JPH07292049A - Cured phenol resin product - Google Patents

Cured phenol resin product

Info

Publication number
JPH07292049A
JPH07292049A JP14554493A JP14554493A JPH07292049A JP H07292049 A JPH07292049 A JP H07292049A JP 14554493 A JP14554493 A JP 14554493A JP 14554493 A JP14554493 A JP 14554493A JP H07292049 A JPH07292049 A JP H07292049A
Authority
JP
Japan
Prior art keywords
phenol resin
cured product
glass transition
cross
transition point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14554493A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hirai
良明 平井
Satoru Nagura
哲 名倉
Yoshiaki Kubota
義昭 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP14554493A priority Critical patent/JPH07292049A/en
Publication of JPH07292049A publication Critical patent/JPH07292049A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cured phenol resin product excellent in impact resistance by subjecting phenol and formaldehyde to condensation so as to give a condensate with specified cross-link density and glass transition temperature. CONSTITUTION:The objective cured phenol resin product is a condensate of phenol and formaldehyde, has a logarithm (log rho) of cross-link density rho (mol/ cm<3>) of $1.8 to 1.2 and a glass transition temperature Tg of 170 deg.C or higher, and is produced e.g. by cross-linking a high-molecular prepolymer formed by the condensation of phenol and formaldehyde and thermally treating the cross- linked prepolymer to a suitable degree for obtaining a cross-link density and a glass transition point each in a specified range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐衝撃性に優れたフェノ
ール樹脂硬化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cured product of a phenol resin having excellent impact resistance.

【0002】[0002]

【従来の技術】フェノール樹脂は良好な耐熱性、難燃
性、電気的特性を持ち、経済性にも優れているため工業
材料として広く用いられている。しかし近年、フェノー
ル樹脂への要求性能は高度化し、特に耐衝撃性の向上が
望まれてきている。
2. Description of the Related Art Phenolic resins are widely used as industrial materials because they have good heat resistance, flame retardancy, electrical characteristics, and are economical. However, in recent years, the performance requirements for phenolic resins have become more sophisticated, and it has been particularly desired to improve impact resistance.

【0003】フェノール樹脂硬化物の脆性は緻密な3次
元架橋構造による分子の剛直さに起因するものである。
したがって、耐衝撃性の向上には硬化物の架橋密度をあ
まり上げないことが有効と考えられている。
The brittleness of the cured product of the phenol resin is due to the rigidity of the molecule due to the dense three-dimensional crosslinked structure.
Therefore, it is considered effective to improve the impact resistance by not raising the crosslink density of the cured product so much.

【0004】一般に、フェノール樹脂硬化物は、低分子
化合物であるレゾールやノボラックを重合し、高分子化
と同時に架橋させる方法によって製造されている。かか
る製造方法において、その架橋密度をあまり上げること
なく硬化物を得る方法としては、レゾールでは低温で硬
化させる方法、あるいは硬化時間を短かくする方法が考
えられ、ノボラックでは硬化剤の添加量を減らす方法な
どが考えられる。
In general, a cured product of a phenol resin is produced by a method of polymerizing a low molecular compound such as resole or novolac and crosslinking the polymer at the same time. In such a production method, as a method for obtaining a cured product without increasing the crosslinking density so much, a method of curing at low temperature with resole or a method of shortening the curing time is considered, and with novolac, the addition amount of the curing agent is reduced. Methods etc. are considered.

