JPH07293365A - Canister and vapor fuel processing element - Google Patents
Canister and vapor fuel processing elementInfo
- Publication number
- JPH07293365A JPH07293365A JP6092427A JP9242794A JPH07293365A JP H07293365 A JPH07293365 A JP H07293365A JP 6092427 A JP6092427 A JP 6092427A JP 9242794 A JP9242794 A JP 9242794A JP H07293365 A JPH07293365 A JP H07293365A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- canister
- heat storage
- fuel
- evaporated fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、車両等において蒸発燃
料の処理に用いられるキャニスタ、特に、蒸発燃料を吸
着する吸着能および吸着された蒸発燃料を脱離する脱離
能を有する活性炭を備えたキャニスタおよびその構成部
品である蒸発燃料処理用エレメントに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a canister used for treating evaporative fuel in a vehicle or the like, and in particular, an activated carbon having an adsorbing ability for adsorbing the evaporated fuel and a desorbing ability for desorbing the adsorbed evaporated fuel. And a vaporized fuel processing element that is a component thereof.
【0002】[0002]
【従来の技術】一般に、蒸発燃料に対する活性炭の吸着
能は活性炭温度が低くなる程高くなり、一方、脱離能は
活性炭温度が高くなる程高くなる。2. Description of the Related Art Generally, the adsorbing ability of activated carbon with respect to vaporized fuel becomes higher as the temperature of the activated carbon becomes lower, while the desorption ability becomes higher as the temperature of the activated carbon becomes higher.
【0003】ところが、蒸発燃料が活性炭に吸着される
現象は発熱反応であるから、蒸発燃料の吸着に伴って活
性炭温度が上昇するため、その活性炭の吸着能は低下す
る。一方、蒸発燃料が活性炭から脱離する現象は吸熱反
応であるから、蒸発燃料の脱離に伴って活性炭温度が低
下するため、その活性炭の脱離能は低下する。However, since the phenomenon in which the evaporated fuel is adsorbed on the activated carbon is an exothermic reaction, the temperature of the activated carbon rises as the evaporated fuel is adsorbed, and the adsorption capacity of the activated carbon decreases. On the other hand, since the phenomenon in which the evaporated fuel desorbs from the activated carbon is an endothermic reaction, the temperature of the activated carbon lowers as the evaporated fuel desorbs, and the desorption capacity of the activated carbon lowers.
【0004】そこで、このような問題を解決し得るキャ
ニスタとして、活性炭内にその活性炭よりも比熱の大き
い粒状蓄熱体を混入させたものが提案されている(例え
ば、特開昭64−36962号公報参照)。Therefore, as a canister capable of solving such a problem, a canister in which a granular heat storage material having a specific heat larger than that of the activated carbon is mixed has been proposed (for example, JP-A-64-36962). reference).
【0005】このキャニスタにおいては、活性炭による
蒸発燃料の吸着に起因して発生する熱を蓄熱体の温度上
昇のために消費させることにより活性炭の温度上昇を抑
制し、一方、活性炭からの蒸発燃料の脱離に必要な熱を
蓄熱体より供給することにより活性炭の温度低下を抑制
し、これにより吸着−脱離特性の向上を図るものであ
る。In this canister, the temperature rise of the activated carbon is suppressed by consuming the heat generated due to the adsorption of the vaporized fuel by the activated carbon to raise the temperature of the heat storage body. By supplying the heat necessary for desorption from the heat storage body, the temperature drop of the activated carbon is suppressed, thereby improving the adsorption-desorption characteristics.
【0006】[0006]
【発明が解決しようとする課題】しかしながら従来のキ
ャニスタにおいて、その吸着−脱離特性の向上を図るた
めには、活性炭内に蓄熱体が均一に配置されていること
が必須要件となるが、蓄熱体は金属材料、セラミックス
等より構成されているので、量産に当り、多量の蓄熱体
と、それよりも比重の小さい多量の活性炭とを均一に混
ぜ合せることは非常に難しく、したがって、従来のキャ
ニスタの場合、その各個について吸着−脱離特性にばら
つきを生じ易く、量産性に欠ける、という問題があっ
た。However, in the conventional canister, in order to improve its adsorption-desorption characteristics, it is essential that the heat storage bodies are uniformly arranged in the activated carbon. Since the body is composed of metal materials, ceramics, etc., it is very difficult to uniformly mix a large amount of heat storage material with a large amount of activated carbon having a smaller specific gravity in mass production. In such a case, there was a problem that the adsorption-desorption characteristics of each of them were likely to vary and the mass productivity was poor.
【0007】本発明は前記に鑑み、活性炭に対し蓄熱体
を均一に配置することのできる、量産性の良好な前記キ
ャニスタおよびその構成部品である蒸発燃料処理用エレ
メントを提供することを目的とする。In view of the above, it is an object of the present invention to provide the above-mentioned canister, which is capable of uniformly disposing the heat storage body with respect to the activated carbon, and has good mass productivity, and the evaporated fuel processing element which is a component thereof. .
