JPH07287002A - Gas chromatograph - Google Patents

Gas chromatograph

Info

Publication number
JPH07287002A
JPH07287002A JP10321594A JP10321594A JPH07287002A JP H07287002 A JPH07287002 A JP H07287002A JP 10321594 A JP10321594 A JP 10321594A JP 10321594 A JP10321594 A JP 10321594A JP H07287002 A JPH07287002 A JP H07287002A
Authority
JP
Japan
Prior art keywords
sample
gas
valve
sample gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10321594A
Other languages
Japanese (ja)
Other versions
JP2961680B2 (en
Inventor
Masatoshi Hikosaka
雅俊 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP10321594A priority Critical patent/JP2961680B2/en
Publication of JPH07287002A publication Critical patent/JPH07287002A/en
Application granted granted Critical
Publication of JP2961680B2 publication Critical patent/JP2961680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To analyze a concn. component within a range from high concn. to low concn. and a low sensitivity component. CONSTITUTION:A stop valve 11, a pressure reducing valve 21 and a threeway valve 22 are arranged to a sample gas inflow passage 20 and a stop valve 23 is arranged to a sample gas discharge passage 12. When the usual separation and analysis of sample gas SG are performed, two stop valves 11, 23 are set to a full-open state and the pressure of the sample gas SG is adjusted by the pressure reducing valve 21 so as to become same to the pressure at the time of usual measurement and the sample gas SG is guided to a sample valve 2 to be separated and analyzed. When a low concn. component or a low sensitivity component is measured, the pressure of the sample gas SG is set to required pressure by the pressure reducing valve 21 and the stop valve 11 is closed to set two stop valves 11, 23 to a full-open state and, when the sample gas SG is guided to the sample valve 2, the pressure of the sample gas SG becomes high and the amt. of the sample taken by a weighing pipe 3 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カラム内に固定相とし
て充填した充填剤とサンプルガスとの吸着性の差を利用
して各成分ガスに分離し、ガス分析を行なうガスクロマ
トグラフに関し、特に低濃度成分や低感度成分の測定を
可能にしたガスクロマトグラフに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas chromatograph for separating gas into component gases by utilizing the difference in adsorptivity between a packing material packed as a stationary phase in a column and a sample gas, and particularly to a gas chromatograph. The present invention relates to a gas chromatograph capable of measuring low concentration components and low sensitivity components.

【0002】[0002]

【従来の技術】石油化学プロセスや鉄鋼プロセスなどに
おいて、プロセスガスの各成分の濃度分析を行い、その
分析結果に基づいて各プロセス工程を監視したり、各種
制御を行ったりするための検出装置としてガスクロマト
グラフが従来から一般に用いられている。この種の工業
用ガスクロマトグラフは、測定すべきプロセスラインか
らサンプルガスを分取してキャリアガスによりカラムに
送り込み、このカラム内で各成分ガスを固定相に対する
各成分の吸着性(親和性)や分配係数の差異に基づく移
動速度の差を利用して分離した後検出器により検出し、
その電気信号をコントローラで波形処理し、これに基づ
いてプロセスの制御を行ったり、クロマトグラム波形を
プリントアウトしたりする構成となっている。
2. Description of the Related Art In a petrochemical process, a steel process, etc., the concentration of each component of a process gas is analyzed, and as a detection device for monitoring each process step and performing various controls based on the analysis result. Gas chromatographs have been commonly used. This kind of industrial gas chromatograph collects a sample gas from a process line to be measured and sends it to a column by a carrier gas, and in the column, each component gas is adsorbed (affinity) of each component to a stationary phase and After separating using the difference in moving speed based on the difference in distribution coefficient, it is detected by the detector,
The electric signal is subjected to waveform processing by the controller, the process is controlled based on this, and the chromatogram waveform is printed out.