【0005】しかしながら、このような方法で得られた
低架橋密度のフェノール樹脂硬化物は、架橋密度の大き
い硬化物に比べ耐衝撃性が僅かに優れてはいるものの、
耐衝撃性の絶対値は依然として期待するほど大きいもの
(例えば14 kgf・cm/cm2以上)ではない。更に、得ら
れたフェノール樹脂硬化物は、耐熱性に乏しく、曲げ強
さも小さいものである。これは、レゾール,ノボラック
などの低分子化合物を反応原料とする架橋反応では、硬
化物全体が微視的には均一に架橋されるのではなく、架
橋の密なミクロゲルと架橋の粗な部分とが形成されるた
めと考えられている。すなわち、上述のような方法で低
架橋密度硬化物を得た場合には、特に硬化物中の架橋の
粗な部分が増大することになり、このため耐衝撃性はさ
ほど大きくならず、耐熱性や曲げ強さも低くなると考え
られているのである。
However, although the cured product of a low crosslink density phenol resin obtained by such a method is slightly superior in impact resistance to the cured product having a high crosslink density,
The absolute value of impact resistance is still not as high as expected (eg 14 kgf · cm / cm 2 or more). Furthermore, the obtained phenol resin cured product has poor heat resistance and low bending strength. This is because in the cross-linking reaction using low molecular compounds such as resole and novolac as reaction raw materials, the entire cured product is not microscopically and uniformly cross-linked, but rather a dense cross-linked microgel and a coarse cross-linked part. Is believed to be formed. That is, when a low cross-linking density cured product is obtained by the method as described above, the coarse portion of the cross-linking in the cured product is particularly increased, so the impact resistance does not increase so much and the heat resistance It is also believed that the bending strength will decrease.

【0006】上述の方法で得られた低架橋密度硬化物に
熱処理を施すと、架橋密度が増大し、耐熱性や曲げ強さ
の向上と共に耐衝撃性が僅かに向上する傾向が見られる
こともあるが、熱処理がある程度を越えると、分子の剛
直性が増すため、耐衝撃性は低下することになる。
When the low cross-linking density cured product obtained by the above-mentioned method is subjected to heat treatment, the cross-linking density is increased, and there is a tendency that impact resistance is slightly improved together with improvement in heat resistance and bending strength. However, if the heat treatment exceeds a certain level, the rigidity of the molecule increases, and the impact resistance decreases.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、上述の
事情に鑑み鋭意研究した結果、特定の架橋密度と、特定
のガラス転移点とを併せ持つフェノール樹脂硬化物が耐
衝撃性に優れていることを見出し本発明を完成したもの
であって、本発明の目的とするところは耐衝撃性に優れ
たフェノール樹脂硬化物を提供するにある。
DISCLOSURE OF THE INVENTION As a result of intensive studies conducted by the present inventors in view of the above-mentioned circumstances, a phenol resin cured product having a specific crosslink density and a specific glass transition point has excellent impact resistance. It was found that the present invention has been completed, and an object of the present invention is to provide a cured phenol resin product having excellent impact resistance.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、フ
ェノールとホルムアルデヒドとの縮合物であって、架橋
密度ρ(mol/cm3 )の対数(logρ)が−1.
8〜−1.2で、且つガラス転移点Tgが170℃以上
であることを特徴とするフェノール樹脂硬化物によって
達成される。
The above object of the present invention is a condensate of phenol and formaldehyde, the crosslink density ρ (mol / cm 3 ) of which has a logarithm (log ρ) of -1.
It is achieved by a phenol resin cured product, which has a glass transition point Tg of 170 ° C. or higher and a glass transition point Tg of 8 to −1.2.

【0009】本発明におけるガラス転移点Tgとは、例
えば動的粘弾性測定装置DMS110(セイコー電子工
業(株)製)を用い、曲げモード、周波数1Hz、昇温
速度2℃/分で測定したフェノール樹脂硬化物の動的粘
弾性の温度分散における損失エネルギー(tanδ)が
最大となる温度として求められる値である。
The glass transition point Tg in the present invention is, for example, a phenol measured by using a dynamic viscoelasticity measuring device DMS110 (manufactured by Seiko Denshi Kogyo Co., Ltd.) at a bending mode, a frequency of 1 Hz and a heating rate of 2 ° C./min. It is a value obtained as the temperature at which the loss energy (tan δ) in the temperature dispersion of the dynamic viscoelasticity of the resin cured product becomes maximum.

【0010】また、本発明における架橋密度ρ、または
その対数(logρ)は下記の方法によって得られるも
のであり、ガラス転移点Tgが200℃以上か200℃
未満かによって求め方が若干異なるものである。
The crosslink density ρ or its logarithm (logρ) in the present invention is obtained by the following method, and the glass transition point Tg is 200 ° C. or higher or 200 ° C.
The method of obtaining is slightly different depending on whether it is less than.

