JPH07291908A - Production of primary aminoamine-based compound - Google Patents

Production of primary aminoamine-based compound

Info

Publication number
JPH07291908A
JPH07291908A JP6114653A JP11465394A JPH07291908A JP H07291908 A JPH07291908 A JP H07291908A JP 6114653 A JP6114653 A JP 6114653A JP 11465394 A JP11465394 A JP 11465394A JP H07291908 A JPH07291908 A JP H07291908A
Authority
JP
Japan
Prior art keywords
compound
primary
amine value
formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6114653A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
伊藤  博
Shuzo Hayashi
修三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP6114653A priority Critical patent/JPH07291908A/en
Publication of JPH07291908A publication Critical patent/JPH07291908A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method capable of economically producing the objective primary aminoamine-based compound under an industrially advantageous conditions while suppressing formation of by-products such as a secondary amine or a tertiary amine. CONSTITUTION:An N-cyanoethylamide-based compound of the formula I (R<1> is H, a 1-21C alkyl or a 3-18C cyclic alkyl) or the formula II (R<2> is a single bond, a 1-21C alkylene or a 3-14 cyclic alkylene) is catalytically hydrogenated in the presence or absence of a solvent by using one or more hydrogenating catalysts selected from a Raney cobalt-based catalyst and a Raney nickel-based catalyst at 50-150 deg.C, preferably 80-120 deg.C to provide a primary amidoamine-based compound of the formula III or the formula IV. In order to maintaining catalytic activity and improve the yield of the objective compound, the reaction is preferably carried out in the presence of the solvent and an aliphatic ether compound of the formula V (R<3> and R<4> are each a 1-6C alkyl; (n) is 1 to 5) is preferably used as the solvent. Existence of 0.005 to equivalent weight based on the raw material compound of water can improve the reaction rate and shows excellent effects especially in a solventless system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第1級アミドアミン系
化合物の製造方法に関し、より詳しくは、N−シアノエ
チルアミド系化合物を接触水素化して対応する第1級ア
ミドアミン系化合物を製造する方法に関する。反応目的
物である第1級アミドアミン系化合物は、ポリアミド樹
脂、エポキシ樹脂、ポリウレタン樹脂、その他樹脂の合
成原料及び改質剤として、又、界面活性剤、繊維処理
剤、紙処理剤、印刷インキ、塗料、そして化粧品等の原
料として有用な素材である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a primary amidoamine compound, and more particularly to a method for producing a corresponding primary amidoamine compound by catalytic hydrogenation of an N-cyanoethylamide compound. . The primary amidoamine-based compound, which is a reaction target, is used as a synthetic raw material and a modifier for polyamide resins, epoxy resins, polyurethane resins, and other resins, and also for surfactants, fiber treating agents, paper treating agents, printing inks, It is a useful material as a raw material for paints and cosmetics.

【0002】[0002]

【従来の技術】シアノ化合物を接触水素化して相当する
1級アミン化合物を得る方法は知られており、通常、反
応系にアンモニア水又は液体アンモニアを共存させるこ
とにより、脱アンモニアを防止し、2級アミンや3級ア
ミンの副生を抑えている。
2. Description of the Related Art A method for obtaining a corresponding primary amine compound by catalytic hydrogenation of a cyano compound is known. Usually, ammonia water or liquid ammonia is allowed to coexist in a reaction system to prevent deammonification and It suppresses by-products of primary amines and tertiary amines.

【0003】しかしながら、この方法では製造コストが
高く、廃アンモニアガスの後処理が煩雑となる。又、ア
ンモニアを使用することから装置上の制約を受け、しか
も法規制も厳しくなる。更に、その製品の用途によって
は品質に悪影響をもたらす場合もある。
However, in this method, the manufacturing cost is high and the post-treatment of waste ammonia gas is complicated. Further, since ammonia is used, there are restrictions on the apparatus, and the regulations are strict. Further, depending on the use of the product, the quality may be adversely affected.

【0004】一般に、溶媒の存在下にシアノ化合物を接
触水素化して対応するアミンを製造する方法において、
脱アミン反応等の副反応の度合いは、その溶媒の種類に
よって大きく影響される。これまで、良好な溶媒とし
て、アンモニア水(有機合成協会誌、32、33(1974))、
液安−メタノール(J.Am.Chem.Soc.,68,1867(1940))、
メタノール、エチレングリコール(特開昭50-160214
号)等が提案されている。
Generally, in a method for producing a corresponding amine by catalytic hydrogenation of a cyano compound in the presence of a solvent,
The degree of side reaction such as deamine reaction is greatly influenced by the kind of the solvent. So far, as a good solvent, ammonia water (Journal of the Organic Synthesis Society, 32 , 33 (1974)),
Liquid-methanol (J. Am. Chem. Soc., 68, 1867 (1940)),
Methanol, ethylene glycol (JP-A-50-160214
No.) etc. have been proposed.