【0008】[0008]
【課題を解決するための手段】本発明は、蒸発燃料を吸
着する吸着能および吸着された蒸発燃料を脱離する脱離
能を有する活性炭を備えたキャニスタにおいて、前記活
性炭よりも比熱の大きな蓄熱体と、その蓄熱体の表面を
覆う前記活性炭とより蒸発燃料処理用エレメントを構成
し、複数の前記エレメントをケーシング内に充填したこ
とを特徴とする。The present invention relates to a canister having activated carbon capable of adsorbing vaporized fuel and desorbing the adsorbed vaporized fuel, and has a specific heat storage capacity higher than that of the activated carbon. It is characterized in that a vaporized fuel processing element is constituted by the body and the activated carbon covering the surface of the heat storage body, and a plurality of the elements are filled in the casing.
【0009】本発明は、蒸発燃料を吸着する吸着能およ
び吸着された蒸発燃料を脱離する脱離能を有し、且つキ
ャニスタの構成部品である蒸発燃料処理用エレメントで
あって、活性炭よりも比熱の大きな蓄熱体と、その蓄熱
体の表面を覆う前記活性炭とより構成されることを特徴
とする。The present invention is an evaporative fuel treatment element which has an adsorbing ability to adsorb evaporated fuel and a desorbing ability to desorb adsorbed evaporated fuel, and which is a constituent part of a canister. It is characterized by comprising a heat storage body having a large specific heat and the activated carbon covering the surface of the heat storage body.
【0010】[0010]
【作用】前記キャニスタにおいては、各エレメントをケ
ーシング内に充填するだけで、活性炭に対して蓄熱体が
均一に配置される。これにより、個々のキャニスタにお
ける吸着−脱離特性のばらつきを回避して、その量産性
を向上させることができる。In the canister, the heat storage body is uniformly arranged with respect to the activated carbon simply by filling each element in the casing. As a result, it is possible to avoid variations in the adsorption-desorption characteristics of individual canisters and improve their mass productivity.
【0011】そして、このキャニスタにおいては、活性
炭による蒸発燃料の吸着に起因して発生する熱は蓄熱体
の温度上昇のために消費されるので、活性炭の温度上昇
が確実に抑制され、一方、活性炭からの蒸発燃料の脱離
に必要な熱は蓄熱体より供給されるので、活性炭の温度
低下が確実に抑制される。その結果、活性炭は蒸発燃料
に対する吸着能および脱離能を十分に発揮する。Further, in this canister, the heat generated due to the adsorption of the evaporated fuel by the activated carbon is consumed for the temperature rise of the heat storage body, so that the temperature rise of the activated carbon is surely suppressed, while the activated carbon is activated. Since the heat required for desorbing the evaporated fuel from the is supplied from the heat storage body, the temperature drop of the activated carbon is surely suppressed. As a result, the activated carbon sufficiently exhibits the adsorption ability and desorption ability with respect to the evaporated fuel.
【0012】前記エレメントを用いることによって前記
キャニスタの生産性を大いに向上させることができる。By using the element, the productivity of the canister can be greatly improved.
【0013】[0013]
【実施例】図1はキャニスタ1の第1例を示し、そのキ
ャニスタ1は、車両における燃料タンク2とエンジンの
吸気管3との間に配設される。キャニスタ1はケーシン
グ4を備え、そのケーシング4は筒状主体5と、その両
端を閉鎖する一対の端壁6,7とを有する。ケーシング
4内は、両端壁6,7に近接して配設された両多孔板
8,9によって、一方の端壁6および一方の多孔板8間
に存する蒸発燃料室10と、他方の端壁7および他方の
多孔板9間に存する大気室11と、両多孔板8,9間に
存する処理室12とに区画される。1 shows a first example of a canister 1, which is arranged between a fuel tank 2 of a vehicle and an intake pipe 3 of an engine. The canister 1 includes a casing 4, and the casing 4 has a tubular main body 5 and a pair of end walls 6 and 7 closing both ends thereof. The inside of the casing 4 is formed by the two perforated plates 8 and 9 arranged in proximity to the both end walls 6 and 7, and one end wall 6 and the evaporated fuel chamber 10 existing between the one perforated plate 8 and the other end wall. 7 and the other porous plate 9 are divided into an atmospheric chamber 11 and a processing chamber 12 existing between the two porous plates 8 and 9.
【0014】一方の端壁6に、蒸発燃料室10に開口す
る第1,第2流入口13,14が設けられる。第1流入
口13に導管15の一端が連通し、その導管15の他端
は燃料タンク2の天井壁16においてその内部に連通す
る。導管15は、その中間部に一方向弁17を有し、そ
の一方向弁17は燃料タンク2内の燃料蒸気圧が所定値
を超えたときに開く。また第2流入口14に導管18の
一端が連通し、その導管18の他端は燃料タンク2の供
給口19近傍においてその内部に連通する。導管18
は、その供給口19側に切換弁20を有し、その切換弁
20は燃料供給中にのみ燃料タンク2内を第2流入口1
4に連通させる。First end walls 6 are provided with first and second inflow ports 13 and 14 which open to the evaporated fuel chamber 10. One end of the conduit 15 communicates with the first inlet 13, and the other end of the conduit 15 communicates with the interior of the ceiling wall 16 of the fuel tank 2. The conduit 15 has a one-way valve 17 in its middle portion, and the one-way valve 17 opens when the fuel vapor pressure in the fuel tank 2 exceeds a predetermined value. Further, one end of the conduit 18 communicates with the second inflow port 14, and the other end of the conduit 18 communicates with the inside of the fuel tank 2 in the vicinity of the supply port 19. Conduit 18
Has a switching valve 20 on the side of the supply port 19 thereof, and the switching valve 20 moves in the fuel tank 2 only during the fuel supply.