【0003】図2はこの種の工業用ガスクロマトグラフ
の基本構成を示す図で、1は所定温度(60°C〜12
0°C程度)に加熱保持された恒温槽であり、その内部
にサンプルバルブ2、計量管3、カラム4、検出器5、
サンプルガスシャットオフバルブ11等が配設されてい
る。カラム4にはサンプルガスSGに応じて異なるが、
活性炭、活性アルミナ、モレキュラーシーブ等の粒度を
揃えた粉末が固定相として充填されている。検出器5と
しては、熱伝導率検出器、水素炎イオン化検出器等が使
用され、その検出信号がコントローラ6に送られて波形
処理される。非測定時において、サンプルバルブ2の流
路を実線の状態に保持することにより、第1キャリアガ
ス導入口7より供給されたHe等の不活性ガスからなる
キャリアガスCGをカラム4を経て検出器5に導く一
方、サンプルガス導入口8よりサンプルバルブ2に供給
されたサンプルガスSGを計量管3−ベント口9を経て
サンプルガス排出路12に廃棄している。測定に際して
サンプルバルブ2の流路を実線の状態から破線の状態に
切り換えると、計量管3によって分取されたサンプルガ
スSGは第2キャリアガス導入口10から導入されるキ
ャリアガスCGによってカラム4に送り込まれ、上記し
た固定相との吸着性等の相違により各成分ガス毎に分離
される。そして、この成分ガスは検出器5によって検出
され、電気信号に変換される。この電気信号は成分ガス
濃度に比例しており、これをコントローラ6によって波
形処理してプロセス工程を監視したり、クロマトグラム
波形を記録する。
FIG. 2 is a diagram showing the basic construction of an industrial gas chromatograph of this type, wherein 1 is a predetermined temperature (60 ° C. to 12 ° C.).
It is a constant temperature bath heated and maintained at about 0 ° C., inside which a sample valve 2, a measuring pipe 3, a column 4, a detector 5,
A sample gas shutoff valve 11 and the like are provided. Column 4 is different depending on the sample gas SG,
Powders having a uniform particle size, such as activated carbon, activated alumina, and molecular sieve, are packed as the stationary phase. As the detector 5, a thermal conductivity detector, a hydrogen flame ionization detector or the like is used, and the detection signal thereof is sent to the controller 6 and subjected to waveform processing. During non-measurement, the flow path of the sample valve 2 is maintained in the state of a solid line so that the carrier gas CG made of an inert gas such as He supplied from the first carrier gas inlet 7 passes through the column 4 and the detector. On the other hand, the sample gas SG supplied to the sample valve 2 from the sample gas introduction port 8 is discharged to the sample gas discharge passage 12 via the metering pipe 3 and the vent port 9 while being led to 5. When the flow path of the sample valve 2 is switched from the solid line state to the broken line state during the measurement, the sample gas SG collected by the measuring pipe 3 is introduced into the column 4 by the carrier gas CG introduced from the second carrier gas introduction port 10. The gas is sent and separated into each component gas due to the difference in the adsorptivity with the stationary phase. Then, this component gas is detected by the detector 5 and converted into an electric signal. This electric signal is proportional to the component gas concentration, and this is subjected to waveform processing by the controller 6 to monitor the process steps and record the chromatogram waveform.

【0004】各成分ガスの濃度は、サンプルガスSGと
同じ成分ガスからなる標準ガス(校正用サンプルガス)
HGを用いて出力値を校正し、CPUによって算出す
る。
The concentration of each component gas is a standard gas (calibration sample gas) composed of the same component gas as the sample gas SG.
The output value is calibrated using HG and calculated by the CPU.

【0005】[0005]