【0005】しかし、本発明者らの検討によれば、これ
らの溶媒をN−シアノエチルアミド系化合物に適用する
と、著しく2級アミンや3級アミンが副生し、更に原料
のアミド結合がこれら溶媒と反応する結果、目的物の収
率が著しく低下する。
However, according to the studies by the present inventors, when these solvents are applied to N-cyanoethylamide compounds, secondary amines and tertiary amines are remarkably produced as by-products, and the amide bond of the starting material is used in these solvents. As a result of the reaction with, the yield of the desired product is significantly reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は、2級アミン
や3級アミンの副生を抑制し、高収率で目的とする第1
級アミドアミン系化合物を工業的に有利な条件下で経済
的に製造し得る新規有用な方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention suppresses by-products of secondary amines and tertiary amines, and aims at a high yield.
It is an object of the present invention to provide a novel and useful method capable of economically producing a secondary amidoamine compound under industrially advantageous conditions.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、特定の水素化触媒と特
定の反応温度範囲を選択することにより、所定の効果が
得られ、しかも後処理が簡略化されることを見いだし、
かかる知見に基づいて本発明を完成するに至った。以下
の事実を見いだした。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a predetermined effect by selecting a specific hydrogenation catalyst and a specific reaction temperature range. Moreover, I found that the post-processing was simplified,
The present invention has been completed based on these findings. I found the following facts.

【0008】即ち、本発明に係る第1級アミドアミン系
化合物の製造方法は、一般式(1)又は一般式(2)で
表されるN−シアノエチルアミド系化合物を接触水素化
して、対応する一般式(3)又は一般式(4)で表され
る第1級アミドアミン系化合物を製造するに際し、溶媒
の存在下又は不存在下にラネーコバルト系触媒を用い、
50〜150℃で接触水素化することを特徴とする。
That is, the method for producing a primary amidoamine-based compound according to the present invention is a general method in which the N-cyanoethylamide-based compound represented by the general formula (1) or (2) is catalytically hydrogenated to obtain a corresponding general compound. In producing the primary amidoamine compound represented by the formula (3) or the general formula (4), a Raney cobalt catalyst is used in the presence or absence of a solvent,
It is characterized by catalytic hydrogenation at 50 to 150 ° C.

【0009】 R1CONHCH2CH2CN (1) [式中、R1は水素原子、炭素数1〜21のアルキル基
又は炭素数3〜13の環状アルキル基を表す。]
R 1 CONHCH 2 CH 2 CN (1) [In the formula, R 1 represents a hydrogen atom, an alkyl group having 1 to 21 carbon atoms or a cyclic alkyl group having 3 to 13 carbon atoms. ]

【0010】 R2(CONHCH2CH2CN)2 (2) [式中、R2は単結合、炭素数1〜21のアルキレン基
又は炭素数3〜14の環状アルキレン基を表す。]
R 2 (CONHCH 2 CH 2 CN) 2 (2) [In the formula, R 2 represents a single bond, an alkylene group having 1 to 21 carbon atoms or a cyclic alkylene group having 3 to 14 carbon atoms. ]

【0011】 R1CONHCH2CH2CH2NH2 (3) [式中、R1は一般式1と同義である。]R 1 CONHCH 2 CH 2 CH 2 NH 2 (3) [In the formula, R 1 has the same meaning as in formula 1. ]

【0012】 R2(CONHCH2CH2CH2NH22 (4) [式中、R2は一般式2と同義である。]R 2 (CONHCH 2 CH 2 CH 2 NH 2 ) 2 (4) [In the formula, R 2 has the same meaning as in formula 2. ]

【0013】一般式(3)で示される第1級アミドアミ
ン系化合物は、一般式(1)で表されるモノシアノアミ
ド化合物を本発明に係る方法に基づいて接触水素化する
ことにより製造される。
The primary amidoamine compound represented by the general formula (3) is produced by catalytically hydrogenating the monocyanoamide compound represented by the general formula (1) according to the method of the present invention. .

【0014】当該モノシアノアミド化合物としては、N
−シアノホルムアミド、N−シアノエチルアセトアミ
ド、N−シアノエチルプロピオン酸アミド、N−シアノ
エチル酪酸アミド、N−シアノエチルラウリン酸アミ
ド、N−シアノエチルミリスチン酸アミド、N−シアノ
エチルパルミチン酸アミド、N−シアノエチルステアリ
ン酸アミド、N−シアノエチルシクロヘキサンカルボン
酸アミド等が例示される。
The monocyanoamide compound is N
-Cyanoformamide, N-cyanoethylacetamide, N-cyanoethylpropionic acid amide, N-cyanoethylbutyric acid amide, N-cyanoethyllauric acid amide, N-cyanoethylmyristate amide, N-cyanoethylpalmitic acid amide, N-cyanoethylstearic acid amide, Examples include N-cyanoethylcyclohexanecarboxylic acid amide.

【0015】一般式(4)で示される第1級アミドアミ
ン系化合物は、一般式(2)で表されるジシアノジアミ
ド化合物を本発明に係る方法に基づいて接触水素化する
ことにより製造される。
The primary amidoamine compound represented by the general formula (4) is produced by catalytically hydrogenating the dicyanodiamide compound represented by the general formula (2) according to the method of the present invention.