Connect to 4.
【0015】さらに、一方の端壁6に蒸発燃料室10に
開口する流出口21が設けられ、その流出口21に導管
22の一端が連通し、その他端は吸気管3内の絞り弁2
3よりも上流側に連通する。導管22は、その中間部に
流出制御弁24を有し、その流出制御弁24は吸気管3
内の吸気負圧が所定値を超えたときに開く。Further, an outflow port 21 opening to the fuel vapor chamber 10 is provided on one end wall 6, one end of a conduit 22 communicates with the outflow port 21, and the other end has a throttle valve 2 in the intake pipe 3.
It communicates with the upstream side of 3. The conduit 22 has an outflow control valve 24 in the middle thereof, and the outflow control valve 24 is the intake pipe 3
Open when the intake negative pressure inside exceeds a specified value.
【0016】大気室11は他方の端壁7に形成された通
孔25を介して大気に開放される。The atmosphere chamber 11 is opened to the atmosphere through a through hole 25 formed in the other end wall 7.
【0017】処理室12内に、図2に明示した複数の断
面円形の蒸発燃料処理用棒状エレメント26が、それら
の一端面を一方の多孔板8に、また他端面を他方の多孔
板9にそれぞれ向けて充填され、各端面と各多孔板8,
9との間にはフィルタ27,28が配設される。In the processing chamber 12, a plurality of rod-shaped elements 26 for evaporative fuel treatment, each having a circular cross section, shown in FIG. 2, have one end surface on one porous plate 8 and the other end surface on the other porous plate 9. Filled toward each end, each end face and each porous plate 8,
Filters 27 and 28 are disposed between the filter 9 and the filter 9.
【0018】各エレメント26は断面円形の棒状蓄熱体
29と、その蓄熱体29の全表面を覆う活性炭30とよ
り構成される。棒状蓄熱体29は活性炭30よりも比熱
の大きな材料、例えばアルミニウム、その合金、ステン
レス鋼、銅、その合金等の金属材料、アルミナ等のセラ
ミック材料等より構成される。また活性炭30は、蒸発
燃料を吸着する吸着能および吸着された蒸発燃料を脱離
する脱離能を有する。Each element 26 comprises a rod-shaped heat storage body 29 having a circular cross section, and activated carbon 30 covering the entire surface of the heat storage body 29. The rod-shaped heat storage body 29 is made of a material having a larger specific heat than the activated carbon 30, for example, a metal material such as aluminum, an alloy thereof, stainless steel, copper, an alloy thereof, or a ceramic material such as alumina. The activated carbon 30 has an adsorbing ability to adsorb the evaporated fuel and a desorbing ability to desorb the adsorbed evaporated fuel.
【0019】前記のような棒状エレメント26の製造に
当っては、石炭粉末とバインダ(ピッチ等)との混合物
中に棒状蓄熱体29を浸漬して蓄熱体29の全表面に混
合物を付着させ、次いでその付着混合物に乾留処理を施
して炭素粉末を生成させ、その後その炭素粉末に賦活処
理を施して、全表面を活性炭30により覆われた棒状エ
レメント26を得る、といった方法が採用される。In manufacturing the rod-shaped element 26 as described above, the rod-shaped heat storage body 29 is immersed in a mixture of coal powder and a binder (pitch, etc.) to adhere the mixture to the entire surface of the heat storage body 29. Then, the deposition mixture is subjected to carbonization treatment to generate carbon powder, and then the carbon powder is subjected to activation treatment to obtain a rod-shaped element 26 whose entire surface is covered with activated carbon 30.
【0020】エンジン停止中において、燃料タンク2内
の燃料蒸気圧が所定値を超えると、一方向弁17が開く
ので、蒸発燃料は導管15、第1流入口13および蒸発
燃料室10を経て処理室12内に流入する。この処理室
12内における蒸発燃料の流れ方向は、図1において矢
aで示すように一方の多孔板8から他方の多孔板9に向
かう方向であり、したがって各棒状エレメント26の軸
線と平行しているので、蒸発燃料は相隣る両棒状エレメ
ント26間の空隙をスムーズに流れると共にその活性炭
30により吸着される。When the fuel vapor pressure in the fuel tank 2 exceeds a predetermined value while the engine is stopped, the one-way valve 17 opens, so that the evaporated fuel is processed through the conduit 15, the first inlet 13 and the evaporated fuel chamber 10. It flows into the chamber 12. The flow direction of the evaporated fuel in the processing chamber 12 is a direction from one porous plate 8 to the other porous plate 9 as indicated by an arrow a in FIG. 1, and thus is parallel to the axis of each rod-shaped element 26. Therefore, the evaporated fuel smoothly flows through the gap between the adjacent rod-shaped elements 26 and is adsorbed by the activated carbon 30.