【発明が解決しようとする課題】ところで、計量管3を
組み込んだ内部計量管方式のサンプルバルブ2を用いた
従来のガスクロマトグラフにおいては、計量管サイズを
変更することができない構造となっている。また、サン
プルコンディショナにはフローメータが組み込まれてい
るので、広い範囲でサンプルガスの容量を変えることが
できない。このため、測定成分の分離が限定され、高濃
度成分から低濃度成分まで広範囲な成分分析ができない
という問題があった。すなわち、サンプルガスSGは計
量管3によって分取され、カラム4で各ガス成分に順次
分離される。したがって、サンプル量は常に一定である
ため、高濃度成分(%オーダー)から1ppm程度の濃
度の低濃度成分まで広い範囲で分析することが困難であ
る。例えば、小さい計量管を使用した場合(2〜20ミ
クロンリットル)、高濃度成分は測定可能であるが、低
濃度成分は出力が小さく、測定精度が悪いか測定不可と
なる。一方、大きい計量管を使用した場合(20〜20
00ミクロンリットル)は、高濃度成分の出力が飽和し
たり他成分との分離が悪くなるため高濃度成分の分析が
不可となり、代わりに低濃度成分は測定可能となる。加
えて、検出器に対する感度がキャリアガスと比較して差
が少ない低感度成分も測定することが困難である。この
ような問題を解決する方法として、低濃度成分や低感度
成分の測定に際しては、計量管を交換してサンプル量を
増大させ、出力信号を大きくすればよいわけであるが、
その場合は一旦装置を停止させる必要があり、実際的で
はない。
By the way, in the conventional gas chromatograph using the sample valve 2 of the internal metering tube type in which the metering tube 3 is incorporated, the structure is such that the metering tube size cannot be changed. Further, since the sample conditioner has a built-in flow meter, the volume of the sample gas cannot be changed in a wide range. Therefore, the separation of the measurement components is limited, and there is a problem that a wide range of component analysis from high concentration components to low concentration components cannot be performed. That is, the sample gas SG is separated by the measuring pipe 3 and sequentially separated into each gas component in the column 4. Therefore, since the sample amount is always constant, it is difficult to analyze in a wide range from a high concentration component (% order) to a low concentration component having a concentration of about 1 ppm. For example, when a small measuring tube is used (2 to 20 micron liters), a high concentration component can be measured, but a low concentration component has a small output and measurement accuracy is poor or measurement is impossible. On the other hand, when using a large measuring pipe (20 to 20
(00 micron liter), the output of the high-concentration component is saturated and the separation from other components is poor, so that the high-concentration component cannot be analyzed, and instead the low-concentration component can be measured. In addition, it is difficult to measure a low-sensitivity component whose sensitivity to the detector is smaller than that of the carrier gas. As a method of solving such a problem, when measuring a low-concentration component or a low-sensitivity component, it is sufficient to replace the measuring tube to increase the sample amount and increase the output signal.
In that case, it is necessary to stop the device once, which is not practical.

【0006】本発明は上記したような従来の問題点に鑑
みてなされたもので、その目的とするところは、サンプ
ル量を計量管のサイズによらずに増減することにより、
計量管を交換することなく高濃度成分から低濃度成分ま
で広範囲にわたる測定並びに低感度成分の測定を可能に
したガスクロマトグラフを提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to increase or decrease the sample amount regardless of the size of the measuring tube,
It is an object of the present invention to provide a gas chromatograph capable of measuring a wide range of components from high-concentration components to low-concentration components and measuring low-sensitivity components without replacing the measuring tube.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、サンプルバルブ、計量管、カラ
ム、検出器等を備えたガスクロマトグラフにおいて、サ
ンプルガスの流入路に前記サンプルバルブ側から止め
弁、減圧弁およびサンプルガスと標準ガスを交互に導入
する三方弁を配設すると共に、サンプルガスの排出路に
止め弁を配設し、かつこれら4つの弁を制御する演算部
を設けたことを特徴とする。
In order to achieve such an object, the present invention provides a gas chromatograph equipped with a sample valve, a measuring tube, a column, a detector and the like, wherein the sample valve is provided in the sample gas inflow path. A stop valve, a pressure reducing valve, and a three-way valve that alternately introduces the sample gas and the standard gas from the side are provided, and a stop valve is provided in the sample gas discharge path, and an arithmetic unit that controls these four valves is provided. It is characterized by being provided.

【0008】[0008]

