比例制御またはオン、オフ制
御モードの弁操作量を出力する弁操作量制御要素、7は
ヒステリシス要素の出力により比例制御またはオン、オ
フ制御モードの弁操作量を出力する弁操作量制御要素、
8は弁操作量制御要素6が出力する弁操作量により流動
媒体の供給量を調整する空気弁、9は弁操作量制御要素
7が出力する弁操作量により流動媒体の排出量を調整す
る空気弁である。
1 is an offset amount calculation element that outputs an offset amount when the load is rising and 2 is a load decrease, 2 is an addition element that adds the target value of the fluidized bed height and the output of the offset amount calculation element 1, and 3 is an addition Subtraction element 4 which subtracts the detection value of the unillustrated fluidized bed height detection element from the output of element 2 and adds the control deviation to the output.
Hysteresis element that outputs ON at α and OFF at target value −β, 5 is a hysteresis element that outputs ON when the fluidized bed height is target value + α when the load drops, and is a hysteresis element that outputs OFF at target value + β. 6 is proportional to the output of the hysteresis element A valve operation amount control element for outputting the valve operation amount in the control or on / off control mode, 7 is a valve operation amount control element for outputting the valve operation amount in the proportional control or on / off control mode by the output of the hysteresis element,
Reference numeral 8 is an air valve for adjusting the supply amount of the fluid medium by the valve operation amount output by the valve operation amount control element 6, and 9 is air for adjusting the discharge amount of the fluid medium by the valve operation amount output by the valve operation amount control element 7. It is a valve.

【0020】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0021】図2は本発明の実施例の動作を説明する時
間と流動層高の相関を示す図表である。
FIG. 2 is a chart showing the correlation between time and fluidized bed height for explaining the operation of the embodiment of the present invention.

【0022】目標値に負荷上昇時に流動媒体の供給を開
始する流動層高と目標値からの流動層高差をα、流動媒
体の供給を停止する流動層高と目標値からの流動層高差
をβとし(α+β)/2で表されるオフセット量、負荷
降下時に流動媒体の排出を開始する流動層高と目標値か
らの流動層高差をα、流動媒体の排出を停止する流動層
高と目標値からの流動層高差をβとし−(α+β)/2
で表されるオフセット量を加えることで、図2に示すよ
うに、負荷上昇中においては、オフセット量(α+β)
/2を加えた目標値に対し、流動層高偏差−αから−β
の範囲で流動媒体供給開始・停止操作が繰返され、元の
目標値に対し±(α−β)/2の範囲で制御動作する。
The fluidized bed height at which the supply of the fluidized medium starts when the load increases to the target value and the fluidized bed height difference from the target value are α, and the fluidized bed height at which the fluidized medium supply is stopped and the fluidized bed height difference from the target value. Where β is the amount of offset represented by (α + β) / 2, the fluidized bed height at which fluid medium discharge starts when the load drops and the fluidized bed height difference from the target value α, and the fluidized bed height at which fluid medium discharge is stopped And the fluidized bed height difference from the target value is β- (α + β) / 2
As shown in FIG. 2, the offset amount (α + β) is added during the load increase by adding the offset amount represented by
Fluidized bed height deviation -α to -β with respect to the target value with / 2 added
The fluid medium supply start / stop operation is repeated in the range of, and the control operation is performed in the range of ± (α-β) / 2 with respect to the original target value.

【0023】また、負荷降下中においては、−(α+
β)/2で表されるオフセット量を加えた目標値に対
し、流動層高偏差+αから+βの範囲で流動媒体排出開
始・停止操作が繰返され、元の目標値に対し、±(α−
β)/2の範囲で制御動作する。
During the load drop,-(α +
β) / 2 is added to the target value and the fluidized bed height deviation is repeated within the range of + α to + β, and the fluid medium discharge start / stop operation is repeated, and ± (α-
Control operation is performed in the range of β) / 2.

【0024】さらに、負荷変化終了時点における流動層
高偏差は、従来技術では図7に示すように負荷上昇終了
時で−α〜−β、負荷降下終了時で+α〜+βであるの
に対し、本実施例では図2に示すように負荷上昇時、降
下時ともに±(α−β)/2の範囲にあり、負荷変化終
了時の流動層高偏差も低減される。
Further, in the prior art, the fluidized bed height deviation at the end of the load change is -α to -β at the end of the load increase and + α to + β at the end of the load decrease as shown in FIG. In the present embodiment, as shown in FIG. 2, the load is in the range of ± (α-β) / 2 both when the load rises and when the load falls, and the fluidized bed height deviation at the end of the load change is also reduced.

