JPH07290085A - Treatment of waste water and device therefor - Google Patents

Treatment of waste water and device therefor

Info

Publication number
JPH07290085A
JPH07290085A JP6083473A JP8347394A JPH07290085A JP H07290085 A JPH07290085 A JP H07290085A JP 6083473 A JP6083473 A JP 6083473A JP 8347394 A JP8347394 A JP 8347394A JP H07290085 A JPH07290085 A JP H07290085A
Authority
JP
Japan
Prior art keywords
wastewater
treatment
filtration
speed
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6083473A
Other languages
Japanese (ja)
Other versions
JP2976272B2 (en
Inventor
Taiji Funakoshi
越 泰 司 船
Masayuki Kojima
島 正 行 小
Hitoshi Kawajiri
尻 斉 川
Hirobumi Yamamoto
本 博 文 山
Kazuhiko Noto
登 一 彦 能
Naomichi Mori
直 道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP6083473A priority Critical patent/JP2976272B2/en
Priority to US08/263,200 priority patent/US5558763A/en
Priority to EP19940109753 priority patent/EP0630671B1/en
Priority to DE69421211T priority patent/DE69421211T2/en
Priority to EP19970118843 priority patent/EP0829456B1/en
Priority to DE69429676T priority patent/DE69429676T2/en
Priority to US08/501,661 priority patent/US5578200A/en
Publication of JPH07290085A publication Critical patent/JPH07290085A/en
Application granted granted Critical
Publication of JP2976272B2 publication Critical patent/JP2976272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To improve the quality of treated water in accordance with the inflow of waste water such as sewage, reduce the power cost for the aeration in treating activated sludge and the output of sludge and make the device compact. CONSTITUTION:A high-speed filter 10 and a biological treating device 12 are organically combined. When the inflow of the waste water is less than the allowable capacity of the biological treating device 12, the waste water is filtered by the high-speed filter 10 at the rate of <=400m/day, and the whole amt. of the treated water is sent to the biological treating device 12. When the inflow of waste water is more than the allowable capacity of the device 12, a flocculant is added to the waste water, the waste water is filtered by the filter 10 at the rate of 400-1000m/day, the filtered water in the amt. corresponding to the allowable capacity is sent to the treating device 12, and the remaining filtered water is discharged outside the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排水処理方法及びその
装置に係り、特に、下水等の大容量の排水を、その流入
排水量や水質に応じて効率的に浄化処理するための排水
処理方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method and apparatus thereof, and more particularly to a wastewater treatment method for efficiently purifying a large amount of wastewater such as sewage according to the amount and quality of the inflowing wastewater. And its device.

【0002】[0002]

【従来の技術】従来、下水等の排水を浄化処理して河川
や湖沼等に放流する排水処理方法としては、排水中の固
体成分を最初沈殿池で自然沈降した後、活性汚泥処理装
置で微生物により生物処理する方法が一般的である。ま
た、生物処理された処理水中の活性汚泥は最終沈殿池で
沈降され、上澄水が放流されると共に、沈降した活性汚
泥の一部が余剰汚泥として引き抜かれ、残りの活性汚泥
は活性汚泥処理装置に循環される。また、細かい固体成
分を除去するために、最初沈殿池の後段に充填材を充填
した濾過装置を設けたものも提案されている(特開平4
−171007)。このように、下水等の排水を浄化処
理することにより、基準水質を満足する処理水を放流し
て公共用水域の水質改善に寄与してきた。
2. Description of the Related Art Conventionally, as a wastewater treatment method for purifying wastewater such as sewage and discharging it into rivers and lakes, the solid components in the wastewater are first allowed to spontaneously settle in a sedimentation tank, and then activated sludge treatment equipment is used to remove microorganisms. The method of biological treatment is generally used. In addition, the activated sludge in the treated water that has undergone biological treatment is settled in the final settling tank, the supernatant water is discharged, and part of the settled activated sludge is extracted as excess sludge, and the remaining activated sludge is the activated sludge treatment device. Is circulated to. In addition, in order to remove fine solid components, there is also proposed a device in which a filtration device filled with a filler is first provided in the latter stage of the settling tank (Japanese Patent Laid-Open No. Hei 4).
171007). In this way, by purifying wastewater such as sewage, the treated water that satisfies the standard water quality has been released, contributing to the improvement of water quality in public water areas.

【0003】しかし、近年の都市化や生活様式の向上に
伴う下水汚濁の高濃度化や、排水処理装置に流入する流
入排水量の時間的変動の増大等により、活性汚泥処理に
おけるエアレーション動力費の増大、汚泥発生量の増大
よる汚泥処理等の問題を抱えている。また、河川や湖沼
等の閉鎖性水域に処理水を放流する場合には、BOD総
量規制への対応や富栄養化防止のため栄養塩類(窒素成
分、リン成分)の削減、更には、下水に雨水が合流する
合流式下水道の場合には、雨天時に排水処理装置に流入
する流入排水量が一時的に増量した際の処理技術の確立
が重要な課題になっている。
However, due to the increase in concentration of sewage pollution due to the recent urbanization and improvement of lifestyle, and the increase in the temporal fluctuation of the inflowing wastewater amount flowing into the wastewater treatment equipment, the aeration power cost in the activated sludge treatment increases. However, there are problems such as sludge treatment due to an increase in the amount of sludge generated. In addition, when treated water is discharged into closed water areas such as rivers and lakes, it is necessary to reduce nutrient salts (nitrogen component, phosphorus component) in order to comply with total BOD regulation and prevent eutrophication. In the case of a combined sewer system where rainwater joins, it is an important issue to establish a treatment technology when the amount of inflowing wastewater that flows into the wastewater treatment equipment is temporarily increased in the case of rain.

【0004】また、過密化により、装置の敷地に制約の
ある都市部では、前述した問題や課題の解決に際して、
現状の敷地内での対応が要求される。
Further, in the urban area where the site of the device is restricted due to overcrowding, when solving the above-mentioned problems and problems,
Correspondence within the current premises is required.

【0005】[0005]

【発明が解決しようとする課題】上記した問題や課題の
解決には、最初沈殿池と活性汚泥処理とで構成される従
来の排水処理装置の場合、活性汚泥処理に送水される排
水中の固体成分を最初沈殿池で短時間で極力除去処理す
る必要があるが、最初沈殿池での処理能力には限界があ
り、除去能力を大きくするには最初沈殿池の容量を増や
すことが必要になる。しかしながら、装置の敷地が制約
される都市部では増設することは現実的に不可能であ
り、従来の排水処理装置では問題や課題に対応できない
という欠点がある。
In order to solve the above-mentioned problems and problems, in the case of a conventional wastewater treatment apparatus which is initially composed of a sedimentation tank and activated sludge treatment, solids in the wastewater sent to activated sludge treatment It is necessary to remove the components in the first settling tank in as short a time as possible, but the processing capacity in the first settling tank is limited, and it is necessary to increase the capacity of the first settling tank to increase the removal capacity. . However, it is practically impossible to add more in urban areas where the site of the equipment is restricted, and there is a drawback that the conventional wastewater treatment equipment cannot deal with problems and problems.

【0006】一方、最初沈殿池の後段に濾過装置を設け
た特開平4−171007の廃水処理装置の場合、固体
成分の除去率を高め、活性汚泥処理への負荷を低減でき
る効果はあるものの、充填材の目詰まりが発生し易く、
通水を停止して充填材の逆洗を頻繁に行わなくてはなら
ず、結果的に敷地面積に対する処理効率の向上にはなら
ないとう欠点がある。
On the other hand, in the case of the wastewater treatment apparatus of Japanese Patent Laid-Open No. 4-171007, which is provided with a filtration device in the latter stage of the first settling tank, although the removal rate of solid components can be increased and the load on activated sludge treatment can be reduced, It is easy for the filling material to become clogged,
There is a drawback in that the flow of water must be stopped and backwashing of the packing material must be carried out frequently, and as a result, the treatment efficiency for the site area cannot be improved.

【0007】また、活性汚泥処理装置での脱窒素、脱リ
ン等の活性汚泥循環変法による生物処理を考慮した場合
は、微生物の栄養源として適当量のBODを必要とす
る。例えば、リンを微生物に過剰摂取させて除去しよう
とすると、リン濃度の20倍以上のBOD成分が必要で
あり、硝酸イオンを窒素に還元する脱窒反応をスム−ズ
に行わせるためには、窒素量の3倍程度のBOD成分を
残存させる必要がある。従って、最初沈殿池あるいは濾
過装置では、排水中の固体成分を効率的に除去でき、し
かも生物処理装置には適当量のBOD成分が供給されな
くてはならない。しかし、従来の排水処理装置ではこの
ような制御ができないため、富栄養化防止のため栄養塩
類(窒素成分、リン成分)の除去が充分に行われにくい
という欠点がある。
Further, when considering biological treatment by a modified activated sludge circulation method such as denitrification and dephosphorization in an activated sludge treatment device, an appropriate amount of BOD is required as a nutrient source for microorganisms. For example, in order to remove phosphorus by excessively ingesting it to the microorganism, a BOD component of 20 times or more the phosphorus concentration is required, and in order to smoothly perform the denitrification reaction that reduces nitrate ion to nitrogen, It is necessary to leave about 3 times the BOD component as the amount of nitrogen. Therefore, the first settling basin or the filtration device must be able to efficiently remove the solid components in the wastewater, and yet the biological treatment device must be supplied with an appropriate amount of BOD components. However, since the conventional wastewater treatment equipment cannot perform such control, it has a drawback that nutrient salts (nitrogen component, phosphorus component) are not sufficiently removed to prevent eutrophication.

【0008】また、合流式の下水処理場では、雨天時、
特に集中豪雨等によって一時的に活性汚泥処理装置の処
理許容量を越えた排水が流入してきたときには、過剰分
の流入水から固体成分を分離しただけで放流しなくては
ならないため、放流水中の固体成分をできうるかぎり除
去しなくてはならない。しかし、従来の排水処理装置で
は、一時的な流入排水量の増水に対する処理能力に限界
があると共に、増水に対応する処理技術が確立されてい
ないため、充分な浄化処理が行われないままに放流せざ
るをえず、公共水域の水質を悪化させるという欠点があ
る。
[0008] In addition, in a combined sewage treatment plant, in rainy weather,
In particular, when wastewater that exceeds the treatment capacity of the activated sludge treatment device temporarily flows in due to heavy rainfall, solid components must be separated from the excess influent and discharged. Solid components should be removed as much as possible. However, conventional wastewater treatment equipment has a limited treatment capacity for temporarily increasing the amount of inflowing wastewater, and since the treatment technology to cope with the increase in water is not established, it can be discharged without sufficient purification treatment. Inevitably, it has the drawback of deteriorating the water quality of public water bodies.

【0009】本発明は、このような事情に鑑みてなされ
たもので、下水等の排水の流入量と水質に応じて処理水
の水質向上を図ることができ、且つ、活性汚泥処理にお
けるエアレーション動力費の低減及び汚泥発生量の低減
を図るこのができ、更には装置のコンパクト化を図るこ
とのできる排水処理方法及びその装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is possible to improve the quality of treated water according to the inflow amount and quality of wastewater such as sewage, and the aeration power in activated sludge treatment. It is an object of the present invention to provide a wastewater treatment method and an apparatus thereof which can reduce the cost and the amount of generated sludge and can further reduce the size of the apparatus.

【0010】[0010]

【課題を解決するための手段】本発明は、前記目的を解
決するために、下水等の排水を浄化処理する排水処理方
法に於いて、濾過槽内に上向流で流入させた排水を、前
記濾過槽内に設けられ前記排水よりも比重の小さな網目
状円筒体の多数の濾材で形成された浮上濾材層で濾過す
る高速濾過工程と、前記高速濾過工程で濾過した濾過水
を、嫌気性処理を行う嫌気槽、無酸素処理を行う脱窒
槽、好気性処理を行う硝化槽でそれぞれ活性汚泥中の微
生物と接触させて前記濾過水中の有機物成分、窒素成
分、リン成分を生物処理により除去する生物処理工程
と、から成ることを特徴とする。
In order to solve the above-mentioned problems, the present invention relates to a wastewater treatment method for purifying wastewater such as sewage. A high-speed filtration step of filtering with a floating filter medium layer formed of a large number of mesh-like cylindrical filter medium having a smaller specific gravity than the drainage provided in the filtration tank, and filtered water filtered in the high-speed filtration step is anaerobic. An anaerobic tank for treatment, a denitrification tank for anoxic treatment, and a nitrification tank for aerobic treatment are brought into contact with microorganisms in activated sludge to remove organic components, nitrogen components, and phosphorus components in the filtered water by biological treatment. And a biological treatment step.