【作用】本発明において、減圧弁は計量管に導かれるサ
ンプルガスと標準ガスの圧力を任意に設定する。三方弁
はサンプルガスと標準ガスの切り替えを行う。サンプル
ガス流入路側の止め弁は、同流入路を開閉する。サンプ
ルガス排出路側の止め弁は同排出路を開閉する。測定に
際して、これら弁を演算部によって開閉制御すると、計
量管によって計量されるサンプルガス(または標準ガ
ス)のサンプル量を増減することができる。すなわち、
サンプルガスの圧力を減圧弁によりサンプルガス排出路
側止め弁を閉止した状態で任意の圧力に設定する。次
に、サンプルガス流入路側と排出路側の止め弁を開いた
状態でサンプルガスを流す。次に、分析開始約10秒前
にサンプルガス排出路側の止め弁を閉じて計量管内部の
サンプルガスの圧力を一定にする。この圧力を通常測定
時より高く設定すると、計量管によって計量されるサン
プル量が増大する。したがって、低濃度成分または検出
器に対する感度がキャリアガスと比較して差が少ない低
感度成分を分析する場合は、通常より高い圧力に設定す
ればよい。そして、サンプルガス流入路側の止め弁を閉
じ、キャリアガスにより計量管内部のサンプルガスをカ
ラムに導いて各成分ガスに分離し、検出器によって検出
する。サンプルガスの測定終了後、三方弁を開いて標準
ガスを計量管に導き、サンプルガスと同じ圧力にてカラ
ムおよび検出器に導いて分離、検出し、その出力値でサ
ンプルガス成分の出力値を校正してサンプルガス成分の
濃度を算出する。
In the present invention, the pressure reducing valve arbitrarily sets the pressures of the sample gas and the standard gas introduced into the measuring pipe. The three-way valve switches between sample gas and standard gas. The stop valve on the sample gas inflow path side opens and closes the inflow path. The stop valve on the sample gas discharge passage side opens and closes the discharge passage. At the time of measurement, by controlling the opening and closing of these valves by the arithmetic unit, the sample amount of the sample gas (or standard gas) measured by the measuring pipe can be increased or decreased. That is,
The pressure of the sample gas is set to an arbitrary pressure while the stop valve on the sample gas discharge path side is closed by the pressure reducing valve. Next, the sample gas is caused to flow with the stop valves on the sample gas inflow side and the discharge path side opened. Next, about 10 seconds before the start of analysis, the stop valve on the sample gas discharge passage side is closed to make the pressure of the sample gas inside the measuring tube constant. Setting this pressure higher than during normal measurement increases the amount of sample to be metered by the metering tube. Therefore, when analyzing a low-concentration component or a low-sensitivity component having a small difference in sensitivity with respect to the detector as compared with the carrier gas, the pressure may be set higher than usual. Then, the stop valve on the sample gas inflow path side is closed, the sample gas inside the measuring pipe is guided to the column by the carrier gas, separated into each component gas, and detected by the detector. After the measurement of the sample gas is completed, open the three-way valve to introduce the standard gas into the measuring pipe, and then to the column and the detector at the same pressure as the sample gas to separate and detect it. Calibrate to calculate the concentration of the sample gas component.

【0009】[0009]

【実施例】以下本発明を図面に示す実施例に基づいて詳
細に説明する。図1は本発明に係るガスクロマトグラフ
の一実施例を示す概略構成図である。なお、図中図2と
同一構成部材のものに対しては同一符号を以て示し、そ
の説明を省略する。本実施例はサンプルガスSGの流入
路20にサンプルバルブ2側からサンプルガスシャット
オフバルブ(止め弁)11、減圧弁21およびサンプル
SGガスと標準ガスHGを交互に導入する三方弁22を
配設すると共に、サンプルガスSGの排出路12に止め
弁23を配設し、かつこれら4つの弁11,21,2
2,23を演算部としてのCPUエレキボード24に接
続して構成したものである。4つの弁11,21,2
2,23は、電磁弁からなり、CPUエレキボード24
からの信号によって駆動制御される。その他の構成は図
2に示した従来構造と同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on the embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a gas chromatograph according to the present invention. In the figure, the same components as those in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, a sample gas shutoff valve (stop valve) 11, a pressure reducing valve 21, and a three-way valve 22 for alternately introducing the sample SG gas and the standard gas HG are arranged in the sample gas SG inflow passage 20 from the sample valve 2 side. At the same time, the stop valve 23 is provided in the discharge path 12 for the sample gas SG, and these four valves 11, 21,
2 and 23 are connected to a CPU electric board 24 as a calculation unit. 4 valves 11,2,1
2 and 23 are solenoid valves, and CPU electric board 24
Drive is controlled by a signal from. Other configurations are the same as the conventional structure shown in FIG.