【0025】上記実施例ではオフセット量1を±(α+
β)/2としたが、供給側、排出側それぞれのヒステリ
シス要素4,5の設定値や、供給、排出特性及び層高偏
差がプラント出力に与える影響等を考慮し、個別に任意
のオフセット量を与えることで、最適制御が得られる。
In the above embodiment, the offset amount 1 is ± (α +
β) / 2 was set, but in consideration of the set values of the hysteresis elements 4 and 5 on the supply side and the discharge side, the effect of the supply and discharge characteristics, and the bed height deviation on the plant output, etc. Optimal control can be obtained by giving

【0026】また、オフセット量を加算する相手とし
て、上記実施例では目標値に加えて制御偏差を求めた
が、計測した流動層高値に加え目標値との差で制御偏差
を求める例、制御偏差に加えてヒステリシス要素4,5
の入力とすることも可能である。
In the above embodiment, the control deviation was calculated in addition to the target value as a partner for adding the offset amount. However, the control deviation is calculated by the difference between the measured fluidized bed height value and the target value. In addition to hysteresis elements 4, 5
Can also be input.

【0027】[0027]

【発明の効果】本発明によれば、流動層高の目標値にオ
フセット量を加えることにより、負荷変化中の流動層高
の遅れ動作が無くなり、出力偏差が低減できるので、負
荷追従性が向上する。また、他の制御系への外乱要素が
軽減され、制御安定性も向上する。
According to the present invention, by adding the offset amount to the target value of the fluidized bed height, the delay operation of the fluidized bed height during the load change is eliminated and the output deviation can be reduced, so that the load followability is improved. To do. Further, disturbance elements to other control systems are reduced, and control stability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の流動層高制御系を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a fluidized bed height control system of an embodiment of the present invention.

【図2】本発明の実施例の動作を説明する時間と流動層
高の相関を示す図表である。
FIG. 2 is a chart showing the correlation between time and fluidized bed height, which explains the operation of the embodiment of the present invention.

【図3】一般的な流動層ボイラの火炉を示す説明図であ
る。
FIG. 3 is an explanatory view showing a furnace of a general fluidized bed boiler.

【図4】従来技術による流動層ボイラの流動層高制御を
説明する説明図である。
FIG. 4 is an explanatory diagram illustrating a fluidized bed height control of a fluidized bed boiler according to a conventional technique.

【図5】従来の負荷変化時における流動層ボイラの時間
と流動層高の関係を説明する図表である。
FIG. 5 is a table for explaining a relationship between a fluidized bed boiler time and a fluidized bed height when a conventional load changes.

【符号の説明】[Explanation of symbols]