【0021】また燃料供給中において、供給口19近傍
で発生した蒸発燃料は切換弁20、導管18、第2流入
口14および蒸発燃料室10を経て処理室12に流入す
るので、前記同様に活性炭30により吸着される。During fuel supply, the evaporated fuel generated in the vicinity of the supply port 19 flows into the processing chamber 12 via the switching valve 20, the conduit 18, the second inlet 14 and the evaporated fuel chamber 10, so that the activated carbon is the same as above. Adsorbed by 30.
【0022】一方、エンジン運転中において、吸気負圧
が所定値を超えると、流出制御弁24が開くので、活性
炭30に吸着されていた蒸発燃料は、その活性炭30よ
り脱離して、前記方向aとは逆にb方向に流れ蒸発燃料
室10、流出口21および導管22を経て吸気管3内に
流入する。On the other hand, when the intake negative pressure exceeds a predetermined value during engine operation, the outflow control valve 24 opens, so the evaporated fuel adsorbed by the activated carbon 30 is desorbed from the activated carbon 30 and the direction a On the contrary, it flows in the direction b and flows into the intake pipe 3 through the evaporated fuel chamber 10, the outlet 21 and the conduit 22.
【0023】前記キャニスタ1においては各棒状エレメ
ント26をケーシング4内に充填するだけで、活性炭3
0に対して棒状蓄熱体29が均一に配置される。これに
より、個々のキャニスタ1における吸着−脱離特性のば
らつきを回避して、その量産性を向上させることができ
る。In the canister 1, it is sufficient to fill each of the rod-shaped elements 26 in the casing 4 to activate the activated carbon 3
The rod-shaped heat storage bodies 29 are uniformly arranged with respect to zero. As a result, it is possible to avoid variations in the adsorption-desorption characteristics of the individual canisters 1 and improve their mass productivity.
【0024】そして、このキャニスタ1においては、活
性炭30による蒸発燃料の吸着に起因して発生する熱は
棒状蓄熱体29の温度上昇のために消費されるので、活
性炭30の温度上昇が確実に抑制され、一方、活性炭3
0からの蒸発燃料の脱離に必要な熱は棒状蓄熱体29よ
り供給されるので、活性炭30の温度低下が確実に抑制
される。その結果、活性炭30は蒸発燃料に対する吸着
能および脱離能を十分に発揮する。In the canister 1, the heat generated due to the adsorption of the evaporated fuel by the activated carbon 30 is consumed for the temperature rise of the rod-shaped heat storage body 29, so that the temperature rise of the activated carbon 30 is surely suppressed. On the other hand, activated carbon 3
Since the heat required for desorbing the evaporated fuel from 0 is supplied from the rod-shaped heat storage body 29, the temperature drop of the activated carbon 30 is surely suppressed. As a result, the activated carbon 30 sufficiently exhibits the adsorption ability and desorption ability with respect to the evaporated fuel.
【0025】図3は蒸発燃料処理用粒状エレメント31
を示し、その粒状エレメント31は、図2の棒状エレメ
ント26をその軸線方向に沿って細断することによって
得られたもので、断面円形の粒状蓄熱体32と、その外
周面(および一端面)を覆う活性炭30とよりなる。こ
の粒状エレメント31は処理室12内にアトランダムに
充填される。FIG. 3 shows a granular element 31 for treating evaporated fuel.
The granular element 31 is obtained by shredding the rod-shaped element 26 of FIG. 2 along the axial direction thereof, and the granular heat storage body 32 having a circular cross section and its outer peripheral surface (and one end surface) are shown. It consists of activated carbon 30 which covers. The granular elements 31 are randomly packed in the processing chamber 12.
【0026】図4はキャニスタ1の第2例を示す。この
キャニスタ1における各エレメント33は平坦な網状を
なし、それら網状エレメント33は、それらの両面が処
理室12内における蒸発燃料の流れ方向a,bと交差す
るように、処理室12内に積層状態で充填される。FIG. 4 shows a second example of the canister 1. Each element 33 in this canister 1 has a flat mesh shape, and these mesh elements 33 are stacked in the processing chamber 12 so that both surfaces thereof intersect the flow directions a and b of the evaporated fuel in the processing chamber 12. Filled with.
【0027】図5に明示するように、網状エレメント3
3は、平坦な網状をなす蓄熱体34と、その網状蓄熱体
34の表面を網目35が残るように覆う活性炭30とよ
りなる。網状蓄熱体34の材質は前記棒状蓄熱体29の
それと同一であり、また網状エレメント33は前記棒状
エレメント26と同一の方法で製造される。図4におけ
る他の構成部分であって図1のそれと同一のものには図
1と同一符号を付して説明は省略する。As clearly shown in FIG. 5, the mesh element 3
3 comprises a flat reticulated heat storage body 34 and activated carbon 30 which covers the surface of the reticulated heat storage body 34 so that a mesh 35 remains. The material of the reticulated heat storage body 34 is the same as that of the rod-shaped heat storage body 29, and the reticulated element 33 is manufactured by the same method as the rod-shaped element 26. The other components in FIG. 4 that are the same as those in FIG. 1 are assigned the same reference numerals as those in FIG. 1 and description thereof is omitted.