【0010】このような構成からなるガスクロマトグラ
フにおいて、通常の濃度で検出器に対する感度がキャリ
アガスCGと比較して十分な成分ガスの分離、分析を行
う場合は、2つの止め弁11,23を全開状態に設定し
減圧弁21により通常測定時と同じ圧力になるよう調整
し、サンプルガスSGをサンプルバルブ2に導いて行
う。標準ガスHGを測定する場合は、三方弁22を切り
替えて標準ガスHGをサンプル流入路20よりサンプル
バルブ2側に導けばよい。このようなサンプルガスSG
と標準ガスHGの測定は、図2において説明した従来装
置と全く同様であるため、その説明を省略する。
In a gas chromatograph having such a structure, two stop valves 11 and 23 are used in the case of separating and analyzing a component gas which has a sensitivity to a detector at a normal concentration and is sufficient as compared with a carrier gas CG. The pressure is adjusted so that the pressure is the same as that during normal measurement by setting the fully opened state and the pressure reducing valve 21, and the sample gas SG is guided to the sample valve 2. When measuring the standard gas HG, the three-way valve 22 may be switched to guide the standard gas HG from the sample inflow passage 20 to the sample valve 2 side. Such sample gas SG
Since the measurement of the standard gas HG and the standard gas HG is exactly the same as the conventional apparatus described in FIG. 2, the description thereof will be omitted.

【0011】次に、低濃度成分もしくは低感度成分から
なるサンプルガスSGを分離、分析する場合は、その出
力信号が小さく、測定が難しいため、以下の手順によっ
て行う。 CPUエレキボード24からの駆動信号によって減圧
弁21を駆動してその弁開度を調整し、サンプル流入路
20よりサンプルバルブ2に供給されるサンプルガスS
Gの圧力を所要の圧力に設定する。 サンプルガス流入路20側と排出路12側の止め弁1
1,23を開き、サンプルガスSGをサンプルガス流入
路20に流す。 分析開始直前(約10秒前)にサンプルガス排出路1
2側の止め弁23を閉じる。止め弁23を閉じると、サ
ンプルガス流入路20、サンプルバルブ2および計量管
3内のサンプルガスSGの圧力が高くなるため、計量管
3内部のサンプル量が増大する。 計量管3内部のサンプルガスSGの圧力が所定圧力に
達すると、サンプルガス流入路20側の止め弁11を閉
じ、サンプルバルブ2を実線の状態から破線の状態に切
り替える。サンプルバルブ2を切り替えると、計量管3
によって分取されたサンプルガスSGは第2キャリアガ
ス導入口10から導入されるキャリアガスCGによって
カラム4に送り込まれ、各成分ガス毎に分離される。そ
して、この成分ガスは、検出器5によって検出されて電
気信号に変換され、これをコントローラ6によって波形
処理してプロセス工程を監視したり、記録計によって記
録する。 サンプルガスSGの測定終了後、サンプルバルブ2を
実線の状態に切り替え、止め弁23を閉じ、三方弁22
を切り替えて標準ガスHGをサンプルガス流入路20よ
り計量管3に導き、この標準ガスHGの圧力を、上記測
定時のサンプルガスSGの圧力と同じ圧力にする。 計量管3内部の標準ガスHGの圧力が所定圧力に達す
ると、サンプルガス流入路20側の止め弁11を閉じ、
サンプルバルブ2を実線の状態から再び破線の状態に切
り替える。サンプルバルブ2を切り替えると、計量管3
によって分取された標準ガスHGは第2キャリアガス導
入口10から導入されるキャリアガスCGによってカラ
ム4に送り込まれ、検出器5によって検出され、その出
力値で前記サンプルSGの出力値を校正することによ
り、サンプルガスSG中の各成分ガスの濃度を算出す
る。
Next, when the sample gas SG consisting of a low-concentration component or a low-sensitivity component is separated and analyzed, the output signal is small and the measurement is difficult. The sample gas S supplied from the sample inflow passage 20 to the sample valve 2 is driven by driving the pressure reducing valve 21 by a drive signal from the CPU electric board 24 to adjust the valve opening degree.
Set the G pressure to the required pressure. Stop valve 1 on the side of sample gas inlet 20 and the side of outlet 12
1 and 23 are opened, and the sample gas SG is caused to flow into the sample gas inflow path 20. Immediately before the start of analysis (about 10 seconds before) sample gas exhaust path 1
The stop valve 23 on the 2 side is closed. When the stop valve 23 is closed, the pressure of the sample gas SG in the sample gas inflow path 20, the sample valve 2 and the measuring pipe 3 becomes high, so that the amount of sample in the measuring pipe 3 increases. When the pressure of the sample gas SG inside the measuring pipe 3 reaches a predetermined pressure, the stop valve 11 on the sample gas inflow path 20 side is closed, and the sample valve 2 is switched from the solid line state to the broken line state. When the sample valve 2 is switched, the measuring tube 3
The sample gas SG separated by is sent to the column 4 by the carrier gas CG introduced from the second carrier gas inlet 10 and separated into each component gas. Then, this component gas is detected by the detector 5 and converted into an electric signal, which is subjected to waveform processing by the controller 6 to monitor a process step or recorded by a recorder. After the measurement of the sample gas SG is completed, the sample valve 2 is switched to the solid line state, the stop valve 23 is closed, and the three-way valve 22
Is switched to guide the standard gas HG from the sample gas inflow passage 20 to the measuring pipe 3, and the pressure of the standard gas HG is made the same as the pressure of the sample gas SG at the time of the above measurement. When the pressure of the standard gas HG inside the measuring pipe 3 reaches a predetermined pressure, the stop valve 11 on the sample gas inflow passage 20 side is closed,
The sample valve 2 is switched from the solid line state to the broken line state again. When the sample valve 2 is switched, the measuring tube 3
The standard gas HG separated by is sent to the column 4 by the carrier gas CG introduced from the second carrier gas inlet 10 and detected by the detector 5, and the output value of the sample SG is calibrated by the output value thereof. By doing so, the concentration of each component gas in the sample gas SG is calculated.