【0016】当該ジシアノジアミド化合物としては、
N,N’−ジシアノエチルシュウ酸ジアミド、N,N’
−ジシアノエチルマロン酸ジアミド、N,N’−ジシア
ノエチルコハク酸ジアミド、N,N’−ジシアノエチル
グルタル酸ジアミド、N,N’−ジシアノエチルアジピ
ン酸ジアミド、N,N’−ジシアノエチルアゼライン酸
ジアミド、N,N’−ジシアノエチルアゼライン酸ジア
ミド、N,N’−ジシアノエチルセバシン酸ジアミド、
N,N’−ジシアノエチルシクロヘキサンジカルボン酸
ジアミド等が例示される。
As the dicyanodiamide compound,
N, N'-dicyanoethyl oxalic acid diamide, N, N '
-Dicyanoethyl malonic acid diamide, N, N'-dicyanoethyl succinic acid diamide, N, N'-dicyanoethyl glutaric acid diamide, N, N'-dicyanoethyl adipic acid diamide, N, N'-dicyanoethyl azelaic acid diamide , N, N'-dicyanoethyl azelaic acid diamide, N, N'-dicyanoethyl sebacic acid diamide,
N, N'- dicyanoethyl cyclohexane dicarboxylic acid diamide etc. are illustrated.

【0017】本発明に係る水素化触媒としては、ラネー
コバルト及びラネーコバルト・マンガン等のラネーコバ
ルト系触媒やラネーニッケル及びラネーニッケル・マン
ガン等のラネーニッケル系触媒が例示され、特にラネー
コバルト系触媒が推奨される。これらは、夫々アルミニ
ウムとの合金をアルカリにて常法で展開したものであ
る。
Examples of the hydrogenation catalyst according to the present invention include Raney cobalt-based catalysts such as Raney cobalt and Raney cobalt-manganese, and Raney nickel-based catalysts such as Raney nickel and Raney nickel-manganese. Raney cobalt-based catalysts are particularly recommended. . These are alloys each of which is developed with aluminum in an ordinary manner.

【0018】合金組成として、ラネーコバルトの場合、
コバルトが20〜60%、アルミニウムが80〜40%
の範囲の組成が適当である。又、ラネーコバルト・マン
ガンの場合、前者合金に1〜50%、好ましくは2〜2
0%のマンガンを含有する合金が好ましい。
In the case of Raney cobalt as the alloy composition,
Cobalt 20-60%, Aluminum 80-40%
A composition within the range is suitable. In the case of Raney cobalt / manganese, the former alloy is 1 to 50%, preferably 2 to 2%.
Alloys containing 0% manganese are preferred.

【0019】又、ラネーニッケルの場合、ニッケルが2
0〜60%、アルミニウムが80〜40%の範囲の組成
が適当である。又、ラネーコバルト・マンガンの場合、
前者合金に1〜50%、好ましくは2〜20%のマンガ
ンを含有する合金が好ましい。
In the case of Raney nickel, nickel is 2
A composition in the range of 0 to 60% and aluminum in the range of 80 to 40% is suitable. In the case of Raney cobalt manganese,
An alloy containing 1 to 50%, preferably 2 to 20% of manganese in the former alloy is preferable.

【0020】水素化触媒の使用量は、合金換算でN−シ
アノエチルアミド系化合物に対して0.1〜30重量
%、好ましくは1〜20重量%である。0.1重量%以
下では実用的な反応速度が得られにくく、30重量%以
上になると経済的に不利である。
The amount of the hydrogenation catalyst used is 0.1 to 30% by weight, preferably 1 to 20% by weight, based on the N-cyanoethylamide compound in terms of alloy. If it is 0.1% by weight or less, it is difficult to obtain a practical reaction rate, and if it is 30% by weight or more, it is economically disadvantageous.

【0021】当該水素化触媒は、繰り返し使用も可能で
ある。
The hydrogenation catalyst can be used repeatedly.

【0022】本反応は、溶媒を用いなくても可能である
が、触媒の活性を維持し、目的とする第1級アミン化合
物の収率をより向上させるためには、溶媒の存在下で反
応することが好ましい。
This reaction is possible without using a solvent, but in order to maintain the activity of the catalyst and further improve the yield of the desired primary amine compound, the reaction is carried out in the presence of a solvent. Preferably.

【0023】又、原料であるN−シアノエチルアミド系
化合物の融点が高い場合、例えば、一般式(1)におい
てR1が炭素数7〜21のアルキル基であるモノシアノ
アミド化合物や一般式(2)においてR2が炭素数4〜
21のアルキル基であるジシアノジアミド化合物を水素
化する場合には、溶媒を使用することが好ましい。
When the starting material N-cyanoethylamide compound has a high melting point, for example, in the general formula (1), R 1 is a monocyanoamide compound or a general formula (2) in which R 1 is an alkyl group having 7 to 21 carbon atoms. ), R 2 has 4 to 4 carbon atoms.
When hydrogenating the dicyanodiamide compound which is the alkyl group of 21, it is preferable to use a solvent.

【0024】本反応において推奨される溶媒としては、
一般式(5)で表される活性水素を持たない極性の大き
い脂肪族エーテル化合物が挙げられる。このものは、従
来、反応溶媒として用いられてきたメタノールやエチレ
ングリコールと比較して水素化触媒を失活化させること
が少なく、しかも2級や3級アミンの副生も少ない。
The solvent recommended in this reaction is
An aliphatic ether compound having a large polarity and having no active hydrogen represented by the general formula (5) can be mentioned. Compared with methanol and ethylene glycol which have been conventionally used as a reaction solvent, this compound does not inactivate a hydrogenation catalyst and has less secondary and tertiary amine by-products.