【0028】前記のように構成すると、蒸発燃料吸着時
における活性炭30の温度上昇および蒸発燃料脱離時に
おける活性炭30の温度低下は網状蓄熱体34によって
抑制される。With the above construction, the reticulated heat storage material 34 suppresses the temperature rise of the activated carbon 30 during adsorption of the evaporated fuel and the temperature reduction of the activated carbon 30 during the desorption of the evaporated fuel.
【0029】また処理室12内において、各網状エレメ
ント33の網目35を通じて蒸発燃料の流れが形成され
るので、活性炭30による蒸発燃料の吸着および活性炭
30からの蒸発燃料の脱離が効率良く行われる。Further, in the processing chamber 12, a flow of the evaporated fuel is formed through the mesh 35 of each mesh element 33, so that the adsorption of the evaporated fuel by the activated carbon 30 and the desorption of the evaporated fuel from the activated carbon 30 are efficiently performed. .
【0030】図6はキャニスタ1の第3例を示し、この
キャニスタ1においては、複数の網状エレメント33
が、処理室12内に充填された活性炭30内に埋設され
ている。各網状エレメント33は、その両面が処理室1
2内における蒸発燃料の流れ方向a,bと交差するよう
に配設され、また相隣る両網状エレメント33間には所
定の間隔cが存する。図6における他の構成部分であっ
て図1のそれと同一のものには図1と同一符号を付して
説明は省略する。FIG. 6 shows a third example of the canister 1, in which the plurality of reticulated elements 33 are provided.
Are buried in the activated carbon 30 filled in the processing chamber 12. Both sides of each reticulated element 33 are the processing chamber 1
There is a predetermined space c between the two reticulated elements 33 which are arranged so as to intersect with the flow directions a and b of the evaporated fuel in 2 and are adjacent to each other. The other components in FIG. 6 which are the same as those in FIG. 1 are assigned the same reference numerals as those in FIG. 1 and their description is omitted.
【0031】前記構成によっても、蒸発燃料吸着時にお
ける活性炭30の温度上昇および蒸発燃料脱離時におけ
る活性炭30の温度低下は網状蓄熱体34によって抑制
される。この活性炭30には、網状エレメント33の構
成要素である活性炭および網状エレメント33回りの活
性炭が含まれる。Also with the above structure, the reticulated heat storage body 34 suppresses the temperature rise of the activated carbon 30 at the time of adsorbing the evaporated fuel and the temperature decrease of the activated carbon 30 at the time of desorbing the evaporated fuel. The activated carbon 30 includes activated carbon that is a constituent element of the mesh element 33 and activated carbon around the mesh element 33.
【0032】図7はキャニスタ1の第4例を示し、この
キャニスタ1においては、複数の網状蓄熱体32が、処
理室12内に充填された活性炭30内に埋設されてい
る。各網状蓄熱体32は、その両面が処理室12内にお
ける蒸発燃料の流れ方向a,bと交差するように配設さ
れ、また相隣る両網状蓄熱体32間には所定の間隔cが
存する。図7における他の構成部分であって図1のそれ
と同一のものには図1と同一符号を付して説明は省略す
る。FIG. 7 shows a fourth example of the canister 1. In this canister 1, a plurality of reticulated heat storage bodies 32 are embedded in the activated carbon 30 filled in the processing chamber 12. Each of the reticulated heat storage bodies 32 is arranged so that both surfaces thereof intersect the flow directions a and b of the evaporated fuel in the processing chamber 12, and a predetermined space c exists between the two reticulated heat storage bodies 32 adjacent to each other. . The other components in FIG. 7 which are the same as those in FIG. 1 are assigned the same reference numerals as those in FIG. 1 and their description is omitted.
【0033】前記構成によっても蒸発燃料吸着時におけ
る活性炭30の温度上昇および蒸発燃料脱離時における
活性炭30の温度低下は網状蓄熱体34によって抑制さ
れる。With the above structure, the reticulated heat storage 34 suppresses the temperature rise of the activated carbon 30 at the time of adsorbing the evaporated fuel and the temperature decrease of the activated carbon 30 at the time of desorbing the evaporated fuel.
【0034】図8はキャニスタ1の第5例を示す。この
キャニスタ1はケーシング4を備え、そのケーシング4
は筒状主体5と、その両端を閉鎖する一対の端壁6,7
とを有する。ケーシング4内は、一方の端壁6から他方
の端壁7に向って延びる隔壁板36により容積の大きな
第1領域37と容積の小さな第2領域38とに区画され
ているが、両領域37,38は隔壁板36の先端縁と他
方の端壁7内面間の開口39を介して連通している。FIG. 8 shows a fifth example of the canister 1. This canister 1 includes a casing 4, and the casing 4
Is a tubular main body 5 and a pair of end walls 6 and 7 for closing both ends thereof.
Have and. The interior of the casing 4 is divided into a large volume first region 37 and a small volume second region 38 by a partition plate 36 extending from one end wall 6 to the other end wall 7, but both regions 37 are formed. , 38 communicate with each other through an opening 39 between the tip edge of the partition plate 36 and the inner surface of the other end wall 7.