【0011】[0011]

【作用】本発明によれば、高速濾過工程と生物処理工程
を有機的に組み合わせ、高速濾過工程で排水中の固体成
分を高い除去率で除去できるようにしたので、生物処理
工程での負荷を軽減させることができる。これにより、
生物処理工程後の処理水の水質を向上させることができ
ると共に、生物処理工程で有機物の分解に要するエア量
を少なくできるのでエアレーション動力を削減でき、更
には余剰汚泥量の発生を減少させることができる。ま
た、生物処理工程の硝化槽には活性汚泥とは別に硝化菌
を包括固定した担体を添加するようにしたので、硝化反
応に要する時間を短縮することができる。
According to the present invention, the high-speed filtration step and the biological treatment step are organically combined so that the solid component in the wastewater can be removed at a high removal rate in the high-speed filtration step. Can be reduced. This allows
The quality of the treated water after the biological treatment process can be improved, and the aeration power can be reduced because the amount of air required for the decomposition of organic substances in the biological treatment process can be reduced, and the amount of excess sludge can be reduced. it can. Further, since the carrier in which nitrifying bacteria are entrapped and fixed is added to the nitrification tank in the biological treatment process in addition to the activated sludge, the time required for the nitrification reaction can be shortened.

【0012】また、流入する流入排水量が生物処理工程
の処理許容量以下である場合には、高速濾過工程の濾過
速度を400m/日以下で濾過して濾過水の全量を生物
処理工程に送水し、流入排水量が生物処理工程の処理許
容量以上である場合には、排水に凝集剤を添加して高速
濾過工程の濾過速度を400m/日〜1000m/日で
濾過し、濾過水のうち前記処理許容量を生物処理工程に
送水すると共に、残りの濾過水を系外に放流するように
した。即ち、高速濾過工程の濾過槽内に、排水よりも比
重の小さな網目状円筒体の多数の濾材(空隙率が80%
以上、網目を形成する線材の太さは1〜5mm、好まし
くは2〜4mm)で浮上濾材層を形成したので、略全層
濾過を行うことができると共に通水抵抗を極めて小さく
することができる。この為、排水中の固体成分濃度が高
い場合でも濾過速度で最大1000m/日の高速濾過処
理を行うことができ、且つ濾過継続時間を長くすること
ができる。そして、この濾材の特性として、濾過速度が
400m/日以下の場合は、凝集剤を添加しなくても浮
上濾材層に汚泥堆積層が形成されるので、固体成分を高
い除去率で除去することができる。また、濾過速度が4
00m/日〜1000m/日の場合は水流が速いために
汚泥堆積層が形成されないので、廃水に予め凝集剤を添
加して濾過し、これにより、凝集させた大きなフロック
を浮上濾材層に衝突させて捕捉することができるので、
濾過速度を大きくしても固体成分を高い除去率で除去す
ることができる。これにより、排水の流入量や水質に応
じて効率的に固体成分を除去することができる。従っ
て、特に、合流式下水道の場合、晴天時のように流入排
水が生物処理工程の処理許容量以下の場合はもちろんの
こと、雨天時の一時的な増水により流入排水量が生物処
理工程の処理許容量を越える場合でも、良好な水質の処
理水を放流することができる。
When the amount of inflowing wastewater that flows in is less than the treatment allowable amount of the biological treatment process, the filtration speed of the high-speed filtration process is 400 m / day or less, and the entire amount of the filtered water is sent to the biological treatment process. When the amount of inflowing wastewater is equal to or more than the treatment allowable amount of the biological treatment process, a coagulant is added to the wastewater to filter at a filtration speed of 400 m / day to 1000 m / day in the high-speed filtration process, and the treatment of the filtered water is performed. The permissible amount was sent to the biological treatment process, and the remaining filtered water was discharged to the outside of the system. That is, in the filtration tank of the high-speed filtration process, a large number of filter media (porosity of 80%) having a mesh-like cylindrical body having a smaller specific gravity than the drainage
As described above, since the thickness of the wire forming the mesh is 1 to 5 mm, preferably 2 to 4 mm), the levitation filter material layer is formed. Therefore, almost all-layer filtration can be performed and water resistance can be extremely reduced. . Therefore, even when the solid component concentration in the waste water is high, the high-speed filtration process can be performed at a filtration speed of up to 1000 m / day, and the filtration duration time can be extended. As a characteristic of this filter medium, when the filtration speed is 400 m / day or less, a sludge accumulation layer is formed on the floating filter medium layer without adding a coagulant, so that solid components should be removed at a high removal rate. You can Also, the filtration rate is 4
In the case of 00 m / day to 1000 m / day, the sludge deposition layer is not formed because the water flow is fast, so the coagulant is added to the waste water in advance and filtered, whereby the flocculated large flocs collide with the flotation filter medium layer. Can be captured by
Even if the filtration rate is increased, the solid component can be removed at a high removal rate. Thereby, the solid component can be efficiently removed according to the inflow amount of the waste water and the water quality. Therefore, in particular, in the case of combined sewerage, not only when the inflowing wastewater is less than the treatment capacity of the biological treatment process, such as during fine weather, but also when the inflowing wastewater amount is the processing permission of the biological treatment process due to a temporary increase in water during rainy weather. Even if the capacity is exceeded, treated water with good water quality can be discharged.

【0013】また、凝集剤を添加し、且つ濾過速度を4
00m/日以下にすると、汚泥堆積層の形成と衝突捕捉
の両方の作用で固体成分が除去されるので、極めて高い
除去率を得ることができる。従って、流入排水量が生物
処理工程の処理許容量以上である場合、排水に凝集剤を
添加した後に高速濾過工程を並列で行い、濾過速度を4
00m/日〜1000m/日で濾過した濾過水を生物処
理工程に送水し、400m/日以下で濾過した濾過水を
直接系外に放流すると、系外に放流する放流水の水質を
更に改善することができる。
Further, a coagulant is added and the filtration rate is 4
When it is set to 00 m / day or less, the solid component is removed by both the action of forming the sludge deposition layer and the collision capture, so that an extremely high removal rate can be obtained. Therefore, when the amount of inflowing wastewater is equal to or greater than the treatment allowable amount of the biological treatment process, the high-speed filtration process is performed in parallel after adding the coagulant to the wastewater, and the filtration rate is set to 4
When the filtered water filtered at 00 m / day to 1000 m / day is sent to the biological treatment process and the filtered water filtered at 400 m / day or less is directly discharged to the outside of the system, the quality of the discharged water discharged to the outside of the system is further improved. be able to.

【0014】また、排水に凝集剤を添加する場合には、
排水の一部をバイパス経路を介して高速濾過工程を経ず
に直接生物処理工程に供給し、微生物の栄養源である有
機物を所定濃度以上に維持するようにしたので、富栄養
化防止のため栄養塩類(窒素成分、リン成分)の除去を
充分に行うことができる。また、流入排水量を検知する
検知手段を設け、凝集剤添加手段からの凝集剤の添加有
無を、検知した流入排水量の大小に応じて制御するよう
にしたので、凝集剤の添加を自動制御することができ
る。
When a coagulant is added to waste water,
To prevent eutrophication, some of the wastewater was supplied directly to the biological treatment process via the bypass route without going through the high-speed filtration process to maintain the organic substances, which are the nutrient sources of microorganisms, at a predetermined concentration or higher. It is possible to sufficiently remove the nutrient salts (nitrogen component, phosphorus component). In addition, since a detection means for detecting the inflowing wastewater amount is provided and whether the coagulant is added from the coagulant adding means is controlled according to the detected inflowing wastewater amount, it is possible to automatically control the addition of the coagulant. You can

【0015】[0015]

【実施例】以下、添付図面に本発明に係る排水処理方法
及びその装置の好ましい実施例を説明する。図1は、本
発明の排水処理装置の第1実施例を説明するフローの構
成図である。本発明の排水処理装置は主として高速濾過
装置10(高速濾過工程)、生物処理装置12(高速濾
過工程)、沈殿装置14で構成される。また、図1に
は、説明を容易にするために1系列の排水処理装置で示
したが、排水処理装置を並列に多系列設けるようにして
もよい。
The preferred embodiments of the wastewater treatment method and apparatus according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a configuration diagram of a flow for explaining a first embodiment of the wastewater treatment equipment of the present invention. The wastewater treatment device of the present invention is mainly composed of a high-speed filtration device 10 (high-speed filtration process), a biological treatment device 12 (high-speed filtration process), and a precipitation device 14. Further, although FIG. 1 shows one series of wastewater treatment devices for ease of explanation, it is also possible to provide multiple series of wastewater treatment devices in parallel.

【0016】図1に示すように、下水等の排水は、原水
流入管18を通って原水タンク20に流入される。ま
た、原水タンク20の近傍には、凝集剤溶液を貯留する
凝集剤タンク22が設けられ、凝集剤タンク22の凝集
剤は、凝集剤添加管24を通って原水タンク22に添加
される。また、凝集剤添加管24には、添加バルブ26
が設けられ信号ケーブルを介して原水流入管18に設け
られた流量計28に接続される。これにより、流入排水
量が所定量以上になると添加バルブ26が開いて原水タ
ンク20に所定量の凝集剤が添加される。凝集剤として
は、硫酸バンド、ポリ塩化アルミ、塩化第2鉄等の無機
凝集剤、或いはアニオン性、ノニオン性、カチオン性等
の高分子凝集剤が使用される。また、原水タンク20の
底部から延びた供給配管30は三方バルブ32により二
方に分岐され、一方の濾過配管34は原水弁36を介し
て高速濾過装置10の濾過槽38底部に接続され、他方
のバイパス配管40はバイパスバルブ42を介して生物
処理装置12の入口に接続される。原水弁36は濾過操
作中は開の状態にあり、後記する浮上濾材層37濾材を
洗浄する場合は閉の状態にして高速濾過装置10への排
水を供給を停止する。また、バイパスバルブ42は必要
に応じて開かれ、排水の一部が生物処理装置12に直接
供給される。これにより、生物処理装置12に添加され
る活性汚泥中の微生物の栄養源である有機物を所定濃度
以上に維持することができる。
As shown in FIG. 1, wastewater such as sewage flows into a raw water tank 20 through a raw water inflow pipe 18. A coagulant tank 22 that stores a coagulant solution is provided near the raw water tank 20, and the coagulant in the coagulant tank 22 is added to the raw water tank 22 through a coagulant addition pipe 24. The coagulant addition pipe 24 has an addition valve 26.
Is connected to a flow meter 28 provided in the raw water inflow pipe 18 via a signal cable. As a result, when the amount of inflowing waste water exceeds a predetermined amount, the addition valve 26 opens and a predetermined amount of the coagulant is added to the raw water tank 20. As the coagulant, an inorganic coagulant such as sulfuric acid band, polyaluminum chloride, ferric chloride or the like, or a polymer coagulant such as anionic, nonionic or cationic polymer is used. Further, the supply pipe 30 extending from the bottom of the raw water tank 20 is branched into two by a three-way valve 32, and one filtration pipe 34 is connected to the bottom of the filtration tank 38 of the high-speed filtration device 10 via a raw water valve 36, and the other. The bypass pipe 40 is connected to the inlet of the biological treatment apparatus 12 via a bypass valve 42. The raw water valve 36 is in an open state during the filtering operation, and is closed in the case of washing the floating filter medium layer 37, which will be described later, to stop the supply of the waste water to the high-speed filtration device 10. Further, the bypass valve 42 is opened as needed, and a part of the waste water is directly supplied to the biological treatment device 12. As a result, it is possible to maintain the organic substance, which is a nutrient source for microorganisms in the activated sludge added to the biological treatment device 12, at a predetermined concentration or higher.