【0025】 R3O(CH2CH2O)n−R4 (5) [式中、R3、R4は同一又は異なって、炭素数1〜6の
アルキル基を表す。nは1〜5の整数を表す。]
R 3 O (CH 2 CH 2 O) n-R 4 (5) [In the formula, R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 6 carbon atoms. n represents an integer of 1 to 5. ]

【0026】当該脂肪族エーテル化合物としては、エチ
レングリコールジメチルエーテル、エチレングリコール
ジエチルエーテル、エチレングリコールジプロピルエー
テル、エチレングリコールジブチルエーテル、ジエチレ
ングリコールジメチルエーテル、ジエチレングリコール
ジエチルエーテル、ジエチレングリコールジプロピルエ
ーテルエチレングリコールジブチルエーテル、トリエチ
レングリコールジメチルエーテル等が例示され、特にエ
チレングリコールジメチルエーテルやエチレングリコー
ルジエチルエーテル等が推奨される。
Examples of the aliphatic ether compound include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether ethylene glycol dibutyl ether, triethylene glycol. Examples thereof include dimethyl ether, and ethylene glycol dimethyl ether and ethylene glycol diethyl ether are particularly recommended.

【0027】溶媒の適当な使用量は、N−シアノエチル
アミド系化合物に対して0.01〜10重量倍、好まし
くは0.1〜等重量倍程度である。0.01重量倍未満
では触媒の活性の維持及び高融点原料の溶解性の面で不
利であり、10重量倍を越えて使用したとしても特別に
優れた効果は認められず、経済的に不利である。
A suitable amount of the solvent used is about 0.01 to 10 times by weight, preferably about 0.1 to about 1 times by weight that of the N-cyanoethylamide compound. If it is less than 0.01 times by weight, it is disadvantageous in terms of maintaining the activity of the catalyst and solubility of the high-melting-point raw material, and even if it is used in excess of 10 times by weight, no particularly excellent effect is recognized and it is economically disadvantageous. Is.

【0028】又、本発明に係る水素化反応を所定量の水
の存在下で行うことにより、高い選択性を阻害すること
なく、しかも水素化反応速度を向上せしめることができ
る。この効果は、無溶媒系において顕著である。
Further, by carrying out the hydrogenation reaction according to the present invention in the presence of a predetermined amount of water, it is possible to improve the hydrogenation reaction rate without impairing the high selectivity. This effect is remarkable in the solventless system.

【0029】上記水の適当な使用量としては、反応溶媒
の使用の有無に拘らず、反応原料であるN−シアノエチ
ルアミド系化合物に対して、0.005〜等重量倍が挙
げられ、特に0.01〜0.5重量倍程度が推奨され
る。0.005重量倍未満ではその効果が少なく、等重
量を越える量では反応目的物の収率が低下する傾向が認
められる。
The appropriate amount of water is 0.005 to 1 times by weight with respect to the N-cyanoethylamide compound as a reaction raw material, with or without the use of a reaction solvent. About 0.01 to 0.5 times by weight is recommended. If the amount is less than 0.005 times by weight, the effect is small, and if the amount exceeds the equivalent weight, the yield of the reaction target product tends to decrease.

【0030】水素化反応の反応温度は、50〜150
℃、好ましくは80〜120℃である。50℃未満では
実用的な反応速度が得られず、一方、150℃を越える
温度では脱アンモニアやアミド結合の開裂が顕著となり
好ましくない。
The reaction temperature of the hydrogenation reaction is 50 to 150.
C., preferably 80 to 120.degree. If the temperature is lower than 50 ° C, a practical reaction rate cannot be obtained. On the other hand, if the temperature is higher than 150 ° C, deammonia and amide bond cleavage are remarkable, which is not preferable.

【0031】反応圧力は、所定の効果が得られる限り特
に限定されるものではないが、通常、5〜200Kg/cm
2G、好ましくは20〜100Kg/cm2Gである。5Kg/
cm2G未満では実用的な反応速度が得られにくく、20
0Kg/cm2Gを越える場合には装置上の制約を受けるの
で好ましくない。
The reaction pressure is not particularly limited as long as a predetermined effect can be obtained, but usually 5 to 200 kg / cm.
2 G, preferably 20 to 100 kg / cm 2 G. 5 kg /
If it is less than cm 2 G, it is difficult to obtain a practical reaction rate,
When it exceeds 0 kg / cm 2 G, it is not preferable because it is restricted by the apparatus.

【0032】反応時間は、他の反応条件によって変動す
るが、通常、0.5〜8時間程度である。
The reaction time varies depending on other reaction conditions, but is usually about 0.5 to 8 hours.

【0033】[0033]

【実施例】以下に実施例を掲げて、本発明を詳しく説明
する。尚、各例において得られた生成物の分析方法は、
以下のとおりである。
EXAMPLES The present invention is described in detail below with reference to examples. The method of analyzing the product obtained in each example is as follows.
It is as follows.