【0011】(1)ガラス転移点Tgが200℃未満の
硬化物の場合:上記の動的粘弾性測定によって得られる
貯蔵弾性率(E´)の温度分散曲線において下記式 ρ=E´/3φRT 〔式中、E´はガラス転移点より30℃高い温度におけ
る貯蔵弾性率(Pa)、φはフロント係数(=1)、R
は気体定数で、8.31(J/K・mol)、Tはガラ
ス転移点より30℃高い温度を絶対温度(K)で表した
値、である。〕によって求める。
(1) In the case of a cured product having a glass transition point Tg of less than 200 ° C .: In the temperature dispersion curve of the storage elastic modulus (E ′) obtained by the above dynamic viscoelasticity measurement, the following formula ρ = E ′ / 3φRT [Wherein E ′ is a storage elastic modulus (Pa) at a temperature 30 ° C. higher than the glass transition point, φ is a front coefficient (= 1), R is
Is a gas constant, 8.31 (J / K · mol), and T is a value in which a temperature 30 ° C. higher than the glass transition point is represented by an absolute temperature (K). ] To obtain.

【0012】(2)ガラス転移点Tgが200℃以上の
硬化物の場合:同種のフェノール樹脂から硬化条件を変
えて得られた橋かけ密度の異なる硬化物から、Tgが2
00℃未満のものを10個以上選び、各々の硬化物のT
gを架橋密度の対数(logρ)に対してプロット(例
えば図1のように)する。最小2乗法を用いて求めた両
者の関係式Tg=K1 logρ+K2 に硬化物のTgを
代入してlogρを求める。
(2) In the case of a cured product having a glass transition point Tg of 200 ° C. or higher: Tg of 2 is obtained from cured products having different crosslinking densities obtained by changing curing conditions from the same kind of phenol resin.
Select 10 or more of those below 00 ° C, and select T for each cured product.
Plot g against the logarithm of crosslink density (log ρ) (eg, as in FIG. 1). The log ρ is calculated by substituting the Tg of the cured product into the relational expression Tg = K 1 log ρ + K 2 obtained by using the least squares method.

【0013】上記(1)の架橋密度算出法は、公知文献
(加門隆,他:高分子化学,30,279(197
3))に記載されている方法である。また、上記(2)
に示された、同族の橋架け高分子においてガラス転移点
Tgと架橋密度ρの対数とが直線関係にあるという理論
は、柴山恭一氏により文献(高分子化学,18,183
(1961))で明らかにされたことである。
The method for calculating the crosslink density in the above (1) is described in a known document (Takashi Kamon, et al .: Polymer Chemistry, 30 , 279 (197).
3)). In addition, (2) above
The theory that the glass transition point Tg and the logarithm of the crosslinking density ρ in the homologous bridged polymer shown in Fig. 3 have a linear relationship is described by Kyoichi Shibayama in the literature (Polymer Chemistry, 18 , 183).
(1961)).

【0014】本発明のフェノール樹脂硬化物は、架橋密
度ρ(mol/cm3 )の対数(logρ)が−1.8
〜−1.2の範囲内にあり、かつガラス転移点が170
℃以上のものである。logρが−1.8より小さいも
のは充分に高分子量化されていないために耐衝撃性が小
さく、logρが−1.2より大きいものは架橋が緻密
になり、分子の剛性が高くなるために耐衝撃性が小さく
なる。
The cured product of the phenol resin of the present invention has a logarithm (log ρ) of the crosslinking density ρ (mol / cm 3 ) of -1.8.
Within the range of -1.2, and the glass transition point is 170.
℃ or above. When the log ρ is smaller than -1.8, the molecular weight is not sufficiently high, so that the impact resistance is low, and when the log ρ is larger than -1.2, the crosslink is dense and the molecular rigidity is high. Impact resistance is reduced.

