JPH07286864A - Method and device for displaying transition state of physical quantity of object to be measured - Google Patents

Method and device for displaying transition state of physical quantity of object to be measured

Info

Publication number
JPH07286864A
JPH07286864A JP6080179A JP8017994A JPH07286864A JP H07286864 A JPH07286864 A JP H07286864A JP 6080179 A JP6080179 A JP 6080179A JP 8017994 A JP8017994 A JP 8017994A JP H07286864 A JPH07286864 A JP H07286864A
Authority
JP
Japan
Prior art keywords
section
measurement
color
data
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080179A
Other languages
Japanese (ja)
Inventor
Tamaki Kawashima
環 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6080179A priority Critical patent/JPH07286864A/en
Publication of JPH07286864A publication Critical patent/JPH07286864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Measured Values (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

PURPOSE:To visualize the transition speed of an object to be measured which represents the physical quantity variation of the object per unit time. CONSTITUTION:A table generating section 9 reads dimensional data and the number of divisions at every measuring time. The section 9 generates a color scheme table for boundary line at measuring time and another color scheme table for dividing data by selecting the color numbers corresponding to divisions and boundary lines and stores the tables in a table storing section 5. A point calculating section 7 divides all data, calculates boundary lines, and stores the boundary points in a data storing section 2 by measuring time. The boundary point group at a certain measuring time is fetched from the section 2 and, when the boundary point group is of this year, an equivalent line diagram plotting section 8 plots lines connecting boundary points to each other by calculation and a coloring section 10 displays the lines on a picture displaying device 11 in the colors decided by referring to the color scheme table for dividing data. The section 8, in addition, performs calculation for connecting boundary points to each other by fetching the boundary point group at one measuring time and displays the boundary lines of past equivalent lines upon an equivalent line diagram colored in the colors decided by referring to the color scheme table for boundary line at measuring time in an overlapping way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は測定対象物の各測定点の
物理量が等しい点を結んで作成される、例えば等高線
図、等圧線図等の等量線図を表示する図形処理システム
に係り、特に侵食、腐食、風化、摩耗等時間が経過する
につれて減少し続ける物理量を測定対象とし、この測定
対象物の予防保全を目的としたシステムに関し、測定対
象物の測定量である物理量の遷移状態を等量線図として
表示する測定対象物の物理量遷移状態表示方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphic processing system for displaying a contour map such as a contour map or an isobar map, which is created by connecting points having the same physical quantity of each measurement point of an object to be measured. In particular, the physical quantity that continues to decrease over time such as erosion, corrosion, weathering, and wear is measured, and the transition state of the physical quantity that is the measured quantity of the measured object is measured in relation to the system for preventive maintenance of this measured object. The present invention relates to a method and apparatus for displaying a physical quantity transition state of a measurement target displayed as an isogram.

【0002】[0002]

【従来の技術】等圧線図・等高線図等の等量線図は広い
分野で使用される。特に腐食、侵食、風化、摩耗等時間
が経つにつれ減少し続けるものを対象として各測定時の
状態を分析するために等量線図を用いることが多い。
2. Description of the Related Art Contour maps such as contour maps and contour maps are used in a wide range of fields. In particular, a contour map is often used to analyze the state at each measurement, especially for those that continue to decrease with time such as corrosion, erosion, weathering, and wear.

【0003】従来の技術では、測定対象物の表面上の各
測定点における例えば、肉圧の寸法データより得られた
等量線図における測定時毎の変化を見るために、各測定
時の等量線図を個々に表示し、それらを見比べなければ
ならなかった。
In the prior art, for example, at each measurement point on the surface of the object to be measured, in order to see the change at each measurement time in the contour map obtained from the dimension data of the wall pressure, I had to display the individual dose diagrams and compare them.

【0004】更に測定対象物の測定量である物理量の一
定時間当たりの変化量である遷移速度を得るために、各
測定時の寸法データと前回測定時の寸法データの差を計
算しなければならなかった。
Further, in order to obtain a transition speed which is a change amount of a physical quantity which is a measured quantity of an object to be measured in a constant time, a difference between the dimensional data at each measurement and the dimensional data at the previous measurement must be calculated. There wasn't.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来の
等量線図の表示方法では、各測定時ごとの状態を個々に
表示するが、測定対象物の測定量である物理量の一定時
間当たりの変化量である遷移速度を表示することができ
ないという問題があった。
As described above, in the conventional method for displaying an isogram, the state at each measurement time is individually displayed, but the physical quantity, which is the measured quantity of the object to be measured, per unit time. There is a problem in that it is not possible to display the transition speed, which is the change amount of.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、測定対象物の測定量である物理量の一定時
間当たりの変化量である遷移速度を表示することができ
る遷移状態表示方法及び装置を提供することにある。
The present invention has been made in view of the above circumstances, and a transition state display method and a transition state display method capable of displaying a transition speed which is a change amount of a physical quantity, which is a measured quantity of an object to be measured, per fixed time. To provide a device.