【0034】(1)全アミン価 A.O.C.S Tf 1b-64に準じ、ブロムクレゾールグリーン指
示薬を用い、N/10塩酸/イソプロパノール溶液にて滴
定して求める。
(1) Total amine value According to AOCS Tf 1b-64, it is determined by titration with a N / 10 hydrochloric acid / isopropanol solution using a bromcresol green indicator.

【0035】(2)2級アミン及び3級アミンに起因す
るアミン価(2・3級アミン価) A.O.C.S Tf 2b-64に準じ、50%サルチルアルデヒド/イ
ソプロパノール溶液で1級アミンを中性化合物に変換し
た後、前記方法と同様の滴定にて求める。
(2) Amine Value Due to Secondary Amine and Tertiary Amine (Secondary and Tertiary Amine Value) According to AOCS Tf 2b-64, a primary amine was converted to a neutral compound with a 50% saltylaldehyde / isopropanol solution. After conversion, it is determined by the same titration as the above method.

【0036】(3)1級アミン価 全アミン価から2・3級アミン価を減じた差として算出
する。
(3) Primary amine value Calculated as a difference obtained by subtracting the secondary amine value from the total amine value.

【0037】(4)理論アミン価 N−シアノエチルアミド系化合物の分子量(Mw)から
下式に従って算出する。 モノシアノアミドの場合 理論アミン価=56.1×1000
/Mw ジシアノジアミドの場合 理論アミン価=56.1×1000
×2/Mw
(4) Theoretical Amine Value It is calculated from the molecular weight (Mw) of the N-cyanoethylamide compound according to the following formula. In the case of monocyanoamide Theoretical amine value = 56.1 x 1000
/ Mw In case of dicyanodiamide Theoretical amine value = 56.1 × 1000
× 2 / Mw

【0038】実施例1 電磁攪拌機を備えた500mlのオートクレーブにN−シ
アノエチルプロピオン酸アミド150g、ジエチレング
リコールジメチルエーテル50g及び展開ラネーコバル
ト・マンガン触媒5g(展開前合金組成Co:Mn:A
l=30.2:3.9:65.9)を仕込み、水素ガス
で加圧し、50kg/cm2Gに維持しつつ、110℃で水
素化反応を行った。水素吸収は125分で完全に停止し
た。更に、30分間、同一条件を保って反応を完結させ
た。この反応物を濾過し、減圧下で溶媒を除去して得ら
れた反応粗物を分析したところ、理論アミン価に対し、
全アミン価は98.5%、2・3級アミン価は2.0
%、1級アミン価は96.5%であった。
Example 1 In a 500 ml autoclave equipped with a magnetic stirrer, 150 g of N-cyanoethylpropionic amide, 50 g of diethylene glycol dimethyl ether and 5 g of expanded Raney cobalt / manganese catalyst (pre-expanded alloy composition Co: Mn: A
1 = 30.2: 3.9: 65.9) was charged, pressurized with hydrogen gas, and the hydrogenation reaction was performed at 110 ° C. while maintaining the pressure at 50 kg / cm 2 G. Hydrogen absorption stopped completely in 125 minutes. Furthermore, the reaction was completed by keeping the same conditions for 30 minutes. This reaction product was filtered, and the reaction crude product obtained by removing the solvent under reduced pressure was analyzed.
Total amine value is 98.5%, secondary amine value is 2.0
%, The primary amine value was 96.5%.

【0039】更に、回収触媒を上記と同一条件で繰り返
し10回使用したところ、水素吸収停止時間はほぼ一定
であった。又、触媒の繰り返し使用回数が10回目の反
応粗物を分析したところ、理論アミン価に対し、全アミ
ン価は97.5%、2・3級アミン価は3.0%、1級
アミン価は94.5%であり、1回目とほぼ同一の品質
であった。
Further, when the recovered catalyst was repeatedly used 10 times under the same conditions as above, the hydrogen absorption stop time was almost constant. When the reaction crude product after 10 times of repeated use of the catalyst was analyzed, the total amine value was 97.5%, the secondary amine value was 3.0%, and the primary amine value was relative to the theoretical amine value. Was 94.5%, which was almost the same quality as the first time.

【0040】実施例2 溶媒を使用しなかった以外は実施例1と同様に水素化反
応を行った。1回目の水素吸収は135分で完全に停止
した。以下、実施例1と同様にして得られた反応粗物を
分析したところ、理論アミン価に対し、全アミン価は9
4.2%、2・3級アミン価は6.4%、1級アミン価
は87.8%であった。
Example 2 The hydrogenation reaction was carried out in the same manner as in Example 1 except that the solvent was not used. The first hydrogen absorption stopped completely in 135 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 9 with respect to the theoretical amine value.
The secondary amine value was 4.2%, the secondary amine value was 6.4%, and the primary amine value was 87.8%.

【0041】実施例3 水を10g添加した以外は実施例1と同様に水素化反応
を行った。このとき水素吸収時間は80分であった。以
下、実施例1と同様にして得られた反応粗物を分析した
ところ、理論アミン価に対し、全アミン価は96.5
%、2・3級アミン価は3.2%、1級アミン価は9
3.3%であった。
Example 3 A hydrogenation reaction was carried out in the same manner as in Example 1 except that 10 g of water was added. At this time, the hydrogen absorption time was 80 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 96.5 relative to the theoretical amine value.
%, Secondary amine value is 3.2%, primary amine value is 9
It was 3.3%.