【0015】また、架橋密度ρ(mol/cm3 )の対
数(logρ)が−1.8〜−1.2の範囲内であって
も、ガラス転移点が170℃未満の硬化物は耐衝撃性が
小さい。これは架橋密度の均一性が低く、架橋点の粗な
部分が欠陥となって、耐熱性と耐衝撃性とを小さくする
ためと考えられる。
Further, even if the logarithm (logρ) of the crosslink density ρ (mol / cm 3 ) is within the range of -1.8 to -1.2, the cured product having a glass transition point of less than 170 ° C. has impact resistance The nature is small. It is considered that this is because the uniformity of the crosslink density is low, and the rough portion of the crosslink points becomes a defect to reduce the heat resistance and the impact resistance.

【0016】本発明のフェノール樹脂硬化物を製造する
には、原料フェノール樹脂としてフェノール類とアルデ
ヒドとの縮合物である高分子プレポリマーを用いるのが
好適である。本発明のフェノール樹脂硬化物は、この高
分子プレポリマーを架橋反応させて得られる反応生成物
を、更に適度な熱処理を施すことで得られる。
In order to produce the cured product of the phenol resin of the present invention, it is preferable to use a polymer prepolymer which is a condensation product of phenols and aldehyde as the raw material phenol resin. The cured product of the phenol resin of the present invention can be obtained by subjecting the reaction product obtained by cross-linking the polymer prepolymer to an appropriate heat treatment.

【0017】上記原料フェノール樹脂としては、例えば
特公昭62−30211号公報に記載の方法によって得
られる粉末状フェノール樹脂を挙げることができるが、
特にこれに限定されるものではない。尚、上記公報に開
示された粉末状フェノール樹脂の製造方法とは、およそ
次のようなものである。
Examples of the above-mentioned raw material phenol resin include powdery phenol resin obtained by the method described in Japanese Patent Publication No. 62-30211.
It is not particularly limited to this. The method for producing a powdery phenolic resin disclosed in the above publication is as follows.

【0018】すなわち、(1) 下記組成、 塩酸濃度が5〜28重量%、ホルムアルデヒド濃度が3
〜25重量%で、かつ塩酸とホルムアルデヒドの合計濃
度が15〜40重量%である塩酸−ホルムアルデヒド浴
に、(2) 下記式 浴比=(塩酸−ホルムアルデヒド浴の重量)/フェノー
ル類の重量 で表される浴比が少なくとも8以上になるように維持し
て、(3)塩酸−ホルムアルデヒド浴にフェノール類を
接触させ、かつこの接触を、フェノール類が該浴と接触
した後白濁を生成し、しかる後少なくともピンク色の粒
状ないし粉末状の固形物が形成されるように行ない、か
つこの接触の間反応系内の温度を45℃以下に維持す
る、ことを特徴とするものである。
That is, (1) the following composition, hydrochloric acid concentration 5 to 28% by weight, formaldehyde concentration 3
In a hydrochloric acid-formaldehyde bath having a total concentration of hydrochloric acid and formaldehyde of 15 to 40% by weight, (2) the following bath ratio = (weight of hydrochloric acid-formaldehyde bath) / weight of phenols (3) contacting the phenols with a hydrochloric acid-formaldehyde bath while maintaining the bath ratio to be at least 8 or more, and making this contact produce cloudiness after the phenols contact with the bath, After that, at least pink granular or powdery solid matter is formed, and the temperature in the reaction system is maintained at 45 ° C. or lower during this contact.