【0012】かくしてこのような構成からなるガスクロ
マトグラフにおいては、弁11,21,22,23をC
PUエレキボード24によって開閉制御し、計量管3に
供給されるサンプルガスSGの圧力を変えることによ
り、計量管3によって計量、分取されるサンプル量を加
減調整するようにしたので、計量管をサンプルガスに応
じて交換する必要がなく、高濃度から低濃度まで広範囲
の濃度のガス分析さらには検出器に対して低感度の成分
のガス分析が可能である。なお、高濃度の成分を測定す
る場合は、反対に圧力を下げ、サンプル量を少なくすれ
ばよい。
Thus, in the gas chromatograph having such a structure, the valves 11, 21, 22, and 23 are C
Since the opening / closing control is performed by the PU electric board 24 and the pressure of the sample gas SG supplied to the measuring pipe 3 is changed, the amount of sample to be measured and dispensed by the measuring pipe 3 is adjusted. It is not necessary to replace the sample gas depending on the sample gas, and it is possible to analyze gas in a wide range of concentrations from high concentration to low concentration and further to analyze gas components having low sensitivity to the detector. When measuring a high-concentration component, on the contrary, the pressure may be lowered to reduce the sample amount.

【0013】[0013]

【発明の効果】以上説明したように本発明に係るガスク
ロマトグラフによれば、サンプルガスの流入路に前記サ
ンプルバルブ側から止め弁、減圧弁およびサンプルガス
と標準ガスを交互に導入する三方弁を配設すると共に、
サンプルガスの排出路に止め弁を配設し、これら4つの
弁を演算部によって駆動制御するように構成したので、
計量管のサイズを変更することなく、分取されるサンプ
ル量を圧力によって増減することができる。したがっ
て、サンプルガスの圧力を高くしてサンプル量を増大さ
せると、通常測定では困難な低濃度成分および低感度成
分の測定が可能となり、広範囲な分析を行うことができ
る。また、圧力調整は、計量管の交換と異なり、装置を
停止させる必要がなく、また4つの弁を組み込むだけで
よいので、構造が簡単で、従来装置を容易に改造するこ
とができる。
As described above, according to the gas chromatograph of the present invention, a stop valve, a pressure reducing valve, and a three-way valve for alternately introducing the sample gas and the standard gas are introduced into the sample gas inflow path from the sample valve side. With the placement
Since stop valves are arranged in the sample gas discharge path and these four valves are configured to be driven and controlled by the arithmetic unit,
The amount of sample dispensed can be increased or decreased by pressure without changing the size of the metering tube. Therefore, if the pressure of the sample gas is increased to increase the sample amount, it becomes possible to measure low-concentration components and low-sensitivity components, which are difficult to measure by ordinary measurement, and a wide range of analysis can be performed. Further, unlike the replacement of the measuring pipe, the pressure adjustment does not require stopping the device, and since only four valves need to be incorporated, the structure is simple and the conventional device can be easily modified.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るガスクロマトグラフの一実施例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a gas chromatograph according to the present invention.