【0042】実施例4 水を5g添加した以外は実施例2と同様に水素化反応を
行った。このとき水素吸収時間は100分であった。以
下、実施例1と同様にして得られた反応粗物を分析した
ところ、理論アミン価に対し、全アミン価は95.1
%、2・3級アミン価は4.2%、1級アミン価は9
0.9%であった。
Example 4 A hydrogenation reaction was carried out in the same manner as in Example 2 except that 5 g of water was added. At this time, the hydrogen absorption time was 100 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 95.1 with respect to the theoretical amine value.
%, Secondary amine value is 4.2%, primary amine value is 9%
It was 0.9%.

【0043】実施例5 原料としてN−シアノエチルステアリン酸アミドを用
い、触媒としてラネーコバルト触媒(展開前合金組成C
o:Al=49.4:50.6)を用いた以外は実施例
1と同様に水素化反応を実施した。水素吸収は105分
で完全に停止した。以下、実施例1と同様にして得られ
た反応粗物を分析したところ、理論アミン価に対し、全
アミン価は98.2%、2・3級アミン価は2.0%、
1級アミン価は96.2%であった。
Example 5 N-cyanoethylstearic acid amide was used as a raw material, and a Raney cobalt catalyst was used as a catalyst (alloy composition C before development).
The hydrogenation reaction was carried out in the same manner as in Example 1 except that o: Al = 49.4: 50.6) was used. Hydrogen absorption completely stopped in 105 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 98.2%, the secondary amine value was 2.0%, and the theoretical amine value was 2.0%.
The primary amine value was 96.2%.

【0044】実施例6 実施例1と同様のオートクレーブにN,N’−ジシアノ
エチルセバシン酸ジアミド150g、ジエチレングリコ
ールジエチルエーテル100g及びラネーコバルト・マ
ンガン触媒10gを仕込み、120℃、100kg/cm2
Gで水素化反応を行った。水素吸収は205分で完全に
停止した。以下、実施例1と同様にして得られた反応粗
物を分析したところ、理論アミン価に対し、全アミン価
は96.5%、2・3級アミン価は4.1%、1級アミ
ン価は92.4%であった。
Example 6 An autoclave similar to that of Example 1 was charged with 150 g of N, N'-dicyanoethylsebacic acid diamide, 100 g of diethylene glycol diethyl ether and 10 g of Raney cobalt-manganese catalyst, and the temperature was 120 ° C. and 100 kg / cm 2.
The hydrogenation reaction was carried out at G. Hydrogen absorption completely stopped in 205 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 96.5%, the secondary amine value was 4.1%, and the primary amine was based on the theoretical amine value. The price was 92.4%.

【0045】実施例7 実施例1と同様のオートクレーブにN−シアノエチルス
テアリン酸アミド200g、ジエチレングリコールジブ
チルエーテルを100g及びラネーコバルト・マンガン
触媒6gを仕込み、90℃、50kg/cm2Gで水素化反
応を行った。水素吸収は225分で完全に停止した。以
下、実施例1と同様にして得られた反応粗物を分析した
ところ、理論アミン価に対し、全アミン価は96.0
%、2・3級アミン価は2.0%、1級アミン価は9
4.0%であった。
Example 7 The same autoclave as in Example 1 was charged with 200 g of N-cyanoethylstearic acid amide, 100 g of diethylene glycol dibutyl ether and 6 g of Raney cobalt-manganese catalyst, and hydrogenated at 90 ° C. and 50 kg / cm 2 G. went. Hydrogen absorption completely stopped in 225 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 96.0 relative to the theoretical amine value.
%, Secondary amine value is 2.0%, primary amine value is 9
It was 4.0%.

【0046】更に、実施例1と同様に触媒繰り返しを1
0回行った。その結果、10回目で水素吸収時間は25
0分間となり、反応時間はほぼ一定で触媒の顕著な失活
は認められなかった。得られた粗物を分析したところ、
理論アミン価に対し、全アミン価は96.1%、2・3
級アミン価は3.5%、1級アミン価は92.6%であ
った。
Further, as in Example 1, the catalyst was repeated 1 times.
I went 0 times. As a result, the hydrogen absorption time was 25 at the 10th time.
It was 0 minutes, the reaction time was almost constant, and no significant deactivation of the catalyst was observed. When the obtained crude product was analyzed,
The total amine value is 96.1% against the theoretical amine value, 2.3
The primary amine value was 3.5% and the primary amine value was 92.6%.

【0047】実施例8 触媒としてラネーニッケルを使用した以外は実施例1と
同様に水素化反応を行った。1回目の水素吸収は100
分で完全に停止した。以下、実施例1と同様にして得ら
れた反応粗物を分析したところ、理論アミン価に対し、
全アミン価は92.2%、2・3級アミン価は10.3
%、1級アミン価は81.9%であった。
Example 8 A hydrogenation reaction was carried out in the same manner as in Example 1 except that Raney nickel was used as the catalyst. The first hydrogen absorption is 100
Completely stopped in minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below.
Total amine value is 92.2%, secondary amine value is 10.3
%, The primary amine value was 81.9%.