【0019】上記方法で得られる粉末状フェノール樹脂
の性状は、(1)GPCによるポリスチレン換算重量平
均分子量が3000以上、(2)ベンゼン環1個当たり
のメチレン結合の数が0.9〜1.2個、(3)ベンゼ
ン環1個当たりのヒドロキシメチル基の数が0.05〜
0.20個、である。このようなものとしては具体的に
は、商品名ベルパールS(鐘紡製)として市販されてい
るものを挙げることができる。この粉末状フェノール樹
脂は高分子化合物であり、架橋性の官能基であるヒドロ
キシメチル基を有するため熱硬化性である。
The properties of the powdery phenolic resin obtained by the above method are as follows: (1) the polystyrene reduced weight average molecular weight by GPC is 3000 or more, and (2) the number of methylene bonds per benzene ring is 0.9-1. 2, the number of hydroxymethyl groups per (3) benzene ring is 0.05 to
0.20. As such a thing, what is marketed as brand name Bell Pearl S (made by Kanebo) can be specifically mentioned. This powdery phenolic resin is a polymer compound and has a hydroxymethyl group, which is a crosslinkable functional group, so that it is thermosetting.

【0020】上記方法で得られた粉末状フェノール樹脂
を架橋反応させて得られる硬化物は、レゾールやノボラ
ックから形成される通常のフェノール樹脂硬化物に比べ
て、架橋密度の低いものである。
The cured product obtained by the crosslinking reaction of the powdery phenolic resin obtained by the above method has a lower crosslinking density than the ordinary phenolic resin cured product formed from resole or novolac.

【0021】上記フェノール樹脂硬化物の架橋密度は、
粉末状フェノール樹脂のヒドロキシメチル基の数、硬化
の際の温度や時間、あるいは熱処理時の温度や時間を制
御することによって容易に変化させることができる。特
に熱処理条件は、架橋密度とガラス転移点との両方を制
御する上で影響が大きいので、フェノール樹脂硬化物を
製造するに際しては、得られる硬化物の架橋密度とガラ
ス転移点とが上記本発明の範囲内となるように、十分注
意を払う必要がある。
The crosslink density of the above cured phenol resin is
It can be easily changed by controlling the number of hydroxymethyl groups of the powdery phenolic resin, the temperature and time during curing, or the temperature and time during heat treatment. In particular, the heat treatment conditions have a large influence on controlling both the crosslink density and the glass transition point, so that when the phenol resin cured product is produced, the crosslinking density and the glass transition point of the obtained cured product are the above-mentioned present invention. It is necessary to pay sufficient attention so that it is within the range of.

【0022】本発明のフェノール樹脂硬化物を得るため
に、上述の方法ではフェノール樹脂の高分子量プレポリ
マーを反応原料に用いたが、反応原料としてレゾールや
ノボッラックを用いた場合、硬化物全体を均一に架橋す
るのは極めて困難であり、例えば熱処理によりガラス転
移点を170℃以上とした場合、logρは通常−1.
1以上となる。しかしながら、レゾールやノボッラック
を用いたとしても、硬化物全体が極めて均一に架橋反応
し、架橋密度とガラス転移点とが本発明の構成要件の範
囲内であれば、本発明と同様の効果を得ることができる
はずである。
In order to obtain the cured product of the phenol resin of the present invention, the high molecular weight prepolymer of the phenol resin was used as the reaction raw material in the above-mentioned method. However, when resole or novolak was used as the reaction raw material, the entire cured product was uniform. Is extremely difficult to crosslink, and for example, when the glass transition point is 170 ° C. or higher by heat treatment, log ρ is usually −1.
It will be 1 or more. However, even if a resole or novolak is used, if the entire cured product undergoes a cross-linking reaction extremely uniformly and the cross-linking density and the glass transition point are within the constitutional requirements of the present invention, the same effect as the present invention can be obtained. You should be able to.

【0023】本発明のフェノール樹脂硬化物は単独で、
あるいは硝子繊維や炭素繊維などの強化繊維や種々の無
機フィラーと複合させて、耐熱性に優れかつ耐衝撃性に
優れた成形品として用いることができ、またコーティン
グ材やバインダーとしても有用である。
The phenol resin cured product of the present invention alone,
Alternatively, it can be used as a molded product having excellent heat resistance and impact resistance by being combined with a reinforcing fiber such as glass fiber or carbon fiber or various inorganic fillers, and is also useful as a coating material or a binder.

【0024】[0024]

【実施例】以下、実施例によって本発明を詳述する。
尚、その前に本明細書における各種物性値の測定法につ
いて記述する。
The present invention will be described in detail below with reference to examples.
In addition, before that, the measuring method of various physical-property values in this specification is described.