【0035】各領域37,38において、一方の端壁6
に近接させてそれぞれ多孔板81 ,82 が配設される。
また両領域37,38に亘るように、他方の端壁7に近
接させて多孔板9が配設され、その多孔板9は隔壁板3
6の先端縁と密接する。In each region 37, 38, one end wall 6
Perforated plates 8 1 and 8 2 are arranged in close proximity to each other.
Further, a perforated plate 9 is disposed in proximity to the other end wall 7 so as to extend over both regions 37, 38, and the perforated plate 9 is the partition plate 3
Close to the leading edge of No. 6.
【0036】これにより、第1領域37において、一方
の端壁6および多孔板81 間に蒸発燃料室10が、また
両多孔板81 ,9間に主処理室121 がそれぞれ区画さ
れる。一方、第2領域38において、一方の端壁6およ
び多孔板82 間に大気室11が、また両多孔板82 ,9
間に副処理室122 がそれぞれ区画される。さらに他方
の端壁7および多孔板9間に連通室40が区画され、そ
の連通室40を介して主、副処理室121 ,122 が連
通する。As a result, in the first region 37, the evaporative fuel chamber 10 is defined between the one end wall 6 and the porous plate 8 1 , and the main processing chamber 12 1 is defined between the porous plates 8 1 and 9. . On the other hand, in the second region 38, the atmosphere chamber 11 is provided between the one end wall 6 and the perforated plate 8 2 and both the perforated plates 8 2 and 9 are provided.
Sub-processing chambers 12 2 are defined between them. Further, a communication chamber 40 is defined between the other end wall 7 and the porous plate 9, and the main and sub processing chambers 12 1 and 12 2 communicate with each other through the communication chamber 40.
【0037】一方の端壁6に、前記同様に蒸発燃料室1
0に開口する第1,第2流入口13,14と流出口21
とが設けられ、それら13,14,21は前記同様に燃
料タンク2および吸気管3に接続される。大気室11
は、一方の端壁6に形成された通孔25を介して大気に
開放される。The evaporative fuel chamber 1 is formed on one end wall 6 in the same manner as described above.
The first and second inlets 13 and 14 and the outlet 21 that open at 0
Are provided, and these 13, 14, and 21 are connected to the fuel tank 2 and the intake pipe 3 in the same manner as described above. Atmosphere chamber 11
Is opened to the atmosphere through a through hole 25 formed in one end wall 6.
【0038】主、副処理室121 ,122 内には前記同
様の複数の網状エレメント33が前記同様に積層状態で
充填される。271 ,272 ,281 ,282 はフィル
タである。The main and sub processing chambers 12 1 and 12 2 are filled with a plurality of mesh elements 33 similar to the above in a laminated state as described above. 27 1 , 27 2 , 28 1 and 28 2 are filters.
【0039】このキャニスタ1によれば、主処理室12
1 における蒸発燃料吸着量が飽和した場合、さらに副処
理室122 によって蒸発燃料の吸着を行うことができ
る。According to this canister 1, the main processing chamber 12
When the adsorbed amount of evaporated fuel in 1 is saturated, the adsorbed fuel can be further adsorbed by the sub-processing chamber 12 2 .
【0040】[0040]
【発明の効果】本発明によれば、前記のように構成する
ことによって、活性炭に対し蓄熱体を均一に配置された
キャニスタを提供することができ、これにより個々のキ
ャニスタにおける吸着−脱離特性のばらつきを回避し
て、その量産性を向上させることができる。その上、蓄
熱体を均一配置されたキャニスタは優れた吸着−脱離特
性を有する。EFFECTS OF THE INVENTION According to the present invention, by having the above-mentioned constitution, it is possible to provide a canister in which a heat storage material is uniformly arranged with respect to activated carbon, whereby the adsorption-desorption characteristic in each canister is provided. It is possible to improve the mass productivity by avoiding the variation of Moreover, the canister having the heat storage bodies uniformly arranged has excellent adsorption-desorption characteristics.
【0041】また本発明によれば、前記キャニスタの生
産性を良好にし得る蒸発燃料処理用エレメントを提供す
ることができる。Further, according to the present invention, it is possible to provide an evaporated fuel processing element which can improve the productivity of the canister.
【図1】燃料タンクと吸気管との間に配設されたキャニ
スタの第1例を示す縦断正面図である。FIG. 1 is a vertical sectional front view showing a first example of a canister arranged between a fuel tank and an intake pipe.
【図2】蒸発燃料処理用棒状エレメントの要部破断斜視
図である。FIG. 2 is a fragmentary perspective view showing a rod-shaped element for processing evaporated fuel.
【図3】蒸発燃料処理用粒状エレメントの斜視図であ
る。FIG. 3 is a perspective view of a granular element for processing evaporated fuel.
【図4】キャニスタの第2例を示す縦断正面図である。FIG. 4 is a vertical sectional front view showing a second example of a canister.
【図5】蒸発燃料処理用網状エレメントの要部破断部分
拡大平面図である。FIG. 5 is an enlarged plan view of a broken portion of a main part of a mesh element for processing evaporated fuel.
【図6】キャニスタの第3例を示す縦断正面図である。FIG. 6 is a vertical sectional front view showing a third example of a canister.