【0048】比較例1 溶媒としてメタノールを使用した以外は実施例1と同様
に水素化反応を行った。1回目の水素吸収は140分で
完全に停止した。以下、実施例1と同様にして得られた
反応粗物を分析したところ、理論アミン価に対し、全ア
ミン価は90.1%、2・3級アミン価は9.5%、1
級アミン価は80.6%であった。
Comparative Example 1 The hydrogenation reaction was carried out in the same manner as in Example 1 except that methanol was used as the solvent. The first hydrogen absorption stopped completely in 140 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 90.1%, the secondary amine value was 9.5%, and the theoretical amine value was 1%.
The primary amine value was 80.6%.

【0049】更に、実施例1と同様に触媒の繰り返し使
用を10回行った。その結果、10回目になると水素吸
収時間が280分と長くなり(触媒が失活したためと認
められる。)、更に得られた粗物を分析したところ、理
論アミン価に対し、全アミン価は80.1%と低く、2
・3級アミン価は21.1%と顕著に高くなった。その
結果、1級アミン価は59.0%と品質の低下も顕著と
なった。
Further, as in Example 1, the catalyst was repeatedly used 10 times. As a result, at the 10th time, the hydrogen absorption time became as long as 280 minutes (it is considered that the catalyst was deactivated), and when the obtained crude product was analyzed, the total amine value was 80 with respect to the theoretical amine value. As low as 1%, 2
-The tertiary amine value was remarkably high at 21.1%. As a result, the primary amine value was 59.0%, and the deterioration in quality was remarkable.

【0050】比較例2 溶媒としてエチレングリコールを使用した以外は実施例
1と同様に水素化反応を行った。1回目の水素吸収は1
30分で完全に停止した。以下、実施例1と同様にして
得られた反応粗物を分析したところ、理論アミン価に対
し、全アミン価は89.2%、2・3級アミン価は1
0.4%、1級アミン価は78.8%であった。
Comparative Example 2 The hydrogenation reaction was carried out in the same manner as in Example 1 except that ethylene glycol was used as the solvent. The first hydrogen absorption is 1
It stopped completely in 30 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 89.2% of the theoretical amine value and the secondary and tertiary amine values were 1.
The primary amine value was 0.4% and the primary amine value was 78.8%.

【0051】更に、実施例1と同様に触媒の繰り返し使
用を10回行った。その結果、10回目になると水素吸
収時間が390分となり(触媒が失活したためと認めら
れる。)、更に得られた粗物を分析したところ、理論ア
ミン価に対し、全アミン価は65.5%、2・3級アミ
ン価は33.0%、1級アミン価は32.5%と品質の
低下も顕著であった。
Further, as in Example 1, the catalyst was repeatedly used 10 times. As a result, at the 10th time, the hydrogen absorption time became 390 minutes (it is considered that the catalyst was deactivated), and when the obtained crude product was analyzed, the total amine value was 65.5 relative to the theoretical amine value. %, The secondary amine value was 33.0%, and the primary amine value was 32.5%.

【0052】比較例3 反応温度を160℃とした以外は実施例1と同様に水素
化反応を行った。1回目の水素吸収は45分で完全に停
止した。以下、実施例1と同様にして得られた反応粗物
を分析したところ、理論アミン価に対し、全アミン価は
71.3%、2・3級アミン価は27.0%、1級アミ
ン価は44.3%であった。
Comparative Example 3 The hydrogenation reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 160 ° C. The first hydrogen absorption stopped completely in 45 minutes. The reaction crude product obtained in the same manner as in Example 1 was analyzed below to find that the total amine value was 71.3%, the secondary and tertiary amine value was 27.0%, and the primary amine was based on the theoretical amine value. The price was 44.3%.

【0053】[0053]