【0025】〈衝撃強さ〉フェノール樹脂硬化物から切
り出した矩形試験片を用い、JIS−K−7111(一
号試験片、切り欠きなし、フラットワイズ)に従って、
シャルピー衝撃試験にて測定した。
<Impact strength> Using a rectangular test piece cut out from a cured product of a phenol resin, according to JIS-K-7111 (No. 1 test piece, notched, flatwise),
It was measured by the Charpy impact test.

【0026】〈重量平均分子量〉GPC(Waters
社製、 ALG/GPC 150C)にて測定し求め
た。溶離液としてTHFを用い、分子量較正曲線は標準
物質ポリスチレンを用いて測定し作成した。
<Weight Average Molecular Weight> GPC (Waters)
It was determined by measuring with ALG / GPC 150C, manufactured by the company. THF was used as an eluent, and a molecular weight calibration curve was prepared by measuring polystyrene as a standard substance.

【0027】〈結合、官能基数〉フェノール樹脂プレポ
リマーをにピリジン/無水酢酸にてアセチル化して得ら
れた試料の 1H−NMRスペクトルから該樹脂のメチレ
ン結合、ヒドロキシメチル基の量を定量した。即ち、 メチレン結合の数=(S2 /2)/(S1 /3−S3
2) ヒドロキシメチル基の数=(S3 /2−S4 /2)/
(S1 /3−S3 /2) 式中、S1 は、δ値が1.80〜2.50ppm のピーク
面積(COC3 に帰属) S2 は、δ値が3.00〜4.10ppm のピーク面積
(PhC2 Phに帰属) S3 は、δ値が4.65〜5.07ppm のピーク面積
(PhC2 OAc、PhC2 OCH2 OAcに帰
属) S4 は、δ値が5.07〜5.40ppm のピーク面積
(PhCH2 OC2 OAcに帰属)
<Bonding and Number of Functional Groups> The amount of methylene bonds and hydroxymethyl groups of the resin was quantified from the 1 H-NMR spectrum of a sample obtained by acetylating a phenol resin prepolymer with pyridine / acetic anhydride. That is, the number of methylene linkages = (S 2/2) / (S 1/3-S 3 /
2) The number of hydroxymethyl groups = (S 3/2-S 4/2) /
In (S 1/3-S 3 /2) Equation, S 1 is the peak area of the [delta] values 1.80~2.50Ppm (attributable to COC H 3) S 2 is [delta] value from 3.00 to 4 .10 ppm peak area (attributed to PhC H 2 Ph) S 3 has a δ value of 4.65-5.07 ppm peak area (attributed to PhC H 2 OAc, PhC H 2 OCH 2 OAc) S 4 is δ peak area values 5.07~5.40Ppm (attributable to PhCH 2 OC H 2 OAc)

【0028】実施例1〜20、比較例1〜7 表1に示す如き種々の粉末状フェノール樹脂プレポリマ
ーを、成形温度170℃、成形圧力200kgf /c
2 、成形時間20分間の条件で圧縮成形した。得られ
た成形物を180℃に調整した熱風乾燥機内で種々の時
間熱処理を行ないフェノール樹脂硬化物を得た。
Examples 1 to 20, Comparative Examples 1 to 7 Various powdery phenol resin prepolymers as shown in Table 1 were molded at a molding temperature of 170 ° C. and a molding pressure of 200 kgf / c.
Compression molding was performed under the conditions of m 2 and molding time of 20 minutes. The obtained molded product was heat-treated for various times in a hot air dryer adjusted to 180 ° C. to obtain a phenol resin cured product.