【図7】キャニスタの第4例を示す縦断正面図である。FIG. 7 is a vertical sectional front view showing a fourth example of a canister.
【図8】キャニスタの第5例を示す縦断正面図である。FIG. 8 is a vertical sectional front view showing a fifth example of a canister.
1 キャニスタ 4 ケーシング 26 棒状エレメント 29 棒状蓄熱体 30 活性炭 31 粒状エレメント 32 粒状蓄熱体 33 網状エレメント 34 網状蓄熱体 35 網目 1 Canister 4 Casing 26 Rod-shaped element 29 Rod-shaped heat storage body 30 Activated carbon 31 Granular element 32 Granular heat storage body 33 Reticulated element 34 Reticulated thermal storage body 35 Mesh
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山▲崎▼ 和美 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 川上 智之 栃木県芳賀郡芳賀町芳賀台143番地 株式 会社ピーエスジー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yama ▲ saki ▼ Kazumi 1-4-1, Chuo, Wako-shi, Saitama, Honda R & D Co., Ltd. (72) Inventor Tomoyuki Kawakami Hagadai, Haga-cho, Haga-gun, Tochigi Prefecture No. 143 Within PGS Co., Ltd.
Claims (10)
れた蒸発燃料を脱離する脱離能を有する活性炭(30)
を備えたキャニスタにおいて、前記活性炭(30)より
も比熱の大きな蓄熱体(29,32,34)と、その蓄
熱体(29,32,34)の表面を覆う前記活性炭(3
0)とより蒸発燃料処理用エレメント(26,31,3
3)を構成し、複数の前記エレメント(26,31,3
3)をケーシング(4)内に充填したことを特徴とする
キャニスタ。1. An activated carbon (30) having an adsorption capacity for adsorbing vaporized fuel and a desorption capacity for desorbing the adsorbed vaporized fuel.
In a canister provided with a heat storage body (29, 32, 34) having a larger specific heat than the activated carbon (30), and the activated carbon (3) covering the surface of the heat storage body (29, 32, 34).
0) and the evaporative fuel treatment element (26, 31, 3)
3), and a plurality of the elements (26, 31, 3)
A canister, characterized in that the casing (4) is filled with 3).
れらエレメント(26)は、それらの軸線が前記ケーシ
ング(4)内における蒸発燃料の流れ方向(a,b)と
平行するように前記ケーシング(4)内に配設される、
請求項1記載のキャニスタ。2. Each element (26) is rod-shaped, said elements (26) being arranged such that their axes are parallel to the flow direction (a, b) of the fuel vapor within said casing (4). Arranged in (4),
The canister according to claim 1.
し、それらエレメント(33)は、それらの両面が前記
ケーシング(4)内における蒸発燃料の流れ方向(a,
b)と交差するように前記ケーシング(4)内に積層状
態で配設される、請求項1記載のキャニスタ。3. Each element (33) has a flat mesh shape, and both sides of each element (33) of the element (33) flow direction (a, a) of the evaporated fuel in the casing (4).
The canister according to claim 1, wherein the canister is arranged in a stacked state in the casing (4) so as to intersect with b).
それらエレメント(31)は前記ケーシング(4)内に
アトランダムに配設される、請求項1記載のキャニス
タ。4. The element (31) has a granular shape,
Canister according to claim 1, characterized in that the elements (31) are arranged at random in the casing (4).
れた蒸発燃料を脱離する脱離能を有する活性炭(30)
をケーシング(4)内に充填したキャニスタにおいて、
前記活性炭(30)よりも比熱が大きく、且つ平坦な網
状をなす蓄熱体(34)と、その蓄熱体(34)の表面
を、網目(35)が残るように覆う前記同様の活性炭
(30)とより複数の蒸発燃料処理用エレメント(3
3)を構成し、それらエレメント(33)は、それらの
両面を前記ケーシング(4)内における蒸発燃料の流れ
方向(a,b)と交差させると共に相隣る両エレメント
(33)間に間隔(c)を存して前記活性炭(30)内
に埋設されていることを特徴とするキャニスタ。5. An activated carbon (30) having an adsorption ability to adsorb evaporated fuel and a desorption ability to desorb adsorbed evaporated fuel.
In a canister in which the casing (4) is filled with
A flat reticulated heat storage body (34) having a larger specific heat than that of the activated carbon (30) and the same activated carbon (30) covering the surface of the heat storage body (34) so that the mesh (35) remains. And more than one element for processing evaporated fuel (3
3), and these elements (33) have their both surfaces intersecting with the flow directions (a, b) of the evaporated fuel in the casing (4) and have a space () between the two adjacent elements (33). A canister, characterized in that it is embedded in the activated carbon (30) in the presence of c).
れた蒸発燃料を脱離する脱離能を有する活性炭(30)
をケーシング(4)内に充填したキャニスタにおいて、
前記活性炭(30)よりも比熱が大きく、且つ平坦な網
状をなす複数の蓄熱体(34)が、それらの両面を前記
ケーシング(4)内における蒸発燃料の流れ方向(a,
b)と交差させると共に相隣る両蓄熱体(34)間に間
隔(c)を存して前記活性炭(30)内に埋設されてい
ることを特徴とするキャニスタ。6. An activated carbon (30) having an adsorption ability to adsorb evaporated fuel and a desorption ability to desorb adsorbed evaporated fuel.