【発明の効果】本発明の方法によれば、一般に工業的に
用いられているアンモニアを使用することなく安価で高
選択、高収率で第1級アミドアミン系化合物を工業的に
製造することができる。
Industrial Applicability According to the method of the present invention, it is possible to industrially produce a primary amidoamine compound at low cost with high selectivity and high yield without using ammonia which is generally used industrially. it can.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1)又は一般式(2)で表され
るN−シアノエチルアミド系化合物を接触水素化して、
対応する一般式(3)又は一般式(4)で表される第1
級アミドアミン系化合物を製造するに際し、溶媒の存在
下又は不存在下にラネーコバルト系触媒及びラネーニッ
ケル系触媒よりなる群から選ばれる1種若しくは2種以
上の水素化触媒を用い、50〜150℃で接触水素化す
ることを特徴とする第1級アミドアミン系化合物の製造
方法。 R1CONHCH2CH2CN (1) [式中、R1は水素原子、炭素数1〜21のアルキル基
又は炭素数3〜13の環状アルキル基を表す。] R2(CONHCH2CH2CN)2 (2) [式中、R2は単結合、炭素数1〜21のアルキレン基
又は炭素数3〜14の環状アルキレン基を表す。] R1CONHCH2CH2CH2NH2 (3) [式中、R1は一般式1と同義である。] R2(CONHCH2CH2CH2NH22 (4) [式中、R2は一般式2と同義である。]
1. An N-cyanoethylamide compound represented by the general formula (1) or the general formula (2) is catalytically hydrogenated,
First represented by the corresponding general formula (3) or general formula (4)
When producing a primary amidoamine-based compound, one or more hydrogenation catalysts selected from the group consisting of Raney cobalt-based catalysts and Raney nickel-based catalysts are used in the presence or absence of a solvent at 50 to 150 ° C. A method for producing a primary amidoamine compound, which comprises catalytic hydrogenation. R 1 CONHCH 2 CH 2 CN ( 1) [ wherein, R 1 represents a hydrogen atom, an alkyl group or a cyclic alkyl group having a carbon number of 3 to 13 1 to 21 carbon atoms. ] R 2 (CONHCH 2 CH 2 CN) 2 (2) [ wherein, R 2 is a single bond, an alkylene group or a cyclic alkylene group having a carbon number of 3 to 14 1 to 21 carbon atoms. ] R 1 CONHCH 2 CH 2 CH 2 NH 2 (3) [ wherein, R 1 has the same meaning as the general formula 1. ] R 2 (CONHCH 2 CH 2 CH 2 NH 2) 2 (4) [ wherein, R 2 have the same meanings as in formula 2. ]
【請求項2】 反応溶媒が、一般式(5)で表される脂
肪族エーテル系化合物である請求項1に記載の第1級ア
ミドアミン系化合物の製造方法。 R3O(CH2CH2O)n−R4 (5) [式中、R3、R4は同一又は異なって、炭素数1〜6の
アルキル基を表す。nは1〜5の整数を表す。]
2. The method for producing a primary amidoamine compound according to claim 1, wherein the reaction solvent is an aliphatic ether compound represented by the general formula (5). R 3 O (CH 2 CH 2 O) n-R 4 (5) [ wherein, R 3, R 4 are the same or different and each represents an alkyl group having 1 to 6 carbon atoms. n represents an integer of 1 to 5. ]
【請求項3】 N−シアノエチルアミド系化合物に対
し、0.005〜等重量倍の水の存在下で接触水素化す
ることを特徴とする請求項1又は請求項2に記載の第1
級アミドアミン系化合物の製造方法。
3. The first aspect according to claim 1 or 2, wherein the catalytic hydrogenation is carried out in the presence of 0.005-equal weight amount of water to the N-cyanoethylamide compound.
For producing a primary amidoamine compound.
JP6114653A 1994-04-27 1994-04-27 Production of primary aminoamine-based compound Pending JPH07291908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114653A JPH07291908A (en) 1994-04-27 1994-04-27 Production of primary aminoamine-based compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114653A JPH07291908A (en) 1994-04-27 1994-04-27 Production of primary aminoamine-based compound

Publications (1)

Publication Number Publication Date
JPH07291908A true JPH07291908A (en) 1995-11-07

Family

ID=14643198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114653A Pending JPH07291908A (en) 1994-04-27 1994-04-27 Production of primary aminoamine-based compound

Country Status (1)

Country Link
JP (1) JPH07291908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977407A (en) * 2015-11-26 2017-07-25 南亚塑胶工业股份有限公司 Preparation method of N, N' -bis (3-aminopropyl) -1, 2-ethylenediamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977407A (en) * 2015-11-26 2017-07-25 南亚塑胶工业股份有限公司 Preparation method of N, N' -bis (3-aminopropyl) -1, 2-ethylenediamine

Similar Documents

Publication Publication Date Title
US7960591B2 (en) Method for producing triethylenetetramine
US7915454B2 (en) Method for producing ethylenediamine
JPH0753535A (en) Preparation of n-(2-hydroxyethyl)piperazine
KR20090122434A (en) Method for producing ethyleneamines
JPH0347156A (en) Reductive amination of carbonitrile and analogous compound
KR20100014695A (en) Method for producing tetraethylenepentamine
CA2015251A1 (en) Amination of carbonyls
WO2008018148A1 (en) Process for producing amino compound
EP0800507B1 (en) Process for preparing aliphatic alpha,omega-aminonitriles
JPH10218860A (en) Production of n-monosubstituted 4-aminopiperidine
EP2438039B1 (en) A method for separating n,n-dialkylbisaminoalkylether from mixtures comprising n,n-dialkylbisaminoalkylether and at least one of n,n,n&#39;-trialkylbisaminoalkylether and n,n,n&#39;,n&#39;-tetraalkylbisaminoalkylether
JPH07291908A (en) Production of primary aminoamine-based compound
CA2039326C (en) Preparation of 2,2-disubstituted pentane-1,5-diamines
US4222961A (en) Process for hydrogenating aromatic dinitriles
JP3224922B2 (en) Method for producing N- [3-amino-propyl] amine
JPH0329781B2 (en)
JP4383726B2 (en) Amine production method
US5925790A (en) Preparation of substituted aromatic amines
US5406000A (en) Process for the production of 3-aminomethyl-3,5,5-trialkylcyclohexylamine
JPH061758A (en) Production of amino compound
JP3930207B2 (en) Method for producing norbornanedimethyleneamines
JP3194240B2 (en) Method for producing tertiary aliphatic amine having long-chain aliphatic group
EA001708B1 (en) Preparation of substituted aromatic amines
JPH07291903A (en) Production of n,n-disubstituted benzylamine
JP2001172229A (en) Method for producing 1,4-diaminobutane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803