【0029】[0029]

【表1】[Table 1]

【0030】Tgが200℃以下の硬化物の場合、その
架橋密度は動的粘弾性測定から得られた貯蔵弾性率の温
度分散から、ゴム状態式を用いて求めた。それぞれの硬
化物のTgを架橋密度の対数に対してプロットしたのが
図1である。これらのデータから最小二乗法を用いてT
gと架橋密度との関係を求めると、Tg=143×lo
gρ+428という直線式が得られた。
In the case of a cured product having a Tg of 200 ° C. or lower, its crosslink density was obtained from the temperature dispersion of the storage elastic modulus obtained from the dynamic viscoelasticity measurement, using the rubber state equation. FIG. 1 shows the Tg of each cured product plotted against the logarithm of the crosslinking density. From these data, using the method of least squares, T
When the relationship between g and the crosslink density is obtained, Tg = 143 × lo
A linear expression of gρ + 428 was obtained.

【0031】Tgが200℃以上の硬化物の場合、この
式に各々のTgを代入して架橋密度の対数logρを求
めた。
In the case of a cured product having a Tg of 200 ° C. or higher, each Tg was substituted into this formula to obtain the logarithm log ρ of the crosslinking density.

【0032】各々の硬化物の架橋密度、ガラス転移点、
および衝撃強さは表2に示す通りであった。また、それ
ぞれの衝撃強さを架橋密度の対数に対してプロットした
のが図2である。logρが−1.8〜−1.2の範囲
内で、且つTgが170℃以上のフェノール樹脂硬化物
は耐衝撃性の高いものであった。
Crosslink density, glass transition point,
And the impact strength was as shown in Table 2. Further, FIG. 2 is a graph in which the respective impact strengths are plotted against the logarithm of the crosslinking density. The cured product of the phenol resin having a log ρ within the range of −1.8 to −1.2 and a Tg of 170 ° C. or higher had high impact resistance.

【0033】[0033]

【表2】[Table 2]

【0034】比較例8〜10 原料フェノール樹脂としてノボラック(商品名:レヂト
ップPSK2320、群栄化学工業製、重量平均分子量
1500、メチレン結合0.8個、ヒドロキシメチル基
0個)を用い、これに架橋剤として表3に示す如き量の
ヘキサメチレンテトラミンを添加し、熱ロールにて混練
した後粉砕して成形材料とした。これらを前記実施例と
同様の条件で圧縮成形、熱処理を行ないフェノール樹脂
硬化物を得た。これらの硬化物の特性値は表3に示す通
りであった。
Comparative Examples 8 to 10 As a raw material phenol resin, novolak (trade name: resin top PSK2320, manufactured by Gunei Chemical Industry Co., Ltd., weight average molecular weight 1500, 0.8 methylene bonds, 0 hydroxymethyl groups) was used and crosslinked. Hexamethylenetetramine in the amount shown in Table 3 was added as an agent, and the mixture was kneaded with a hot roll and then pulverized to obtain a molding material. These were compression-molded and heat-treated under the same conditions as in the above-mentioned examples to obtain a phenol resin cured product. The characteristic values of these cured products were as shown in Table 3.

【0035】[0035]

【表3】[Table 3]

【0036】架橋密度ρに関してはいずれの硬化物もl
ogρが−1.8〜−1.2の範囲内にあったが、ガラ
ス転移点Tgが170℃に達しておらず、硬化物の耐衝
撃性は小さいものであった。
Regarding the crosslink density ρ, all cured products have l
Although o g ρ was in the range of −1.8 to −1.2, the glass transition point Tg did not reach 170 ° C., and the impact resistance of the cured product was small.

【0037】[0037]

【発明の効果】本発明のフェノール樹脂硬化物は、特定
の架橋密度及び特定のガラス転移点を有するため、極め
て均一に架橋されており、このため本発明のフェノール
樹脂硬化物は耐熱性に優れると共に、従来にない極めて
優れた耐衝撃性を有するものである。また、本発明のフ
ェノール樹脂硬化物は、炭素繊維などの他の強化繊維や
種々の無機フィラーと複合させて、耐熱性に優れかつ耐
衝撃性に優れた成形品として用いることができ、またコ
ーティング材やバインダーとしても極めて有用である。
EFFECTS OF THE INVENTION The cured phenol resin product of the present invention has a specific crosslink density and a specific glass transition point, and therefore is crosslinked extremely uniformly. Therefore, the cured phenol resin product of the present invention has excellent heat resistance. At the same time, it has extremely excellent impact resistance that has never been seen before. Further, the phenol resin cured product of the present invention can be used as a molded product having excellent heat resistance and excellent impact resistance by combining with other reinforcing fibers such as carbon fiber and various inorganic fillers, and coating. It is also extremely useful as a material and binder.