1 オフセット量演算要素 2 加算要素 3 減算要素 4 ステリシス要素 5 ステリシス要素 6 弁操作量制御要素 7 弁操作量制御要素 8 流動媒体供給量調整空気弁 9 流動媒体排出量調整空気弁 10 火炉 11 流動層 12 空気 13 混合燃料 14 燃焼ガス 15 供給系 16 排出系 1 Offset amount calculation element 2 Addition element 3 Subtraction element 4 Sterisis element 5 Sterisis element 6 Valve operation amount control element 7 Valve operation amount control element 8 Fluid medium supply amount adjusting air valve 9 Fluid medium discharge amount adjusting air valve 10 Furnace 11 Fluidized bed 12 air 13 mixed fuel 14 combustion gas 15 supply system 16 exhaust system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流動層の流動層高さを検出する流動層高
検出手段と、負荷に応じて定められる流動層高さを目標
値として設定する流動層高目標設定手段と、該流動層高
目標設定手段が出力する目標値と前記流動層高検出手段
が出力する流動層高さとを入力し制御偏差を出力する第
1の加算手段と、負荷上昇時に該制御偏差を入力し前記
流動層へ供給する流動媒体を制御する流動媒体供給制御
手段と、負荷降下時に前記制御偏差を入力し前記流動層
から排出する流動媒体を制御する流動媒体排出制御手段
とを備えた流動層ボイラの制御装置において、 負荷上昇時に流動媒体の供給を開始する流動層高と前記
目標値からの流動層高差をα、流動媒体の供給を停止す
る流動層高と前記目標値からの流動層高差をβとし(α
+β)/2で表されるオフセット量、負荷降下時に流動
媒体の排出を開始する流動層高と前記目標値からの流動
層高差をα、流動媒体の排出を停止する流動層高と前記
目標値からの流動層高差をβとし−(α+β)/2で表
されるオフセット量を出力するオフセット量出力手段
と、該オフセット出力手段が出力するオフセット量と前
記流動層高目標設定手段が出力する目標値とを加算して
前記第1の加算手段へ出力する第2の加算手段とを設け
たことを特徴とする流動層ボイラの制御装置。
1. A fluidized bed height detecting means for detecting a fluidized bed height of a fluidized bed, a fluidized bed height target setting means for setting a fluidized bed height determined according to a load as a target value, and the fluidized bed height. First adding means for inputting the target value output by the target setting means and the fluidized bed height output by the fluidized bed height detecting means to output a control deviation, and inputting the control deviation when the load increases to the fluidized bed A fluidized bed boiler control device comprising fluidized medium supply control means for controlling a fluidized medium to be supplied, and fluidized medium discharge control means for controlling the fluidized medium discharged from the fluidized bed by inputting the control deviation when the load drops. , Α is the difference between the fluidized bed height at which the fluidized medium starts to be supplied when the load increases and the fluidized bed height from the target value, and the fluidized bed height at which the fluidized medium supply is stopped and the fluidized bed height from the target value is β. (Α
+ Β) / 2, the fluidized bed height at which fluid medium discharge starts when the load drops and the fluidized bed height difference from the target value α, and the fluidized bed height at which fluid medium discharge stops and the target The fluidized bed height difference from the value is β, the offset amount output means outputs the offset amount represented by − (α + β) / 2, the offset amount output by the offset output means and the fluidized bed height target setting means output And a second adding means for adding the target value to be output to the first adding means, and a controller for the fluidized bed boiler.
【請求項2】 流動層の流動層高さを検出する流動層高
検出手段と、負荷上昇時に流動媒体の供給を開始する流
動層高と前記目標値からの流動層高差をα、流動媒体の
供給を停止する流動層高と前記目標値からの流動層高差
をβとし(α+β)/2で表されるオフセット量、負荷
降下時に流動媒体の排出を開始する流動層高と前記目標
値からの流動層高差をα、流動媒体の排出を停止する流
動層高と前記目標値からの流動層高差をβとし−(α+
β)/2で表されるオフセット量を出力するオフセット
量出力手段と、該オフセット出力手段が出力するオフセ
ット量と前記流動層高検出手段が出力する流動層高さと
を加算する第1の加算手段と、負荷に応じて定められる
流動層高さを目標値として設定する流動層高目標設定手
段と、該流動層高目標設定手段が出力する目標値と前記
第1の加算手段が出力するオフセット量と流動層高検出
値の和を入力し制御偏差を出力する第2の加算手段と、
負荷上昇時に該第2の加算手段が出力する制御偏差を入
力し前記流動層へ供給する流動媒体を制御する流動媒体
供給制御手段と、負荷降下時に前記第2の加算手段が出
力する制御偏差を入力し前記流動層から排出する流動媒
体を制御する流動媒体排出制御手段とを備えたことを特
徴とする流動層ボイラの制御装置。
2. A fluidized bed height detecting means for detecting a fluidized bed height of the fluidized bed, a fluidized bed height at which supply of the fluidized medium is started when the load rises, and a fluidized bed height difference from the target value, α, Of the fluidized bed height at which the supply of the fluid is stopped and the fluidized bed height from the target value is β, and the offset amount is represented by (α + β) / 2, the fluidized bed height at which the discharge of the fluid medium is started when the load is reduced, and the target value. Is the fluidized bed height difference from the target value and the fluidized bed height at which the discharge of the fluidized medium is stopped is β- (α +
β) / 2, an offset amount output means for outputting an offset amount, and a first adding means for adding the offset amount output by the offset output means and the fluidized bed height output by the fluidized bed height detecting means. And a fluidized bed height target setting means for setting a fluidized bed height determined according to a load as a target value, a target value output by the fluidized bed height target setting means, and an offset amount output by the first adding means. And second addition means for inputting the sum of the fluidized bed height detection value and outputting the control deviation,
A fluid medium supply control means for controlling the fluid medium supplied to the fluidized bed by inputting the control deviation output by the second adding means when the load rises, and a control deviation output by the second adding means when the load falls. And a fluidized medium discharge control means for controlling a fluidized medium that is input and discharged from the fluidized bed.
【請求項3】 負荷要求に応じた流動層高を目標値とし
て設定し、流動層内の流動媒体を排出または流動層へ流
動媒体を供給することで流動層高を制御する流動層ボイ
ラの制御方法において、 負荷上昇時には流動媒体の供給を開始する流動層高と停
止する流動層の平均値であるオフセット量を前記流動層
高の目標値に加算し、負荷降下時には前記流動層高の目
標値から流動媒体の排出を開始する流動層高と停止する
流動層高との平均値であるオフセット量を減算すること
を特徴とする流動層ボイラの制御方法。
3. A fluidized bed boiler control for controlling a fluidized bed height by setting a fluidized bed height according to a load demand as a target value and discharging the fluidized medium in the fluidized bed or supplying the fluidized medium to the fluidized bed. In the method, when the load rises, the offset amount, which is the average value of the fluidized bed height at which the fluidized medium supply starts and the fluidized bed stop, is added to the target value of the fluidized bed height, and when the load falls, the target value of the fluidized bed height. A method for controlling a fluidized bed boiler, wherein an offset amount, which is an average value of a fluidized bed height at which the fluidized medium is discharged and a fluidized bed height at which the fluidized medium is stopped, is subtracted from
JP8444394A 1994-04-22 1994-04-22 Control device for fluidized bed type boiler and controlling method Pending JPH07293816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8444394A JPH07293816A (en) 1994-04-22 1994-04-22 Control device for fluidized bed type boiler and controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8444394A JPH07293816A (en) 1994-04-22 1994-04-22 Control device for fluidized bed type boiler and controlling method