【0017】また、濾過配管34は、濾過槽38の入口
付近で分岐され、濾材を洗浄した際の洗浄排水を濾過槽
38外に排出する洗浄排水配管44に接続される。この
洗浄排水配管44の途中には、洗浄排水バルブ46が設
けられ、高速濾過装置10で濾過操作を行う際には閉じ
られる。次に、図2に従って、高速濾過装置10の構造
について説明すると、高速濾過装置10の濾過槽38
は、上部が四角形状に形成されると共に、底部が四角錘
状に形成される。そして、濾過槽38内の上端部及び底
部には、網目構造に形成された上部スクリーン48及び
下部スクリーン50が濾過槽38を横断して配設され
る。この上部スクリーン48の目開は、濾材が通過しな
い程度であればよく、また、下部スクリーン50の目開
は、排水中の大型夾雑物が除去できればよい。また、上
部スクリーン48の下側には排水より比重の小さな網目
状円筒体の多数の濾材52、52…が排水に浮いた状態
で、濾過槽38容積の約1/2を占めるように係止さ
れ、浮上濾材層37を形成する。また、浮上濾材層37
の下方には、下部スクリーン50に近接して複数の噴出
ノズル54、54…を有するエア噴出管56が設けら
れ、濾過槽38内の排水中にエアを噴出して旋回流を発
生させ、濾材52を旋回移動させることにより、濾材5
2に付着した固体成分を短時間で効率的に洗浄すること
ができる。また、濾過槽38内の底部には、濾過槽38
内に流入した排水を濾過槽38内の全域に分散させる分
散板58が設けられる。これにより、原水タンク20か
ら濾過槽38底部に流入された排水は、分散板58によ
り濾過槽38内全域に分散され、上向流となって濾過槽
38内を上昇する。また、濾過槽38内の上部スクリー
ン48上方には、浮上濾材層37で濾過された濾過水が
溢流するトラフ60が設けられ、トラフ60に溢流した
濾過水は、生物処理配管62を介して生物処理装置12
の嫌気槽64(図1参照)に送水される。
The filter pipe 34 is branched near the inlet of the filter tank 38 and is connected to a cleaning drain pipe 44 for discharging the cleaning drainage when cleaning the filter medium to the outside of the filter tank 38. A washing and draining valve 46 is provided in the middle of the washing and draining pipe 44, and is closed when performing a filtering operation by the high-speed filtering device 10. Next, the structure of the high-speed filtration device 10 will be described with reference to FIG.
Has a quadrangular shape at the top and a quadrangular pyramid shape at the bottom. An upper screen 48 and a lower screen 50 formed in a mesh structure are arranged across the filtration tank 38 at the upper end and the bottom of the filtration tank 38. The opening of the upper screen 48 may be such that the filter medium does not pass through, and the opening of the lower screen 50 may be such that large contaminants in the drainage can be removed. Further, under the upper screen 48, a large number of mesh-like cylindrical filter media 52, 52 having a smaller specific gravity than the drainage are suspended in the drainage so as to occupy about 1/2 of the volume of the filter tank 38. Then, the floating filter material layer 37 is formed. In addition, the floating filter material layer 37
An air jet pipe 56 having a plurality of jet nozzles 54, 54 ... Is provided below the lower screen 50, and jets air into the drainage in the filtration tank 38 to generate a swirling flow, thereby forming a filter medium. By rotating 52, the filter medium 5
The solid component attached to 2 can be efficiently washed in a short time. In addition, at the bottom of the filtration tank 38,
A dispersion plate 58 that disperses the wastewater that has flowed into the filter tank 38 is provided. As a result, the drainage flowing from the raw water tank 20 to the bottom of the filtration tank 38 is dispersed by the dispersion plate 58 throughout the filtration tank 38 and becomes an upward flow to rise in the filtration tank 38. Further, above the upper screen 48 in the filtration tank 38, a trough 60 for overflowing the filtered water filtered by the floating filter material layer 37 is provided, and the filtered water overflowing the trough 60 is passed through the biological treatment pipe 62. And biological treatment equipment 12
Water is sent to the anaerobic tank 64 (see FIG. 1).

【0018】次に、図3に従って、本発明で使用する濾
材52の一例について説明すると、濾材52はポリプロ
ピレン製等の軽比重、且つ耐食性の材質で製造され、平
均径(D)が約20mm程度の網目状円筒体に形成さ
れ、両端52A、52Bが開放される。また、網目52
Cは、太さ1〜5mm、好ましくは2〜4mmのポリプ
ロピレン製の線材52Dが用いられる。この濾材52の
見かけ比重は約0.9であり、空隙率は約90%を有
し、比表面積は約300m2 /濾材m3 である。このよ
うに形成された濾材52を用いて濾過槽38内に浮上濾
材層37を形成することにより、略全層濾過を行うこと
ができると共に通水抵抗を極めて小さくすることができ
る。この為、排水中の固体成分濃度が高い場合でも濾過
速度で最大1000m/日の高速濾過処理を行うことが
でき、且つ濾過継続時間を長くすることができる。
Next, referring to FIG. 3, an example of the filter medium 52 used in the present invention will be described. The filter medium 52 is made of polypropylene or the like having a light specific gravity and corrosion resistance, and an average diameter (D) of about 20 mm. Is formed into a mesh-like cylindrical body, and both ends 52A and 52B are opened. Also, the mesh 52
As C, a polypropylene wire rod 52D having a thickness of 1 to 5 mm, preferably 2 to 4 mm is used. The filter medium 52 has an apparent specific gravity of about 0.9, a porosity of about 90%, and a specific surface area of about 300 m 2 / filter medium m 3 . By forming the floating filter medium layer 37 in the filter tank 38 using the filter medium 52 formed in this way, it is possible to perform substantially all-layer filtration and extremely reduce water resistance. Therefore, even when the solid component concentration in the waste water is high, the high-speed filtration process can be performed at a filtration speed of up to 1000 m / day, and the filtration duration time can be extended.

【0019】また、図1に示すように、生物処理配管6
2は途中で分配装置66を介して放流用配管68に接続
される。そして、この分配装置66で生物処理装置12
に送水される濾過水の水量と、放流用配管68に送水さ
れる濾過水の水量を所定比率に分配することにより、濾
過水の一部を河川等に直接放流することができる。次
に、生物処理装置12について説明すると、生物処理装
置12は、嫌気槽64、脱窒槽70、硝化槽72で構成
される。そして、嫌気槽64、脱窒槽70、硝化槽72
には、硝化菌、脱窒菌、リン集積菌等の微生物を含む活
性汚泥が添加される。また、硝化槽72には、活性汚泥
とは別に、硝化菌を一辺3mm程度の高分子材料に包括
固定した担体が添加され、これにより、硝化に要する時
間の短縮が図られる。また、嫌気槽64内及び脱窒槽7
0内にはそれぞれ攪拌装置73が設けられ、ゆっくりと
した攪拌により、高速濾過装置10から送水された濾過
水は嫌気性状態で生物処理反応が行われる。一方、硝化
槽72内には、曝気装置74が設けられ、嫌気性状態で
生物処理反応が行われる。そして、高速濾過装置10で
濾過された濾過水を嫌気槽64、脱窒槽70、硝化槽7
2の順に通過させ、硝化液の一定量を脱窒槽70に循環
させることにより、濾過水中の窒素成分を除去する。ま
た、濾過水を嫌気槽64、脱窒槽70、硝化槽72の順
に通過させると、活性汚泥が嫌気槽64での嫌気状態
(溶存酸素及び酸化態窒素の存在しない状態)で有機物
を取り込むと共に、活性汚泥中に蓄積されたリンが放出
される。そして硝化槽72の好気状態で活性汚泥がリン
の摂取をしなおし、その摂取量が放出量を上回るため、
結果的に濾過水中のリン成分が除去される。
Further, as shown in FIG. 1, the biological treatment pipe 6
2 is connected to a discharge pipe 68 via a distributor 66 on the way. Then, the biological treatment device 12
By distributing the amount of the filtered water sent to the discharge pipe 68 and the amount of the filtered water sent to the discharge pipe 68 at a predetermined ratio, a part of the filtered water can be discharged directly to a river or the like. Next, the biological treatment device 12 will be described. The biological treatment device 12 includes an anaerobic tank 64, a denitrification tank 70, and a nitrification tank 72. Then, the anaerobic tank 64, the denitrification tank 70, the nitrification tank 72
Activated sludge containing microorganisms such as nitrifying bacteria, denitrifying bacteria, and phosphorus accumulating bacteria is added to. In addition to the activated sludge, a carrier in which nitrifying bacteria are entrapped and fixed in a polymeric material having a side length of about 3 mm is added to the nitrification tank 72, whereby the time required for nitrification can be shortened. In addition, in the anaerobic tank 64 and the denitrification tank 7
A stirring device 73 is provided in each of 0, and the biological treatment reaction is performed in an anaerobic state in the filtered water sent from the high-speed filtering device 10 by slow stirring. On the other hand, an aeration device 74 is provided in the nitrification tank 72, and the biological treatment reaction is performed in an anaerobic state. Then, the filtered water filtered by the high-speed filtration device 10 is anaerobic tank 64, denitrification tank 70, nitrification tank 7
The nitrogen component in the filtered water is removed by passing the nitrification solution in a certain amount in the order of 2 and circulating it in the denitrification tank 70. Further, when the filtered water is passed through the anaerobic tank 64, the denitrification tank 70, and the nitrification tank 72 in this order, the activated sludge takes in the organic matter in the anaerobic state in the anaerobic tank 64 (the state in which dissolved oxygen and oxidized nitrogen do not exist), The phosphorus accumulated in the activated sludge is released. Then, in the aerobic condition of the nitrification tank 72, the activated sludge takes up phosphorus again, and since the intake exceeds the release,
As a result, the phosphorus component in the filtered water is removed.

【0020】また、生物処理装置12で処理された処理
水は沈殿装置14に送水される。沈殿装置14では、処
理水に同伴した活性汚泥を沈降により固液分離され、上
澄部分の処理水が処理水配管76を通って河川等に放流
される。また、沈降した活性汚泥は、一部が余剰汚泥と
して汚泥排出管78により図示しない汚泥処理工程に送
られると共に、残りの活性汚泥は汚泥循環配管80を通
って嫌気槽64に循環される。
The treated water treated by the biological treatment device 12 is sent to the settling device 14. In the settling device 14, the activated sludge entrained in the treated water is subjected to solid-liquid separation by settling, and the treated water in the supernatant portion is discharged to a river or the like through the treated water pipe 76. In addition, a part of the settled activated sludge is sent to the sludge treatment process (not shown) as excess sludge by the sludge discharge pipe 78, and the remaining activated sludge is circulated to the anaerobic tank 64 through the sludge circulation pipe 80.

【0021】次に、上記の如く構成された本発明の排水
処理装置で下水等の排水を処理する方法について説明す
る。原水流入管18を通って原水タンク20に流入する
排水は、原水流入管18の途中に設けられた流量計28
により流入排水量が検知される。そして、検知された流
入排水量が所定量以上の場合には、添加バルブ26が開
いて凝集剤タンク22から原水タンク20に所定量の凝
集剤が添加される。即ち、生物処理装置12での処理許
容量以下の原水流量が流量計28で検知された場合に
は、流量計28から添加バルブ26を閉じる信号が送ら
れ、排水への凝集剤の添加が行われない。一方、生物処
理装置12での処理許容量以上の流入排水量が流量計2
8で検知された場合には、流量計28から添加バルブ2
6を開く信号が送られ、一定量の凝集剤が排水に添加さ
れる。次に、原水タンク20の排水は、供給配管30、
濾過配管34を通って高速濾過装置10の濾過槽38底
部に供給される。この時、原水弁36は開いた状態にあ
り、バイパスバルブ42は前述したとおり、必要に応じ
て開かれる。濾過槽38に供給された排水は、濾過槽3
8内を上向流となって上昇し、排水中の固体成分が浮上
濾材層37で濾過される。浮上濾材層37で濾過された
濾過水は、トラフ60に溢流し、生物処理配管62、分
配装置66を通って生物処理装置12の嫌気槽64に送
水される。この時、生物処理装置12に送水される濾過
水の水量が生物処理装置12の処理許容量以上の場合、
分配装置66により、一部の濾過水が放流用配管68に
分配される。次に、生物処理装置12では、濾過水が嫌
気槽64、脱窒槽70、硝化槽72を順次流れることに
より、生物処理反応により濾過水中の窒素成分、リン成
分、有機物は除去される。そして、生物処理装置12で
処理された処理水は沈殿装置14に送水され、沈殿装置
14で活性汚泥が沈降分離された後、河川等に放流され
る。
Next, a method of treating wastewater such as sewage with the wastewater treatment apparatus of the present invention configured as described above will be described. The drainage flowing into the raw water tank 20 through the raw water inflow pipe 18 is a flow meter 28 provided in the middle of the raw water inflow pipe 18.
The inflowing wastewater amount is detected by. When the detected inflow drainage amount is equal to or more than the predetermined amount, the addition valve 26 is opened and the predetermined amount of the coagulant is added from the coagulant tank 22 to the raw water tank 20. That is, when the raw water flow rate less than the treatment allowable amount in the biological treatment apparatus 12 is detected by the flow meter 28, a signal to close the addition valve 26 is sent from the flow meter 28 to add the coagulant to the waste water. I don't know. On the other hand, if the amount of inflowing wastewater in the biological treatment device 12 exceeds the allowable treatment amount,
8 is detected, the flow meter 28 adds the addition valve 2
A signal is sent to open 6 and a certain amount of flocculant is added to the wastewater. Next, the waste water of the raw water tank 20 is supplied to the supply pipe 30,
It is supplied to the bottom of the filtration tank 38 of the high-speed filtration device 10 through the filtration pipe 34. At this time, the raw water valve 36 is in the open state, and the bypass valve 42 is opened as necessary as described above. The waste water supplied to the filtration tank 38 is filtered by the filtration tank 3
The solid component in the waste water is filtered by the floating filter material layer 37 as it rises in the inside of 8 as an upward flow. The filtered water filtered by the floating filter material layer 37 overflows into the trough 60 and is sent to the anaerobic tank 64 of the biological treatment device 12 through the biological treatment pipe 62 and the distribution device 66. At this time, when the amount of filtered water sent to the biological treatment device 12 is equal to or more than the treatment allowable amount of the biological treatment device 12,
A part of the filtered water is distributed to the discharge pipe 68 by the distributor 66. Next, in the biological treatment apparatus 12, the filtered water sequentially flows through the anaerobic tank 64, the denitrification tank 70, and the nitrification tank 72, so that the biological treatment reaction removes nitrogen components, phosphorus components, and organic substances from the filtered water. Then, the treated water treated by the biological treatment device 12 is sent to the settling device 14, and after the activated sludge is settled and separated by the settling device 14, it is discharged to a river or the like.