【図面の簡単な説明】[Brief description of drawings]

【図1】架橋密度(logρ)とガラス転移点Tgとの
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between crosslink density (logρ) and glass transition point Tg.

【図2】架橋密度(logρ)と衝撃強さとの関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between crosslink density (logρ) and impact strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フェノールとホルムアルデヒドとの縮合
物であって、架橋密度ρ(mol/cm3 )の対数(l
ogρ)が−1.8〜−1.2で、且つガラス転移点T
gが170℃以上であることを特徴とするフェノール樹
脂硬化物。
1. A condensate of phenol and formaldehyde, which has a logarithm (l) of a crosslinking density ρ (mol / cm 3 ).
ogρ) is -1.8 to -1.2 and the glass transition point T is
A cured product of a phenol resin, wherein g is 170 ° C. or higher.
JP14554493A 1993-05-24 1993-05-24 Cured phenol resin product Pending JPH07292049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14554493A JPH07292049A (en) 1993-05-24 1993-05-24 Cured phenol resin product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14554493A JPH07292049A (en) 1993-05-24 1993-05-24 Cured phenol resin product

Publications (1)

Publication Number Publication Date
JPH07292049A true JPH07292049A (en) 1995-11-07

Family

ID=15387641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14554493A Pending JPH07292049A (en) 1993-05-24 1993-05-24 Cured phenol resin product

Country Status (1)

Country Link
JP (1) JPH07292049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062188A (en) * 2012-09-21 2014-04-10 Dic Corp Phenylphenol-naphthol resin, curable resin composition, cured product thereof and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062188A (en) * 2012-09-21 2014-04-10 Dic Corp Phenylphenol-naphthol resin, curable resin composition, cured product thereof and printed wiring board

Similar Documents

Publication Publication Date Title
US5736619A (en) Phenolic resin compositions with improved impact resistance
EP0032060B1 (en) Novolak resin composition and products formed therefrom
JP2011202174A (en) Phenolic modified resorcinolic resin for rubber compounding
CN1221430A (en) Polyisocyanate modified isomonoolefin-paraalkylstyrene elastomeric compositions
JPS6322843A (en) Polyphosphazene molding and production thereof
JPH07292049A (en) Cured phenol resin product
JPH07118621A (en) Adhesive and its application to rubber
KR100237253B1 (en) A rubber composition for tread of tire
JP2000273132A (en) Novolak type phenolic resin
CN113372522B (en) Modified phenolic resin and preparation method thereof
JP2001122937A (en) Novolak type phenol resin
JPS62275120A (en) Novolac phenolic resin
US4264557A (en) Phenolic resins with improved low temperature processing stability
CN107987468A (en) A kind of production technology of the compound melamine resin of high dielectric property graphene oxide
Maciejewski et al. Hyperbranched phenol-formaldehyde resins
Hardrict Novel novolac-phthalonitrile and siloxane-phthalonitrile resins cured with low melting novolac oligomers for flame retardant structural thermosets
Rich et al. Effect of cure conditions on Probimide 32 polyamide‐imide
JP3139762B2 (en) Thermosetting resin composition
Chian et al. Synthesis of bismaleimide resin containing the poly (ethylene glycol) side chain: Curing behavior and thermal properties
JPH10139846A (en) Phenolic resin composition
JP3535892B2 (en) Method for producing intermediate material for C / C composite
Lu et al. Effects of NCO/OH molar ratio on miscibility and properties of semiinterpenetrating polymer networks from polyurethane and benzyl konjac glucomannan
JPH11349652A (en) Production of phenolic resin
JPH10102368A (en) Phenolic resin molded felt
JP2000273133A (en) Production of novolak type phenolic resin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060120