Publications (1)

Publication Number Publication Date
JPH07293816A true JPH07293816A (en) 1995-11-10

Family

ID=13830748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8444394A Pending JPH07293816A (en) 1994-04-22 1994-04-22 Control device for fluidized bed type boiler and controlling method

Country Status (1)

Country Link
JP (1) JPH07293816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856398A (en) * 2021-01-04 2021-05-28 神华神东电力有限责任公司 Primary air control device of double-bed circulating fluidized bed boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856398A (en) * 2021-01-04 2021-05-28 神华神东电力有限责任公司 Primary air control device of double-bed circulating fluidized bed boiler
CN112856398B (en) * 2021-01-04 2023-08-04 神华神东电力有限责任公司 Primary air control device of double-bed circulating fluidized bed boiler

Similar Documents

Publication Publication Date Title
DK171860B1 (en) Method and apparatus for controlling fuel combustion
US5052344A (en) Incineration control apparatus for a fluidized bed boiler
US4441435A (en) Fluidizing gas control system in fluidized-bed incinerator
US6145453A (en) Method for controlling the firing rate of combustion installations
JP4594376B2 (en) Gas heating value control method and gas heating value control device
JPH07293816A (en) Control device for fluidized bed type boiler and controlling method
JP6697312B2 (en) Wet biomass incinerator system and method of operating wet biomass incinerator
JPS591912A (en) Combustion control method of combustion furnace with fluidized bed
JP3256335B2 (en) Control method of oxygen concentration of flue gas of combustion equipment
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH0323806B2 (en)
JP3041263B2 (en) Method of controlling nitrogen oxides in flue gas from pressurized fluidized-bed boiler
RU1813972C (en) Loading control method for pulverized-fuel boiler
JP2686343B2 (en) Circulating fluidized bed combustor control method
JP3368736B2 (en) Combustion method of regenerative burner and combustion device thereof
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JPH11527A (en) Denitrification control method
JPH0631687B2 (en) Furnace pressure control method
JP3094847B2 (en) Water supply method to waste heat boiler of fluidized bed waste incinerator
JP2023048608A (en) Fluidized bed type sludge incineration furnace, and automatic combustion control method for fluidized bed type sludge incineration furnace
JPH0258527B2 (en)
SU1633232A1 (en) Method of automatic control of combustion process in fluidized bed furnace
JP3628184B2 (en) Control method for fluidized bed waste incinerator
JPH0625602B2 (en) Fluidized bed boiler control method
RU2265779C2 (en) Method of automatic control of metallurgic raw materials roasting in boiling layer furnace