【0022】本発明によれば、高速濾過装置10と生物
処理装置12を有機的に組み合わせ、高速濾過装置10
で排水中の固体成分を高い除去率で除去できるようにし
たので、生物処理装置12での負荷を軽減させることが
できる。これにより、生物処理装置12出口での処理水
の水質を向上させることができると共に、生物処理装置
12での有機物の分解に要するエア量を少なくできるの
でエアレーション動力を削減でき、更には余剰汚泥量の
発生を減少させることができる。また、生物処理装置1
2の硝化槽72には活性汚泥とは別に硝化菌を包括固定
した担体を添加するようにしたので、硝化反応に要する
時間を短縮することができる。
According to the present invention, the high-speed filtration device 10 and the biological treatment device 12 are organically combined to form the high-speed filtration device 10.
Since the solid component in the waste water can be removed at a high removal rate, the load on the biological treatment device 12 can be reduced. As a result, the quality of the treated water at the outlet of the biological treatment device 12 can be improved, and the amount of air required for decomposing the organic matter in the biological treatment device 12 can be reduced, so that the aeration power can be reduced, and the amount of excess sludge can be further reduced. Can be reduced. In addition, the biological treatment device 1
Since the carrier in which the nitrifying bacteria are entrapped and fixed is added to the nitrification tank 72 of No. 2 separately from the activated sludge, the time required for the nitrification reaction can be shortened.

【0023】ところで、流入排水量と処理水量との関係
において、一般に生物処理装置12は晴天時(雨水によ
る増水がない状態)の流入原水量の2倍程度の処理許容
量を持っている。しかし、日降水量が50mm未満でも
流入原水量は処理許容量の2〜3倍に、日降水量が50
〜100mmの時には処理許容量の3〜5倍に達する。
従って、合流式下水道の場合に雨天時の一時的な増水に
より、流入排水量が生物処理装置12の処理許容量を越
えた分については高速濾過装置10で濾過しただけで河
川等に直接放流せざるを得ない。ちなみに、日降水量は
地域により大幅に変わるが、札幌や仙台の場合、日降水
量が10〜50mmの日数は年間30日、日降水量が5
0〜100mmの日数は年間6日程度あり、雪解け水を
考慮すると、生物処理装置12で処理せずに放流せざる
をえない日数は年間7日程度となる。また、東京、名古
屋、大阪では、日降水量が10〜50mmの日数は年間
30日程度で札幌、仙台と変わらないが、日降水量が5
0〜100mmの日数は年間10〜15日と若干多くな
る。また、鹿児島の場合、日降水量が10〜50mmの
日数は同程度であるが、日降水量が50〜100mmの
日数は年間35日程度と極めて多くなり、直接放流の日
数は年間40日以上になることもある。
By the way, in terms of the relationship between the amount of inflowing wastewater and the amount of treated water, the biological treatment apparatus 12 generally has a treatment allowable amount which is about twice as much as the amount of inflowing raw water in fine weather (when there is no increase in water due to rainwater). However, even if the daily precipitation is less than 50 mm, the amount of raw water inflow is two to three times the treatment allowable amount, and the daily precipitation is 50
When it is up to 100 mm, it reaches 3 to 5 times the processing allowance.
Therefore, in the case of the combined sewer system, if the inflowing wastewater amount exceeds the treatment allowable amount of the biological treatment device 12 due to a temporary increase in water in the case of rain, it is only filtered by the high-speed filtration device 10 and directly discharged to a river or the like. I don't get. By the way, the daily precipitation varies greatly depending on the region, but in Sapporo and Sendai, the number of days with a daily precipitation of 10 to 50 mm is 30 days a year, and the daily precipitation is 5 days.
The number of days of 0 to 100 mm is about 6 days per year, and considering snowmelt water, the number of days that must be discharged without being treated by the biological treatment device 12 is about 7 days per year. Also, in Tokyo, Nagoya, and Osaka, the number of days with a daily rainfall of 10 to 50 mm is about 30 days a year, which is the same as in Sapporo and Sendai, but the daily rainfall is 5 days.
The number of days of 0 to 100 mm is slightly increased to 10 to 15 days per year. In the case of Kagoshima, the number of days with daily precipitation of 10 to 50 mm is similar, but the number of days with daily precipitation of 50 to 100 mm is extremely high, about 35 days per year, and the number of days of direct release is 40 days or more per year. Sometimes it becomes.

【0024】このように、合流式下水道の場合には、雨
天時の一時的な増水により生物処理を行わずに河川等に
直接放流する必要があり、直接放流する放流水中の固体
成分をできうるかぎり除去しなくてはならない。そこ
で、本発明によれば、流入排水量が生物処理装置14の
処理許容量以下である場合には、凝集剤の添加を行わず
に高速濾過装置10の濾過速度を400m/日以下で濾
過し、濾過水の全量を生物処理装置12に送水し、流入
排水量が生物処理装置12の処理許容量以上である場合
には、排水に凝集剤を添加し、且つ、高速濾過装置10
の濾過速度を400m/日〜1000m/日で濾過し、
分配装置66により濾過水のうち前記処理許容量を生物
処理装置12に送水すると共に、残りの濾過水を放流用
配管68から河川等に直接放流するようにした。これに
より、排水処理装置を増設することなく、即ち装置の敷
地面積を現状のままで、地域的及び季節的な日降水量の
大小に応じて最適な処理条件を選定し、排水中の固体成
分を高い除去率で除去することができるので、生物処理
装置12後の処理水及び高速濾過装置10後に直接放流
される放流水ともに良好な水質を得ることができる。
As described above, in the case of the combined sewer system, it is necessary to discharge the water directly to a river or the like without performing biological treatment due to a temporary increase in water in rainy weather, and solid components in the discharged water to be discharged directly can be generated. Must be removed as long as possible. Therefore, according to the present invention, when the inflowing wastewater amount is less than or equal to the treatment allowable amount of the biological treatment device 14, the filtration speed of the high-speed filtering device 10 is filtered at 400 m / day or less without adding a coagulant, The whole amount of the filtered water is sent to the biological treatment device 12, and when the inflowing wastewater amount is equal to or more than the treatment allowable amount of the biological treatment device 12, a coagulant is added to the wastewater and the high-speed filtration device 10 is added.
At a filtration speed of 400 m / day to 1000 m / day,
The distribution device 66 sends the treated amount of the filtered water to the biological treatment device 12, and the remaining filtered water is directly discharged from the discharge pipe 68 to a river or the like. As a result, without adding additional wastewater treatment equipment, that is, with the site area of the equipment as it is, the optimal treatment conditions are selected according to the regional and seasonal daily precipitation levels, and the solid components in the wastewater are selected. Since it can be removed at a high removal rate, good water quality can be obtained for both the treated water after the biological treatment device 12 and the discharged water that is directly discharged after the high-speed filtration device 10.

【0025】ここで、図4、図5、図6に従って、排水
への添加剤の添加有無、及び高速濾過装置10での濾過
速度の違いによる、排水中の固体成分の捕捉機構を説明
する。図4は、凝集剤を添加せずに濾過速度400m/
日以下の場合の捕捉機構を示す図である。凝集剤を添加
しないときの固体成分82は形状が小さく濾材52の上
面に沈降堆積して汚泥堆積層84を形成する捕捉機構に
より除去される。即ち、網目を通り抜ける排水の縮流現
象で速度差が生じ、渦流が生じる。この渦流によって、
網目を形成する線材52Dの上部に局部滞留域が生じ、
この局部滞留域に排水中の固体成分82が汚泥堆積層8
4を形成する。この局部滞留域は浮上濾材層37の全域
にわたって生じるので、固体成分82を高い除去率で除
去することができる。
Here, referring to FIGS. 4, 5 and 6, the mechanism of capturing solid components in the wastewater depending on whether or not the additive is added to the wastewater and the difference in the filtration speed in the high-speed filtration device 10 will be described. FIG. 4 shows a filtration speed of 400 m /
It is a figure which shows the capture mechanism at the time of day or less. The solid component 82 when the flocculant is not added is small in shape and is removed by a trapping mechanism that sediments and deposits on the upper surface of the filter medium 52 to form a sludge deposition layer 84. That is, a speed difference is generated due to the contraction phenomenon of the drainage that passes through the mesh, and a vortex is generated. By this vortex,
A local stagnation area is generated above the wire 52D forming the mesh,
The solid component 82 in the drainage is in the sludge accumulation layer 8 in this local retention area.
4 is formed. Since this local retention area occurs over the entire area of the floating filter material layer 37, the solid component 82 can be removed at a high removal rate.

【0026】図5は、凝集剤を添加して濾過速度400
m/日以下の場合の捕捉機構を示す図である。凝集剤を
添加すると固体成分82はフロックを形成して大形化す
る。そして、濾過速度が遅いため、固体成分82は濾材
52の上面に沈降堆積して汚泥堆積層84を形成する捕
捉機構と、固体成分82が濾材52に衝突して汚泥付着
層86を形成する捕捉機構の両方が行われる。この汚泥
堆積層84を形成する捕捉機構と衝突により汚泥付着層
86を形成する捕捉機構は浮上濾材層37の全域にわた
って生じるので、固体成分82を更に高い除去率で除去
することができる。
FIG. 5 shows that a coagulant was added and a filtration rate of 400
It is a figure which shows the capture mechanism in the case of m / day or less. When the flocculant is added, the solid component 82 forms flocs and becomes large. Since the filtration speed is low, the solid component 82 is settled and deposited on the upper surface of the filter medium 52 to form a sludge accumulation layer 84, and the solid component 82 collides with the filter medium 52 to form a sludge adhesion layer 86. Both mechanisms are performed. Since the trapping mechanism that forms the sludge deposit layer 86 by collision with the trapping mechanism that forms the sludge deposit layer 84 occurs over the entire area of the floating filter material layer 37, the solid component 82 can be removed at a higher removal rate.