In a canister in which the casing (4) is filled with
A plurality of heat storage bodies (34), which have a specific heat larger than that of the activated carbon (30) and have a flat mesh shape, have their both sides on the flow direction (a, a) of the evaporated fuel in the casing (4).
A canister, characterized in that it is embedded in the activated carbon (30) with a space (c) between both heat storage bodies (34) adjacent to each other while intersecting with b).
れた蒸発燃料を脱離する脱離能を有し、且つキャニスタ
(1)の構成部品である蒸発燃料処理用エレメントであ
って、活性炭(30)よりも比熱の大きな蓄熱体(2
9,32,34)と、その蓄熱体(29,32,34)
の表面を覆う前記活性炭(30)とより構成されること
を特徴とする蒸発燃料処理用エレメント。7. An evaporative fuel treatment element, which has an adsorbing ability to adsorb evaporated fuel and a desorbing ability to desorb adsorbed evaporated fuel, and is a constituent part of a canister (1), comprising activated carbon ( 30) which has a larger specific heat than the heat storage body (2
9, 32, 34) and its heat storage body (29, 32, 34)
An evaporative fuel treatment element comprising the activated carbon (30) covering the surface of the fuel vapor.
項7記載の蒸発燃料処理用エレメント。8. The evaporative fuel treatment element according to claim 7, wherein the heat storage body (29) has a rod shape.
し、前記活性炭(30)は前記蓄熱体(34)の表面を
網目(35)が残るように覆っている、請求項7記載の
蒸発燃料処理用エレメント。9. The heat storage body (34) has a flat mesh shape, and the activated carbon (30) covers the surface of the heat storage body (34) so that a mesh (35) remains. Evaporative fuel processing element.
求項7記載の蒸発燃料処理用エレメント。10. The evaporative fuel treatment element according to claim 7, wherein the heat storage body (32) has a granular shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6092427A JPH07293365A (en) | 1994-04-28 | 1994-04-28 | Canister and vapor fuel processing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6092427A JPH07293365A (en) | 1994-04-28 | 1994-04-28 | Canister and vapor fuel processing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07293365A true JPH07293365A (en) | 1995-11-07 |
Family
ID=14054144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6092427A Pending JPH07293365A (en) | 1994-04-28 | 1994-04-28 | Canister and vapor fuel processing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07293365A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1113163A3 (en) * | 1999-12-28 | 2002-01-09 | Tennex Corporation | Fuel vapor treatment canister |
US20120260893A1 (en) * | 2011-04-15 | 2012-10-18 | Aisan Kogyo Kabushiki Kaisha | Fuel vapor processing devices |
US8915234B2 (en) | 2010-10-25 | 2014-12-23 | Briggs & Stratton Corporation | Fuel cap |
-
1994
- 1994-04-28 JP JP6092427A patent/JPH07293365A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1113163A3 (en) * | 1999-12-28 | 2002-01-09 | Tennex Corporation | Fuel vapor treatment canister |
US6503301B2 (en) | 1999-12-28 | 2003-01-07 | Tennex Corporation | Fuel vapor treatment canister |
US8915234B2 (en) | 2010-10-25 | 2014-12-23 | Briggs & Stratton Corporation | Fuel cap |
US20120260893A1 (en) * | 2011-04-15 | 2012-10-18 | Aisan Kogyo Kabushiki Kaisha | Fuel vapor processing devices |
US9074561B2 (en) * | 2011-04-15 | 2015-07-07 | Aisan Kogyo Kabushiki Kaisha | Fuel vapor processing devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1113163B1 (en) | Fuel vapor treatment canister | |
US6695896B2 (en) | Evaporated fuel treatment apparatus | |
US8992673B2 (en) | Evaporated fuel treatment apparatus | |
JP3788152B2 (en) | Internal combustion engine canister | |
JPS629744B2 (en) | ||
JP5976381B2 (en) | Evaporative fuel processing equipment | |
US20130037006A1 (en) | Evaporated fuel treating apparatus | |
JP5450213B2 (en) | Canister | |
US10221812B2 (en) | Canister | |
US20130263740A1 (en) | Trap canisters | |
EP3530930B1 (en) | Canister | |
JP6762689B2 (en) | Evaporative fuel processing equipment | |
JP3337398B2 (en) | Adsorbent for evaporative fuel processing apparatus and method for producing the same | |
JPWO2019208600A1 (en) | Manufacturing method of adsorbent, canister and adsorbent | |
JP6628992B2 (en) | Evaporative fuel processing device | |
JP2013011250A (en) | Fuel vapor processing apparatus | |
JP2020007935A (en) | Evaporated fuel treatment device | |
JPH07293365A (en) | Canister and vapor fuel processing element | |
JP5301482B2 (en) | Canister | |
JPH01131015A (en) | Monolith activated carbon | |
JP7181254B2 (en) | Evaporative fuel processing device | |
JPH09112356A (en) | Canister for vaporizing fueltreatment | |
JP5179965B2 (en) | Canister | |
JP2019124171A (en) | Evaporated fuel treatment device | |
KR200169985Y1 (en) | Canister structure for vehicles |