【図2】 従来のガスクロマトグラフの概略構成を示す
図である。
FIG. 2 is a diagram showing a schematic configuration of a conventional gas chromatograph.

【符号の説明】[Explanation of symbols]

1…恒温槽、2…サンプルバルブ、3…計量管、4…カ
ラム、5…検出器、6…コントローラ、11…サンプル
シャットオフバルブ(止め弁)、12サンプルガス排出
路、20…サンプルガス供給路、21…減圧弁、22…
三方弁。
1 ... Constant temperature bath, 2 ... Sample valve, 3 ... Measuring pipe, 4 ... Column, 5 ... Detector, 6 ... Controller, 11 ... Sample shut-off valve (stop valve), 12 Sample gas discharge passage, 20 ... Sample gas supply Road, 21 ... Pressure reducing valve, 22 ...
Three-way valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 サンプルバルブ、計量管、カラム、検出
器等を備えたガスクロマトグラフにおいて、 サンプルガスの流入路に前記サンプルバルブ側から止め
弁、減圧弁およびサンプルガスと標準ガスを交互に導入
する三方弁を配設すると共に、サンプルガスの排出路に
止め弁を配設し、かつこれら4つの弁を制御する演算部
を設けたことを特徴とするガスクロマトグラフ。
1. In a gas chromatograph equipped with a sample valve, a measuring tube, a column, a detector, etc., a stop valve, a pressure reducing valve, and a sample gas and a standard gas are alternately introduced into the sample gas inflow path from the sample valve side. A gas chromatograph characterized in that a three-way valve is provided, a stop valve is provided in a sample gas discharge path, and an arithmetic unit for controlling these four valves is provided.
JP10321594A 1994-04-19 1994-04-19 Gas chromatograph Expired - Lifetime JP2961680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10321594A JP2961680B2 (en) 1994-04-19 1994-04-19 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10321594A JP2961680B2 (en) 1994-04-19 1994-04-19 Gas chromatograph

Publications (2)

Publication Number Publication Date
JPH07287002A true JPH07287002A (en) 1995-10-31
JP2961680B2 JP2961680B2 (en) 1999-10-12

Family

ID=14348287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10321594A Expired - Lifetime JP2961680B2 (en) 1994-04-19 1994-04-19 Gas chromatograph

Country Status (1)

Country Link
JP (1) JP2961680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021890A (en) * 2009-07-13 2011-02-03 Shimadzu Corp Gas analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115841A1 (en) 2015-12-29 2017-07-06 株式会社アイスティサイエンス Analysis preprocessing method for sample containing multiple constituents in significantly different concentrations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021890A (en) * 2009-07-13 2011-02-03 Shimadzu Corp Gas analyzer

Also Published As

Publication number Publication date
JP2961680B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
EP1721155B1 (en) Systems for characterizing a sorbent tube
US6439026B2 (en) Odor measuring apparatus
US5992216A (en) Method to analyze particle contaminants in compressed gases
US6494077B2 (en) Odor identifying apparatus
US20230012349A1 (en) Anomaly detection and diagnosis in chromatography applications
JP3282586B2 (en) Odor measurement device
JP3607997B2 (en) Analyzer for trace impurities in gas
EP0029690B1 (en) Method and apparatus for linearization of a gas analyzer and valve manifold assembly for gas dosing
JPS63175740A (en) Detector for gaseous component of air
JP4472893B2 (en) Odor measurement method
JP2961680B2 (en) Gas chromatograph
US5616827A (en) Flow manifold for high purity analyzers
JPH0634616A (en) Analysis of a trace of impurities
WO1993017333A2 (en) Carbon analyser
JPH04120461A (en) Analyzing apparatus of sf6 gas
JP4253971B2 (en) Odor identification device
JP3477606B2 (en) Method and apparatus for analyzing trace impurities in gas
US6441365B1 (en) Process and apparatus for elemental analysis with oxygen control
JPH0580040A (en) Automatic calibration of gas chromatography
JP3114926U (en) Flow controller and sample concentrator using the same
JP2828239B2 (en) Gas sample introduction device
JPH0580039A (en) Analysis method of gas chromatography
JPH0688765A (en) Leak test method for analyzer valve
JPH0442053A (en) Gas chromatograph
CN116465694A (en) Device and method for measuring oil vapor or hydrocarbon in gas