【0027】図6は、凝集剤を添加して濾過速度400
〜1000m/日の場合の捕捉機構を示す図である。凝
集剤を添加すると固体成分82はフロックを形成して大
形化する。そして、濾過速度が速いため、固体成分82
は濾材52の上面に汚泥堆積層84を形成する捕捉機構
は行われず、汚泥付着層86を形成する捕捉機構のみが
行われる。この汚泥付着層86を形成する捕捉機構は浮
上濾材層37の全域にわたって生じるので、固体成分8
2を高い除去率で除去することができる。そして、上記
した濾過条件による固体成分82の除去率を比較する
と、凝集剤を添加して濾過速度400m/日以下の場合
が最も高く、次いで凝集剤を添加して濾過速度400〜
1000m/日の場合、次に凝集剤を添加せずに濾過速
度400m/日以下の場合であった。
FIG. 6 shows a filtration rate of 400 with the addition of a flocculant.
It is a figure which shows the capture mechanism in the case of -1000 m / day. When the flocculant is added, the solid component 82 forms flocs and becomes large. Since the filtration rate is high, the solid component 82
The trapping mechanism that forms the sludge deposit layer 84 on the upper surface of the filter medium 52 is not performed, but only the trapping mechanism that forms the sludge adhering layer 86 is performed. Since the trapping mechanism that forms the sludge adhering layer 86 occurs over the entire area of the floating filter material layer 37, the solid component 8
2 can be removed with a high removal rate. Comparing the removal rates of the solid components 82 under the above-mentioned filtration conditions, the highest rate was obtained when a flocculant was added and the filtration speed was 400 m / day or less, and then the flocculation agent was added and the filtration speed was 400-
In the case of 1000 m / day, the filtration speed was 400 m / day or less without adding a coagulant.

【0028】また、濾材52の網目を形成する線材52
Dの太さは1〜5mmの範囲に、好ましくは2〜4mm
の範囲にあるようにしたので、汚泥堆積層84が形成さ
れ易くなると共に、汚泥付着層86を形成され易くな
る。即ち、濾材52の網目を形成する線材52Dの上部
に流れの遅い局部滞留域を安定して形成するための線材
52Dの太さは、1mm以上、好ましくは2mm以上が
よい。また、凝集剤を添加して大形化した固体成分82
を濾材に衝突させて効率よく汚泥付着層86を形成する
ための線材52Dの太さは、固体成分82の太さより幾
分細い程度が最もよい。そして、大形化した固体成分8
2の太さは、約80%が3〜5mmの範囲にあり、残り
の20%が3mm以下である。このことから、凝集剤を
添加した場合の固体成分82の除去は、濾材52の線材
52Dの太さが5mm以下、好ましくは4mm以下がよ
い。
Further, the wire rod 52 forming the mesh of the filter medium 52
The thickness of D is in the range of 1 to 5 mm, preferably 2 to 4 mm
Since it is within the range, the sludge accumulation layer 84 is easily formed and the sludge adhesion layer 86 is easily formed. That is, the thickness of the wire material 52D for stably forming the locally-slow retention area in the upper portion of the wire material 52D forming the mesh of the filter material 52 is 1 mm or more, preferably 2 mm or more. In addition, a solid component 82 that has been made larger by adding a flocculant
The diameter of the wire 52D for making the sludge adhering layer 86 efficiently collide with the filter material is best to be slightly thinner than the thickness of the solid component 82. And the solid component 8 which has been enlarged
The thickness of 2 is about 80% in the range of 3 to 5 mm, and the remaining 20% is 3 mm or less. From this, when the coagulant is added, the solid component 82 should be removed when the thickness of the wire 52D of the filter medium 52 is 5 mm or less, preferably 4 mm or less.

【0029】次に、最初沈殿池及び活性汚泥処理装置で
構成される従来の排水処理装置と比較しながら、本発明
の排水処理装置を使用し本発明の処理方法で行った実例
を説明する。この実例では、高速濾過装置10の浮上濾
材層37は、高さ2m、断面積3m2 とした。先ず、流
量計28で検知される流入排水量が生物処理装置12の
処理許容量(1Q)以下である場合について説明する。
この場合は、原水タンク20に凝集剤を添加せずに、高
速濾過装置10での濾過速度を400m/日以下で濾過
して濾過水の全量を生物処理装置12に送水し、生物処
理を行った。この時の濾材52の洗浄回数は1日2回の
割合で行った。
Next, an actual example of the treatment method of the present invention using the wastewater treatment apparatus of the present invention will be described while comparing with the conventional wastewater treatment apparatus which is initially composed of a settling tank and an activated sludge treatment apparatus. In this example, the floating filter medium layer 37 of the high-speed filtration device 10 had a height of 2 m and a cross-sectional area of 3 m 2 . First, a case where the inflowing wastewater amount detected by the flow meter 28 is equal to or less than the treatment allowable amount (1Q) of the biological treatment device 12 will be described.
In this case, the flocculating agent is not added to the raw water tank 20, the filtration speed in the high-speed filtration device 10 is filtered at 400 m / day or less, and the whole amount of the filtered water is sent to the biological treatment device 12 to perform biological treatment. It was At this time, the filter medium 52 was washed twice a day.

【0030】この結果、高速濾過装置10での固体成分
の除去率は、SS(浮遊固形物質)として約60%、B
ODとして約40%であり、高速濾過装置10出口での
濾過水の水質は、SSが60ppm、BODが80〜9
0ppm、アンモニア性窒素が25ppm、リン濃度が
3ppmであった。また、高速濾過装置10で濾過した
濾過水を生物処理装置12で生物処理した後の処理水の
水質は、SSが5ppm以下、BODが5ppm以下、
アンモニア性窒素が5ppm以下、リン濃度が1ppm
以下であり、高速濾過装置10で濾過することにより、
生物処理装置12の負荷が低減され、生物処理装置12
での生物処理を極めて効率よく行うことができた。
As a result, the removal rate of solid components in the high-speed filtration device 10 was about 60% as SS (suspended solid matter), and
The OD is about 40%, and the quality of the filtered water at the outlet of the high-speed filtration device 10 is 60 ppm for SS and 80-9 for BOD.
0 ppm, ammoniacal nitrogen was 25 ppm, and phosphorus concentration was 3 ppm. In addition, the quality of the treated water after biological treatment of the filtered water filtered by the high-speed filtration device 10 by the biological treatment device 12 is 5 ppm or less for SS and 5 ppm or less for BOD,
Ammonia nitrogen is 5ppm or less, phosphorus concentration is 1ppm
It is below, by filtering with the high-speed filtration device 10,
The load on the biological treatment device 12 is reduced, and the biological treatment device 12 is reduced.
It was possible to carry out biological treatment in a very efficient manner.

【0031】これに対し、従来の排水処理装置の最初沈
殿池での固体成分の除去率は、SSとして約40%、B
ODとして約30%であった。また、濾過速度400m
/日以下での高速濾過装置10の濾過槽38内での排水
の滞留時間は約15分であるのに対し、従来の最初沈殿
池での排水の滞留時間は2時間を要した。このことか
ら、本発明は、従来に比べて濾過時間を1/8に短縮で
き、しかも濾過水の水質を向上させることができた。こ
のことは、高速濾過装置10は最初沈殿池に比べ装置の
敷地面積を略1/8に縮小することができる。
On the other hand, the removal rate of the solid component in the first settling tank of the conventional wastewater treatment equipment is about 40% as SS, B
The OD was about 30%. Also, filtration speed 400m
The retention time of the waste water in the filtration tank 38 of the high-speed filtration device 10 at less than 1 day / day was about 15 minutes, whereas the retention time of the waste water in the conventional first settling tank required 2 hours. From this, the present invention was able to shorten the filtration time to 1/8 of that of the prior art and further improve the quality of filtered water. This means that the high-speed filtration device 10 can reduce the site area of the device to about 1/8 as compared with the first settling tank.

【0032】次に、流量計28で検知される流入排水量
が生物処理装置12の処理許容量の約2倍(2Q)の場
合について説明する。この場合は、原水タンク20の排
水に、カチオン系ポリマーの凝集剤を1.0〜2.0m
g/l添加し、高速濾過装置10での濾過速度を600
m/日で処理し、生物処理装置12の処理許容量を越え
る濾過水を分配装置66により放流用配管68に流して
直接放流するようにした。この時の濾材52の洗浄回数
は1日3回の割合で行った。
Next, a case will be described in which the amount of inflowing waste water detected by the flow meter 28 is about twice (2Q) the allowable treatment amount of the biological treatment apparatus 12. In this case, the effluent of the raw water tank 20 contains a cationic polymer coagulant of 1.0 to 2.0 m.
g / l is added, and the filtration speed in the high-speed filtration device 10 is 600
The treated water was treated at a rate of m / day, and the filtered water exceeding the treatment allowable amount of the biological treatment apparatus 12 was made to flow through the discharge pipe 68 by the distributor 66 to be discharged directly. At this time, the filter medium 52 was washed three times a day.

【0033】この結果、高速濾過装置10での固体成分
82の除去率は、SSとして85〜90%、BODとし
て約60%であり、高速濾過装置10出口での濾過水の
水質は、SSが40〜50ppm、BODが55〜65
ppm、アンモニア性窒素が25ppm、リン濃度が3
ppmであった。この場合、生物処理装置12の入口に
おけるBOD濃度が窒素濃度に対して不足する。この
為、バイパスバルブ42を所定量開いてバイパス配管4
0を介して排水の一部を生物処理装置12の嫌気槽64
に供給し、BOD濃度が80〜90ppmになるように
調整した。
As a result, the removal rate of the solid component 82 in the high speed filtration device 10 is 85 to 90% as SS and about 60% as BOD, and the quality of the filtered water at the outlet of the high speed filtration device 10 is SS. 40-50 ppm, BOD 55-65
ppm, ammoniacal nitrogen 25 ppm, phosphorus concentration 3
It was ppm. In this case, the BOD concentration at the inlet of the biological treatment device 12 is insufficient with respect to the nitrogen concentration. Therefore, the bypass valve 42 is opened by a predetermined amount and the bypass pipe 4 is opened.
The anaerobic tank 64 of the biological treatment equipment 12
And the BOD concentration was adjusted to 80 to 90 ppm.

【0034】次に、流量計28で検知される流入排水量
が生物処理装置12の処理許容量の約3倍(3Q)の場
合について説明する。この場合は、原水タンク20の排
水に、カチオン系ポリマーの凝集剤を1.0〜2.0m
g/l添加し、高速濾過装置10での濾過速度を900
m/日で処理し、生物処理装置12の処理許容量を越え
る濾過水を分配装置66により放流用配管68に流して
直接放流するようにした。この時の濾材52の洗浄回数
は1日6回の割合で行った。
Next, a case will be described in which the amount of inflowing wastewater detected by the flow meter 28 is about three times (3Q) the allowable treatment amount of the biological treatment apparatus 12. In this case, the effluent of the raw water tank 20 contains a cationic polymer coagulant of 1.0 to 2.0 m.
g / l is added, and the filtration speed in the high-speed filtration device 10 is 900
The treated water was treated at a rate of m / day, and the filtered water exceeding the treatment allowable amount of the biological treatment apparatus 12 was made to flow through the discharge pipe 68 by the distributor 66 to be discharged directly. At this time, the filter medium 52 was washed 6 times a day.

【0035】この結果、高速濾過装置10での固体成分
の除去率は、SSとして約80%、BODとして約50
%であり、高速濾過装置10出口での濾過水の水質は、
SSが45〜55ppm、BODが60〜75ppm、
アンモニア性窒素が20ppm、リン濃度が2ppmで
あった。また、高速濾過装置10で濾過した濾過水を生
物処理装置12で生物処理した後の処理水の水質は、S
Sが5ppm以下、BODが5ppm以下、アンモニア
性窒素が5ppm以下、リン濃度が1ppmであった。
As a result, the removal rate of solid components in the high-speed filtration device 10 was about 80% as SS and about 50 as BOD.
%, And the quality of the filtered water at the outlet of the high-speed filtration device 10 is
SS is 45 to 55 ppm, BOD is 60 to 75 ppm,
Ammoniacal nitrogen was 20 ppm and phosphorus concentration was 2 ppm. The quality of the treated water after the biological treatment of the filtered water filtered by the high-speed filtration device 10 by the biological treatment device 12 is S
S was 5 ppm or less, BOD was 5 ppm or less, ammoniacal nitrogen was 5 ppm or less, and phosphorus concentration was 1 ppm.

【0036】また、濾過速度900m/日の場合の高速
濾過装置10の濾過槽38内での排水の滞留時間は約6
分であった。このことから、本発明は、従来(滞留時間
は2時間)に比べて濾過時間を1/20に短縮でき、し
かも濾過水の水質を向上させることができた。また、こ
の場合も、生物処理装置12の入口におけるBOD濃度
が窒素濃度に対して不足する。この為、バイパスバルブ
42を所定量開いてバイパス配管40を介して排水の一
部を生物処理装置12の嫌気槽64に供給し、BOD濃
度が80〜90ppmになるように調整した。
The retention time of the waste water in the filtration tank 38 of the high-speed filtration device 10 when the filtration speed is 900 m / day is about 6
It was a minute. From this, the present invention was able to shorten the filtration time to 1/20 as compared with the conventional case (residence time was 2 hours), and was able to improve the quality of filtered water. Also in this case, the BOD concentration at the inlet of the biological treatment device 12 is insufficient with respect to the nitrogen concentration. Therefore, the bypass valve 42 was opened by a predetermined amount and a part of the wastewater was supplied to the anaerobic tank 64 of the biological treatment apparatus 12 through the bypass pipe 40, and the BOD concentration was adjusted to 80 to 90 ppm.

【0037】このように、本発明の排水処理装置によれ
ば、排水の流入排水量や水質に応じて、高速濾過装置1
0における濾過条件あるいは直接放流する放流量等の最
適な処理条件を選定できるようにしたので、生物処理装
置12の処理許容量を越える流入排水量があった場合で
も、生物処理装置12への負荷を軽減でき効率的な生物
処理を行うことができると共に、前記処理許容量を越え
る排水は高速濾過装置10で濾過するだけで良好な水質
の放流水を河川等に直接放流することができる。特に、
本発明の排水処理装置は合流式下水道の場合に最適であ
り、晴天時の流入排水が生物処理装置12の処理許容量
以下の場合はもちろんのこと、雨天時の一時的な増水に
より流入排水量が生物処理装置12の処理許容量を越え
る場合でも対応することができる。また、凝集剤を添加
し、且つ濾過速度を400m/日以下にすると、汚泥堆
積層84の形成と汚泥付着層86の両方の捕捉機構で固
体成分82が除去されるので、極めて高い除去率を得る
ことができる。また、排水に凝集剤を添加する場合に
は、排水の一部を生物処理装置12の入口にバイパス配
管40を介して供給し、微生物の栄養源である有機物を
所定濃度以上に維持するようにしたので、富栄養化防止
のため栄養塩類(窒素成分、リン成分)の除去を充分に
行うことができる。
As described above, according to the wastewater treatment apparatus of the present invention, the high-speed filtration apparatus 1 is selected according to the amount of inflowing wastewater and the water quality.
Since the optimum treatment condition such as the filtration condition at 0 or the discharge amount directly discharged can be selected, even if the inflowing wastewater amount exceeds the treatment allowable amount of the biological treatment device 12, the load on the biological treatment device 12 is reduced. It is possible to reduce and efficiently perform biological treatment, and it is possible to directly discharge discharged water having good water quality to a river or the like by simply filtering the wastewater exceeding the treatment allowable amount with the high-speed filtration device 10. In particular,
The wastewater treatment device of the present invention is optimal for the case of a combined sewer system, and not only when the inflowing drainage water during fine weather is less than the treatment allowable amount of the biological treatment device 12, but also when the inflowing drainage water amount is temporarily increased during rainy weather. It is possible to deal with the case where the treatment allowable amount of the biological treatment device 12 is exceeded. When a coagulant is added and the filtration speed is 400 m / day or less, the solid component 82 is removed by both the formation mechanism of the sludge accumulation layer 84 and the sludge adhering layer 86, so that an extremely high removal rate is achieved. Obtainable. When adding a coagulant to the wastewater, a part of the wastewater is supplied to the inlet of the biological treatment apparatus 12 through the bypass pipe 40 so that the organic matter, which is a nutrient source of microorganisms, is maintained at a predetermined concentration or higher. Therefore, nutrient salts (nitrogen component, phosphorus component) can be sufficiently removed to prevent eutrophication.

【0038】従って、生物処理装置12の処理許容量を
越える流入排水量があった場合でも、凝集剤の添加や濾
過速度を適切に選定することにより高速濾過装置10で
濾過しただけでも良好な水質が得られるので、濾過水の
一部を生物処理装置12で処理せずに河川等に放流して
も公共水域内の水質を悪化させることがない。次に、図
7に従って、本発明の排水処理方法及びその装置の第2
実施例を説明する。
Therefore, even if there is an inflowing wastewater amount exceeding the treatment allowable amount of the biological treatment apparatus 12, it is possible to obtain good water quality just by filtering with the high-speed filtering apparatus 10 by appropriately adding the coagulant and the filtration rate. Therefore, even if a part of the filtered water is discharged to the river without being treated by the biological treatment device 12, the water quality in the public water area is not deteriorated. Next, according to FIG. 7, the second of the wastewater treatment method and its apparatus of the present invention
An example will be described.

【0039】第2実施例は、高速濾過装置10を並列に
2系列設け、流量計28で計測される流入排水量に応じ
て2系列(A系統、B系統)の高速濾過装置10A、1
0Bを使い分けるようにしたものである。図7に示すよ
うに、排水は原水流入管18から、流量計28を通り原
水タンク20に流入し、原水タンク20から排水用分配
装置90に流れる。排水用分配装置90では、流量計2
8からの流入排水量を示す信号に基づいて2系列(A系
統、B系統)の高速濾過装置10A、10Bに排水を分
配する。また、B系統の生物処理配管62には分配装置
66が設けられ、B系統の濾過水をA系統の生物処理配
管62に合流させたり、放流用配管68を介して河川等
に直接放流したりする。なお、生物処理装置14のBO
D濃度が低い場合には、バイパス配管40を介して排水
の一部を生物処理装置12の嫌気槽64に供給すること
は第1実施例と同様である。
In the second embodiment, two series of high speed filtration devices 10 are provided in parallel, and two series (A system and B system) of high speed filtration devices 10A, 1 are provided according to the inflowing drainage amount measured by the flow meter 28.
OB is used properly. As shown in FIG. 7, the waste water flows from the raw water inflow pipe 18 into the raw water tank 20 through the flow meter 28, and then flows from the raw water tank 20 to the drainage distributor 90. In the drainage distributor 90, the flowmeter 2
The waste water is distributed to the two series (A system and B system) of the high-speed filtration devices 10A and 10B based on the signal indicating the inflowing waste water amount from 8. Further, a distribution device 66 is provided in the B system biological treatment pipe 62 to join the B system filtered water to the A system biological treatment pipe 62, or to directly discharge it to a river or the like via a discharge pipe 68. To do. The BO of the biological treatment device 14
When the D concentration is low, a part of the waste water is supplied to the anaerobic tank 64 of the biological treatment device 12 via the bypass pipe 40, as in the first embodiment.

【0040】次に、第2実施例における操作方法を説明
する。 (1)流入排水量が生物処理装置12の処理許容量(1
Q)の半分程度(1/2Q)の場合、排水は全てA系統
の高速濾過装置10Aに送水して凝集剤を添加せずに濾
過速度400m/日以下で処理し、濾過水の全量を生物
処理装置12に送って生物処理する。この時、分配装置
66によりA系統の濾過水がB系統に流れないようにす
る。 (2)流入排水量が生物処理装置12の処理許容量と同
程度(1Q)の場合、高速濾過装置10のA及びBの2
系統を使い、凝集剤を添加せずに濾過速度400m/日
以下で濾過し、分配装置66によりA及びBの2系統の
濾過水の全量を生物処理装置12に送って生物処理す
る。 (3)流入排水量が生物処理装置12の処理許容量の
1.5倍程度(1.5Q)となり、処理許容量を越えた
場合、分配装置66によりA及びBの2系統の生物処理
配管62の連通を遮断し、A系統の高速濾過装置10A
で濾過された濾過水を生物処理装置12に送水し、B系
統の高速濾過装置10Bで濾過された濾過水は放流用配
管68を介して直接放流するようにする。この状態で、
流入する排水に原水タンク20で凝集剤を添加すると共
に、排水用分配装置90によって生物処理装置12の処
理許容量に相当する排水量(1Q)をA系統の高速濾過
装置10Aに送水して濾過速度800m/日で処理し、
その後、生物処理装置12に送水する。また、原水タン
ク20で凝集剤が添加された残りの排水(0.5Q)
は、排水用分配装置90によりB系統の高速濾過装置1
0Bに送水し、濾過速度400m/日以下で処理され、
その後、放流用配管68を通って放流する。このよう
に、高速濾過装置10のA及びBの2系統を使い分ける
ことにより、放流する排水を濾過する高速濾過装置(B
系統)の濾過条件を固体成分82の除去率が極めて高く
なるように選定することができるので、放流される放流
水の水質を向上させることができる。この場合のB系統
の高速濾過装置10Bでの固体成分82の除去率は95
%程度と極めて高い除去率が得られた。 (4)流入排水量が生物処理装置12の処理許容量の2
倍程度(2Q)となり、処理許容量の範囲を更に越えた
場合、分配装置66によりA及びBの2系統の生物処理
配管62の連通を遮断し、A系統の高速濾過装置10A
で濾過された濾過水を生物処理装置12に送水し、B系
統の高速濾過装置10Bで濾過された濾過水を放流用配
管68を介して直接放流されるようにする。この状態
で、流入する排水に原水タンク20で凝集剤を添加する
と共に、排水用分配装置90によって生物処理装置12
の処理許容量に相当する排水量(1Q)をA系統の高速
濾過装置10Aに送水し、濾過速度800〜1000m
/日で処理し、その後、生物処理装置12に送水する。
また、原水タンク20で凝集剤が添加された残りの排水
(1Q)は、排水用分配装置90によりB系統の高速濾
過装置10Bに送水し、濾過速度800〜1000m/
日で処理し、その後、放流用配管68を通って放流す
る。
Next, the operating method in the second embodiment will be described. (1) The amount of inflowing wastewater is the treatment allowable amount (1
In the case of about half (Q) of Q), all the wastewater is sent to the high-speed filtration device 10A of system A and treated at a filtration speed of 400 m / day or less without adding a coagulant, and the entire amount of the filtered water is biological. It is sent to the processing device 12 for biological treatment. At this time, the distribution device 66 prevents the filtered water of system A from flowing to system B. (2) When the inflowing wastewater amount is about the same as the treatment allowable amount of the biological treatment device 12 (1Q), 2 of A and B of the high-speed filtration device 10
A system is used to perform filtration without adding a coagulant at a filtration rate of 400 m / day or less, and the distribution device 66 sends the entire amount of the filtered water of two systems A and B to the biological treatment device 12 for biological treatment. (3) When the amount of inflowing wastewater is about 1.5 times (1.5Q) as the treatment allowable amount of the biological treatment device 12 and exceeds the treatment allowable amount, the distribution device 66 causes the biological treatment pipes 62 of the two systems A and B to be provided. 10A of high-speed filtration device of system A by blocking the communication of
The filtered water filtered in (1) is sent to the biological treatment device 12, and the filtered water filtered by the B-system high-speed filtering device 10B is directly discharged through the discharge pipe 68. In this state,
A coagulant is added to the inflowing wastewater in the raw water tank 20, and the wastewater distribution device 90 sends a wastewater amount (1Q) corresponding to the treatment allowable amount of the biological treatment device 12 to the high-speed filtration device 10A of system A to filter the water. Processing at 800m / day,
Then, water is sent to the biological treatment device 12. In addition, the remaining wastewater with the coagulant added in the raw water tank 20 (0.5Q)
Is a high-speed filtration device 1 of the B system by the drainage distribution device 90.
Sent to 0B and treated at a filtration speed of 400 m / day or less,
Then, the water is discharged through the discharge pipe 68. In this way, by selectively using the two systems of A and B of the high speed filtration device 10, the high speed filtration device (B
Since the filtration conditions of the (system) can be selected so that the removal rate of the solid component 82 is extremely high, the water quality of the discharged water to be discharged can be improved. In this case, the removal rate of the solid component 82 in the B-system high-speed filtration device 10B is 95.
%, An extremely high removal rate was obtained. (4) The amount of inflowing wastewater is 2 which is the allowable treatment amount of the biological treatment device 12.
When it becomes about twice (2Q) and exceeds the allowable processing range, the distribution device 66 interrupts the communication between the two systems A and B of the biological treatment pipes 62, and the system A high-speed filtration device 10A.
The filtered water filtered in (1) is sent to the biological treatment device 12, and the filtered water filtered by the B-system high-speed filtering device 10B is directly discharged through the discharge pipe 68. In this state, a coagulant is added to the inflowing wastewater in the raw water tank 20, and the biological treatment device 12 is supplied by the wastewater distributor 90.
The amount of waste water (1Q) corresponding to the treatment allowable amount of is sent to the high-speed filtration device 10A of system A, and the filtration speed is 800 to 1000 m.
/ Day, and then water is sent to the biological treatment device 12.
The remaining wastewater (1Q) to which the coagulant has been added in the raw water tank 20 is sent to the high-speed filtration device 10B of system B by the drainage distribution device 90, and the filtration speed is 800 to 1000 m /
It is treated in the day and then discharged through the discharge pipe 68.

【0041】このように、本発明の第2実施例によれ
ば、高速濾過装置10を2系統並列に設けたことによ
り、河川等に直接放流する放流水の水質が悪化しないよ
うに流入排水量に応じてきめ細かな濾過条件を選定する
ことができる。特に多雨地域では、降り初めに流入排水
中の固体成分が多くなる傾向があるので、前記(3)の
操作を行うことにより、直接放流するB系統の高速濾過
装置10Bでの濾過速度を遅くして固定成分82の除去
率が高くなるように配慮することができる。また、降り
初めから時間が経過すると、流入排水量は増加するが、
排水中の固体成分82並びにBOD濃度も急激に低下す
るので、前記(3)の操作から前記(4)の操作に移行
させても放流水の水質低下は殆どなく自然環境に与える
影響が小さい。
As described above, according to the second embodiment of the present invention, the two high-speed filtration devices 10 are provided in parallel, so that the quality of the discharged water directly discharged to a river or the like is prevented from deteriorating. It is possible to select fine filtering conditions according to the conditions. Especially in a heavy rain area, the solid component in the inflowing wastewater tends to increase at the beginning of the rainfall, so by performing the operation of (3), the filtration speed in the high-speed filtration device 10B of the B system for direct discharge is slowed down. Therefore, it is possible to consider that the removal rate of the fixed component 82 is high. In addition, the amount of inflow drainage increases as time elapses from the beginning of the descent,
Since the solid component 82 and the BOD concentration in the waste water also drastically decrease, even if the operation of (3) is changed to the operation of (4), the quality of the discharged water is hardly deteriorated and the influence on the natural environment is small.

【0042】次に、第1実施例及び第2実施例における
濾材の洗浄方法について簡単に説明する。高速濾過装置
10の浮上濾材層37の通水抵抗が所定値に達した時点
で排水の供給を停止し濾材52の洗浄を行う。洗浄は、
先ず、原水弁36を閉じて排水が高速濾過装置10に供
給されるのを停止すると共に、洗浄排水バルブ46を開
にして濾過槽38内の排水を排出し、濾過槽38内の水
面をエア洗浄時に濾材52が上部スクリ−ン48に接触
しない位置にまで下げる。その後、洗浄排水バルブ46
を閉じる。濾過槽38内に残留する排水を濾材52の洗
浄水として、エア噴出管56に設けた中央のエアノズル
54からエアを約5分間噴出して、浮上濾材層37の中
央部の濾材52を上方向に、左右部の濾材52を下方向
に流動旋回させ、このときの噴射エアによって、濾材5
2に捕捉されている固体成分82を剥離する。
Next, a brief description will be given of the method of cleaning the filter medium in the first and second embodiments. When the water resistance of the floating filter material layer 37 of the high-speed filtration device 10 reaches a predetermined value, the supply of drainage is stopped and the filter material 52 is washed. Cleaning
First, the raw water valve 36 is closed to stop the drainage from being supplied to the high-speed filtration device 10, and the cleaning drainage valve 46 is opened to drain the drainage in the filtration tank 38, so that the water surface in the filtration tank 38 is aired. The filter medium 52 is lowered to a position where it does not come into contact with the upper screen 48 during cleaning. After that, wash drain valve 46
Close. The waste water remaining in the filtration tank 38 is used as washing water for the filter medium 52, and air is ejected from the central air nozzle 54 provided in the air ejection pipe 56 for about 5 minutes to raise the filter medium 52 in the central portion of the floating filter medium layer 37 upward. Then, the filter media 52 on the left and right parts are swirled downward, and by the air blown at this time, the filter media 5 is swirled.
The solid component 82 captured by 2 is peeled off.

【0043】次に、剥離した固体成分82の再付着を防
止するため、エア噴出管56に設けたエアノズル54全
部からエアを噴出させながら、洗浄排水バルブ46を開
き、剥離した固体成分82を多く含む排水である洗浄排
水を洗浄排水管44を介して濾過槽38外に排出する
(排水時間は約1〜2分)。次に、エア噴出管56から
のエアの噴出を止め、洗浄排水バルブ46を閉じて、洗
浄を終わる。
Next, in order to prevent the reattachment of the peeled solid component 82, while the air is ejected from all the air nozzles 54 provided in the air ejection pipe 56, the cleaning drain valve 46 is opened to remove the separated solid component 82. The cleaning drainage which is the drainage contained is discharged to the outside of the filtration tank 38 through the cleaning drainage pipe 44 (the drainage time is about 1 to 2 minutes). Next, the ejection of air from the air ejection pipe 56 is stopped, the cleaning drain valve 46 is closed, and the cleaning is completed.

【0044】[0044]

【発明の効果】本発明の排水処理方法及びその装置によ
れば、高速濾過工程と生物処理工程を有機的に組み合わ
せ、高速濾過工程で排水中の固体成分を高い除去率で除
去できるようにしたので、生物処理工程での負荷を軽減
させることができる。これにより、生物処理工程後の処
理水の水質を向上させることができると共に、生物処理
工程での有機物の分解に要するエア量を少なくできるの
でエアレーション動力を削減でき、更には余剰汚泥量の
発生を減少させることができる。また、生物処理工程の
硝化槽には活性汚泥とは別に硝化菌を包括固定した担体
を添加するようにしたので、硝化反応に要する時間を短
縮することができる。
According to the wastewater treatment method and apparatus of the present invention, the high-speed filtration step and the biological treatment step are organically combined so that the solid component in the wastewater can be removed at a high removal rate in the high-speed filtration step. Therefore, the load in the biological treatment process can be reduced. As a result, the quality of the treated water after the biological treatment process can be improved, and the amount of air required for decomposing organic substances in the biological treatment process can be reduced, which can reduce aeration power and further generate an excess sludge amount. Can be reduced. Further, since the carrier in which nitrifying bacteria are entrapped and fixed is added to the nitrification tank in the biological treatment process in addition to the activated sludge, the time required for the nitrification reaction can be shortened.

【0045】また、高速濾過工程において、排水の流入
量や水質に応じて濾過条件あるいは直接放流する放流量
等の最適な処理条件を選定できるようにしたので、生物
処理工程の処理許容量を越える流入排水量があった場合
でも、生物処理工程への負荷を軽減でき効率的な生物処
理を行うことができると共に、前記処理許容量を越える
排水は高速濾過工程で濾過するだけで良好な水質の放流
水を直接放流することができる。従って、特に、合流式
下水道の場合、晴天時のように流入排水が生物処理工程
の処理許容量以下の場合はもちろんのこと、雨天時の一
時的な増水により流入排水量が生物処理工程の処理許容
量を越える場合でも対応することができる。
Further, in the high-speed filtration process, it is possible to select the optimum treatment conditions such as the filtration condition or the direct discharge amount according to the inflow amount of the waste water and the water quality, so that the treatment allowable amount of the biological treatment process is exceeded. Even if there is an inflow of wastewater, the load on the biological treatment process can be reduced and efficient biological treatment can be performed, and wastewater that exceeds the treatment allowable amount can be discharged with good water quality simply by filtering it in the high-speed filtration process. Water can be discharged directly. Therefore, in particular, in the case of combined sewerage, not only when the inflowing wastewater is less than the treatment capacity of the biological treatment process, such as during fine weather, but also when the inflowing wastewater amount is the processing permission of the biological treatment process due to a temporary increase in water during rainy weather. It is possible to cope even when the capacity is exceeded.

【0046】また、排水に凝集剤を添加する場合には、
排水の一部を生物処理工程にバイパス経路を介して供給
し、微生物の栄養源である有機物を所定濃度以上に維持
するようにしたので、富栄養化防止のため栄養塩類(窒
素成分、リン成分)の除去を充分に行うことができる。
また、本発明の排水処理装置は、最初沈殿池と活性汚泥
処理を組み合わせた従来の排水処理装置に比べて流入排
水量に対する処理時間をを大幅に短縮でき、しかも濾過
水の水質を向上させることができる。これにより、本発
明の排水処理装置は、従来の排水処理装置に比べて装置
の敷地面積当たりの処理能力を大きくできる。従って、
装置のコンパクト化を図ることができる。
When a coagulant is added to waste water,
A part of the wastewater was supplied to the biological treatment process via a bypass route to maintain the organic substances, which are the nutrient sources of microorganisms, at a predetermined concentration or higher, so that nutrient salts (nitrogen component, phosphorus component) were prevented to prevent eutrophication. ) Can be sufficiently removed.
Further, the wastewater treatment equipment of the present invention can significantly reduce the treatment time for the amount of inflowing wastewater compared with the conventional wastewater treatment equipment which firstly combined the settling tank and the activated sludge treatment, and further improve the quality of filtered water. it can. As a result, the wastewater treatment equipment of the present invention can have a greater treatment capacity per site area than the conventional wastewater treatment equipment. Therefore,
The device can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の排水処理装置の第1実施例の
フローを示した構成図
FIG. 1 is a configuration diagram showing a flow of a first embodiment of a wastewater treatment apparatus of the present invention.

【図2】図2は、高速濾過装置の構造を説明する説明図FIG. 2 is an explanatory diagram illustrating the structure of a high-speed filtration device.

【図3】図3は、本発明に使用する濾材の一例を説明す
る側面図
FIG. 3 is a side view illustrating an example of a filter medium used in the present invention.

【図4】図4は、高速濾過装置の濾過速度を400m/
日で行い、添加剤を添加しない場合の排水中の固体成分
の捕捉機構を説明する説明図
FIG. 4 shows a filtration speed of a high-speed filtration device of 400 m /
Explanatory diagram explaining the capture mechanism of solid components in wastewater when performed on a daily basis and when no additive is added

【図5】図5は、高速濾過装置の濾過速度を400m/
日で行い、添加剤を添加した場合の排水中の固体成分の
捕捉機構を説明する説明図
FIG. 5 shows the filtration speed of the high-speed filtration device of 400 m /
Explanatory diagram explaining the capture mechanism of solid components in wastewater when the additive is added on a daily basis

【図6】図6は、高速濾過装置の濾過速度を400〜1
000m/日で行い、添加剤を添加した場合の排水中の
固体成分の捕捉機構を説明する説明図
FIG. 6 shows the filtration speed of the high-speed filtration device of 400 to 1;
Explanatory diagram for explaining the trapping mechanism of the solid component in the waste water when the additive is added at 000 m / day

【図7】図7は、本発明の排水処理装置の第2実施例の
フローを示した構成図
FIG. 7 is a configuration diagram showing a flow of a second embodiment of the wastewater treatment equipment of the present invention.

【符号の説明】[Explanation of symbols]

10…高速濾過装置 12…生物処理装置 14…沈殿装置 18…原水流入管 20…原水タンク 22…凝集剤タンク 28…流量計 36…原水弁 37…濾材浮上層 38…濾過槽 40…バイパス配管 42…バイパスバルブ 44…洗浄排水配管 48…上部スクリーン 50…下部スクリーン 52…濾材 56…エア噴出管 58…分散板 60…トラフ 62…生物処理配管 64…嫌気槽 66…分配装置 68…放流用配管 70…脱窒槽 72…消化槽 74…曝気装置 10 ... High-speed filtration device 12 ... Biological treatment device 14 ... Precipitation device 18 ... Raw water inflow pipe 20 ... Raw water tank 22 ... Flocculant tank 28 ... Flow meter 36 ... Raw water valve 37 ... Filter medium floating layer 38 ... Filtration tank 40 ... Bypass pipe 42 ... Bypass valve 44 ... Washing drainage pipe 48 ... Upper screen 50 ... Lower screen 52 ... Filter material 56 ... Air ejection pipe 58 ... Dispersion plate 60 ... Trough 62 ... Biotreatment pipe 64 ... Anaerobic tank 66 ... Distributor 68 ... Discharge pipe 70 … Denitrification tank 72… Digestion tank 74… Aeration device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小 島 正 行 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 川 尻 斉 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 山 本 博 文 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 能 登 一 彦 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 森 直 道 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayuki Kojima Inventor Masayuki Kojima 1-1-14, Uchikanda, Chiyoda-ku, Tokyo Inside Hirit Plant Construction Co., Ltd. (72) Inventor, Hitoshi Kawajiri 1 Uchikanda, Chiyoda-ku, Tokyo 1-14 No. 1 in Hiratsugi Plant Construction Co., Ltd. (72) Inventor Hirofumi Yamamoto 1-1-14 Kanda, Uchida, Chiyoda-ku, Tokyo In Hirtichi Plant Construction Co., Ltd. (72) Inventor Kazuhiko Noto Tokyo 1-14-14 Kanda, Chiyoda-ku, Tokyo Inside Hiratsugi Plant Construction Co., Ltd. (72) Inventor Naomichi Mori 1-14-114, Kanda, Chiyoda-ku, Tokyo

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】下水等の排水を浄化処理する排水処理方法
に於いて、 濾過槽内に上向流で流入させた排水を、前記濾過槽内に
設けられ前記排水よりも比重の小さな網目状円筒体の多
数の濾材で形成された浮上濾材層で濾過する高速濾過工
程と、 前記高速濾過工程で濾過した濾過水を、嫌気性処理を行
う嫌気槽、無酸素処理を行う脱窒槽、好気性処理を行う
硝化槽でそれぞれ活性汚泥中の微生物と接触させて前記
濾過水中の有機物成分、窒素成分、リン成分を生物処理
により除去する生物処理工程と、 から成ることを特徴とする排水処理方法。
1. A wastewater treatment method for purifying wastewater such as sewage, wherein the wastewater that has flowed in an upward flow into the filter tank is provided in the filter tank and has a mesh shape with a specific gravity smaller than that of the wastewater. A high-speed filtration step of filtering with a floating filter material layer formed by a large number of cylindrical filter media, the filtered water filtered in the high-speed filtration step is an anaerobic tank for anaerobic treatment, a denitrification tank for anoxic treatment, and aerobic A biological treatment step of removing organic matter components, nitrogen components and phosphorus components in the filtered water by biological treatment by bringing the microorganisms in the activated sludge into contact with each other in a nitrification tank for treatment.
【請求項2】前記網目状円筒体の濾材は、空隙率が80
%以上であると共に、網目を形成する線材の太さは1〜
5mmの範囲に、好ましくは2〜4mmの範囲にあるこ
とを特徴とする請求項1の排水処理方法。
2. The filter medium having a meshed cylindrical shape has a porosity of 80.
% Or more, and the thickness of the wire forming the mesh is 1 to
The wastewater treatment method according to claim 1, wherein the wastewater treatment method is within a range of 5 mm, preferably within a range of 2 to 4 mm.
【請求項3】前記硝化槽には活性汚泥とは別に硝化菌を
包括固定した担体が添加されていることを特徴とする請
求項1の排水処理方法。
3. The wastewater treatment method according to claim 1, wherein a carrier in which nitrifying bacteria are entrapped and fixed is added to the nitrification tank in addition to the activated sludge.
【請求項4】前記排水の流入排水量が前記生物処理工程
の処理許容量以下である場合には、高速濾過工程の濾過
速度を400m/日以下で濾過して濾過水の全量を生物
処理工程に送水し、 高速濾過工程に流入する排水の水量が生物処理工程の処
理許容量以上である場合には、排水に凝集剤を添加して
高速濾過工程の濾過速度を400m/日〜1000m/
日で濾過し、濾過水のうち前記処理許容量を生物処理工
程に送水すると共に、残りの濾過水を系外に放流するこ
とを特徴とする請求項1の排水処理方法。
4. When the inflowing wastewater amount of the wastewater is less than the treatment allowable amount of the biological treatment step, the filtration rate in the high-speed filtration step is filtered at 400 m / day or less, and the whole amount of the filtered water is passed to the biological treatment step. When the amount of wastewater that flows into the high-speed filtration step is more than the treatment allowable amount of the biological treatment step, a coagulant is added to the wastewater to increase the filtration rate of the high-speed filtration step from 400 m / day to 1000 m / day.
2. The waste water treatment method according to claim 1, wherein the filtration is carried out on a daily basis, and the treatment allowable amount of the filtered water is sent to the biological treatment step, and the remaining filtered water is discharged out of the system.
【請求項5】前記排水の流入排水量が生物処理工程の処
理許容量以上である場合には、排水に凝集剤を添加した
後に高速濾過工程を並列で行い、一方の高速濾過工程で
は濾過速度を400m/日〜1000m/日で濾過して
濾過水を生物処理工程に送水し、他方の高速濾過工程で
は濾過速度を400m/日以下で濾過して濾過水を系外
に放流することを特徴とする請求項1の排水処理方法。
5. When the inflowing wastewater amount of the wastewater is equal to or more than the treatment allowable amount of the biological treatment process, a high-speed filtration process is performed in parallel after adding a coagulant to the wastewater, and the filtration speed is increased in one of the high-speed filtration processes. It is characterized by filtering at 400 m / day to 1000 m / day and sending the filtered water to the biological treatment step, and at the other high-speed filtering step, filtering at a filtration speed of 400 m / day or less and discharging the filtered water out of the system. The wastewater treatment method according to claim 1.
【請求項6】前記排水に凝集剤を添加する場合には、排
水の一部を高速濾過工程を経ずに直接生物処理工程に供
給して微生物の栄養源である有機物を所定濃度以上に維
持することを特徴とする請求項4又は5の排水処理方
法。
6. When a coagulant is added to the wastewater, a part of the wastewater is directly supplied to a biological treatment step without passing through a high-speed filtration step to maintain an organic substance as a nutrient source of microorganisms at a predetermined concentration or more. The wastewater treatment method according to claim 4 or 5, wherein
【請求項7】前記排水に添加する凝集剤の添加有無を、
前記高速濾過工程に流入する排水の流量に基づいて制御
することを特徴とする請求項4、5又は6の排水処理方
法。
7. Whether or not a coagulant to be added to the wastewater is added,
The wastewater treatment method according to claim 4, 5 or 6, wherein the control is performed based on the flow rate of the wastewater flowing into the high-speed filtration step.
【請求項8】下水等の排水を浄化処理する排水処理装置
に於いて、 濾過槽内に上向流で流入させた排水を、前記濾過槽内に
設けられ前記排水よりも比重の小さな網目状円筒体の多
数の濾材で形成された浮上濾材層で濾過する高速濾過装
置と、 前記高速濾過装置で濾過した濾過水を、嫌気性処理を行
う嫌気槽、無酸素処理を行う脱窒槽、好気性処理を行う
硝化槽でそれぞれ活性汚泥中の微生物と接触させて前記
濾過水中の有機物成分、窒素成分、リン成分を生物処理
により除去する生物処理装置と、 前記高速濾過装置の前段に設けられ前記排水に凝集剤を
添加可能な凝集剤添加手段と、 前記排水を前記高速濾過装置をバイパスして前記生物処
理装置の入口に直接送水するバイパス経路と、 前記バイパス経路を開閉する開閉手段と、 前記高速濾過装置で濾過された濾過水を前記生物処理装
置を経由せずに系外に直接放流する放流経路と、 前記濾過水を前記生物処理装置と前記放流経路とに分配
する分配手段と、 から成ることを特徴とする排水処理装置。
8. A wastewater treatment device for purifying wastewater such as sewage, wherein the wastewater that has flowed into the filtration tank in an upward flow is provided in the filtration tank and has a mesh shape with a smaller specific gravity than the wastewater. A high-speed filtration device for filtering with a floating filter material layer formed of a large number of cylindrical filter media, and filtered water filtered by the high-speed filtration device, an anaerobic tank for performing anaerobic treatment, a denitrification tank for performing anoxic treatment, and aerobic A biological treatment device that removes organic components, nitrogen components, and phosphorus components in the filtered water by biological treatment by bringing the microorganisms in the activated sludge into contact with each other in a nitrification tank that performs the treatment, and the drainage provided in the preceding stage of the high-speed filtration device. A coagulant addition means capable of adding a coagulant, a bypass path for bypassing the high-speed filtration device to directly supply the wastewater to the inlet of the biological treatment device, an opening / closing means for opening / closing the bypass path, the high speed A discharge route for discharging the filtered water filtered by a filtration device directly to the outside of the system without passing through the biological treatment device; and a distribution means for distributing the filtered water to the biological treatment device and the discharge route. A wastewater treatment device characterized in that
【請求項9】前記排水の流入排水量を検知する検知手段
を設け、前記凝集剤添加手段からの凝集剤の添加有無
を、前記流入排水量の大小に応じて制御することを特徴
とする請求項8の排水処理装置。
9. A detecting means for detecting the inflowing and outflowing amount of the wastewater is provided, and whether or not the coagulant is added from the coagulant adding means is controlled according to the magnitude of the inflowing and discharging water amount. Wastewater treatment equipment.
JP6083473A 1993-06-24 1994-04-21 Wastewater treatment method and apparatus Expired - Lifetime JP2976272B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6083473A JP2976272B2 (en) 1994-04-21 1994-04-21 Wastewater treatment method and apparatus
US08/263,200 US5558763A (en) 1993-06-24 1994-06-21 Sewage treatment system with air jetting means
DE69421211T DE69421211T2 (en) 1993-06-24 1994-06-23 Wastewater treatment system
EP19970118843 EP0829456B1 (en) 1993-06-24 1994-06-23 Sewage Treatment Plant
EP19940109753 EP0630671B1 (en) 1993-06-24 1994-06-23 Sewage treatment system
DE69429676T DE69429676T2 (en) 1993-06-24 1994-06-23 wastewater treatment plant
US08/501,661 US5578200A (en) 1993-06-24 1995-07-12 Sewage treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6083473A JP2976272B2 (en) 1994-04-21 1994-04-21 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH07290085A true JPH07290085A (en) 1995-11-07
JP2976272B2 JP2976272B2 (en) 1999-11-10

Family

ID=13803440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6083473A Expired - Lifetime JP2976272B2 (en) 1993-06-24 1994-04-21 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2976272B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP2008000697A (en) * 2006-06-23 2008-01-10 Ngk Insulators Ltd Primary treatment method of combined sewage
WO2015001708A1 (en) * 2013-07-03 2015-01-08 メタウォーター株式会社 Water-treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP4678577B2 (en) * 2004-11-05 2011-04-27 株式会社日立プラントテクノロジー Wastewater treatment system
JP2008000697A (en) * 2006-06-23 2008-01-10 Ngk Insulators Ltd Primary treatment method of combined sewage
JP4674188B2 (en) * 2006-06-23 2011-04-20 メタウォーター株式会社 Primary treatment method for combined sewage
WO2015001708A1 (en) * 2013-07-03 2015-01-08 メタウォーター株式会社 Water-treatment device
JPWO2015001708A1 (en) * 2013-07-03 2017-02-23 メタウォーター株式会社 Water treatment equipment

Also Published As

Publication number Publication date
JP2976272B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US6383370B1 (en) Apparatus for treating wastewater
WO2020066827A1 (en) Operating method for organic waste water treatment apparatus and organic waste water treatment apparatus
US10106446B2 (en) Wastewater overflow systems and methods
US6793823B2 (en) Wastewater solids removal methods
KR100917267B1 (en) Graywater recycling apparatus using rainfall
JP2976272B2 (en) Wastewater treatment method and apparatus
KR101248394B1 (en) Overflow water treatment apparatus of confluent water drainage
CN211311225U (en) Emergency treatment system for rainwater pipe network intercepting sewage
KR200189492Y1 (en) The inclined precipitation tank in waste water disposal plant by microorganism contact
KR20050092154A (en) Wastewater treatment system
KR100385417B1 (en) Apparatus for Advanced Treatment of BOD in Sewage and Dirty Water
KR100879788B1 (en) Apparatus for treatment of wastewater capable of removing pollutant produced by cso efficiently, method, and system thereof
KR101162614B1 (en) Water reclamation and reusing equipment
US20060266704A1 (en) Biological filtration module for use within a wastewater treatment system
KR101095488B1 (en) Apparatus and method for treatment and reuse of stormwater runoff including nonpoint source material
KR100424748B1 (en) Treatment process and facilities for house hold waste water
JPH10202010A (en) Water treatment device
KR100659034B1 (en) Sludge treating apparatus for improvement of the sludge settlability in a rectangular settling tank
JP3739203B2 (en) Waste water treatment apparatus and operation method thereof
KR200335215Y1 (en) System of the brook purification using fluidal media
KR200351647Y1 (en) Wastewater treatment system
JP4384756B2 (en) Wastewater treatment equipment
KR100553978B1 (en) System of the brook purification using fluidal media
JPH11319868A (en) Waste water treatment and device
Kosanda et al. Development of a high-rate sedimentation process for wet weather treatment

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term