【0007】[0007]

【課題を解決するための手段】本発明の測定対象物の物
理量遷移状態表示方法は、各測定時期毎に測定対象物の
表面上に横線と縦線とで格子状に区切って設定された各
格子点上で測定した寸法データを取り込み、これらの寸
法データの最大値と最小値とを求め、かつ該最大値と最
小値との差を必要とする精度に応じて決定される区分数
n(nは自然数)で除することにより各区分間のピッチ
を求め、各区分の上限値及び下限値を求め、該各区分の
上限値及び下限値に基づいて全ての測定点の寸法データ
を該当する区分に割付け、隣接する各区分の境界線を求
めて作画すると共に、前記測定を一定期間毎に行ない、
かつ各測定時期において得られた境界線及び各区分を識
別可能に同一面上に重ねて表示することを特徴とする。
A method for displaying a physical quantity transition state of an object to be measured according to the present invention is a method in which a horizontal line and a vertical line are set on a surface of the object to be measured so as to be divided in a grid pattern at each measurement time. The number of sections n (which is determined in accordance with the accuracy that takes in the dimension data measured on the grid points, obtains the maximum value and the minimum value of these dimension data, and requires the difference between the maximum value and the minimum value (n is a natural number) to obtain the pitch between the sections, obtain the upper limit value and the lower limit value of each section, and the dimensional data of all measurement points based on the upper limit value and the lower limit value of each section , Draw and draw the boundary line of each adjacent section, and perform the measurement at regular intervals,
In addition, it is characterized in that the boundary line and each section obtained at each measurement time are overlapped and displayed on the same surface so as to be distinguishable.

【0008】また本発明の測定対象物の物理量遷移状態
表示方法は、前記各測定時の境界線の色や種類等の属性
を各測定時期とを対応させ、かつ前記各区分の領域を色
分け等により識別可能に表示することを特徴とする。
In the method of displaying the physical quantity transition state of the measurement object of the present invention, the attributes such as the color and type of the boundary line at each measurement are associated with each measurement time, and the area of each section is color-coded. It is characterized by being displayed so that it can be identified by.

【0009】更に本発明の測定対象物の物理量遷移状態
表示装置は、各測定時期毎に測定対象物の表面上に横線
と縦線とで格子状に区切って設定された各格子点上で測
定した寸法データを入力する入力手段と、測定時期と該
測定時期に得られた寸法データに基づいて作成された等
量線図の境界線の色との対応関係を示す測定時境界線配
色テーブルと、各測定時期に得られた寸法データに基づ
いて作成された等量線図の前記寸法データの分布範囲を
示す区分と該区分色塗されるの色との対応関係を示すデ
ータ区分配色テーブルとを有する記憶手段と、前記記憶
手段記憶されている測定時境界線配色テーブル及びデー
タ区分配色テーブルを参照して前記入力手段から入力さ
れた寸法データについて演算処理を行なう処理手段と、
処理手段の演算結果に基づいて測定対象物の測定量であ
る物理量の遷移状態を表示する表示手段とを有し、前記
処理手段は、前記入力手段から前記寸法データを取り込
み、これらの寸法データの最大値と最小値とを求め、か
つ該最大値と最小値との差を必要とする精度に応じて決
定される区分数n(nは自然数)で除することにより各
区分間のピッチを求め、各区分の上限値及び下限値を求
め、該各区分の上限値及び下限値に基づいて全ての測定
点の寸法データを該当する区分に割付け、隣接する各区
分の境界線を求めて作画すると共に、前記測定を一定期
間毎に行ない、かつ各測定時期において得られた前記境
界線及び各区分を前記測定時境界線配色テーブル及びデ
ータ区分配色テーブルを参照して同一色を使用しないで
色分けし、前記表示手段の画面上に重ねて表示すること
を特徴とする。
Further, the physical quantity transition state display device for a measurement object of the present invention measures at each grid point set by dividing the surface of the measurement object by a horizontal line and a vertical line in a grid pattern at each measurement time. An input means for inputting the measured dimension data, and a measurement boundary line color arrangement table showing a correspondence relationship between the measurement time and the color of the boundary line of the contour map created based on the dimension data obtained at the measurement time. , A data section distribution color table showing a correspondence relationship between a section showing a distribution range of the dimensional data of the contour diagram created based on the dimensional data obtained at each measurement time and a color of the section color painting Storage means having: and processing means for performing arithmetic processing on the dimension data input from the input means with reference to the measurement-time boundary line coloration table and the data section distribution color table stored in the storage means.
And a display unit for displaying a transition state of a physical quantity that is a measured amount of a measurement object based on a calculation result of the processing unit, and the processing unit captures the dimension data from the input unit, The pitch between the sections is obtained by obtaining the maximum value and the minimum value, and dividing the difference between the maximum value and the minimum value by the number of sections n (n is a natural number) determined according to the required accuracy, Obtain the upper limit and lower limit of each category, assign the dimension data of all measurement points to the relevant category based on the upper limit and the lower limit of each category, and determine the boundary line of each adjacent category and draw it. , The measurement is performed at regular intervals, and the boundary line and each section obtained at each measurement time are color-coded without using the same color with reference to the measurement-time boundary line color arrangement table and the data section distribution color table, The table And displaying superimposed on means screen.

【0010】[0010]

【作用】上記構成の測定対象物の物理量遷移状態表示方
法では、各測定時期毎に測定対象物の表面上に横線と縦
線とで格子状に区切って設定された各格子点上で測定し
た寸法データを取り込み、これらの寸法データの最大値
と最小値とを求め、かつ該最大値と最小値との差を必要
とする精度に応じて決定される区分数n(nは自然数)
で除することにより各区分間のピッチを求め、各区分の
上限値及び下限値を求め、該各区分の上限値及び下限値
に基づいて全ての測定点の寸法データを該当する区分に
割付け、隣接する各区分の境界線を求めて作画すると共
に、前記測定を一定期間毎に行ない、かつ各測定時期に
おいて得られた境界線及び各区分を識別可能に同一面上
に重ねて表示する。
In the method of displaying the physical quantity transition state of the measurement object having the above-described configuration, the measurement is performed on each grid point set by dividing the surface of the measurement object into grids with horizontal and vertical lines at each measurement time. The number of sections n (n is a natural number) determined by taking in dimension data, obtaining the maximum value and the minimum value of these dimension data, and determining the difference between the maximum value and the minimum value in accordance with the required accuracy.
Divide by to find the pitch between each section, find the upper and lower limits of each section, assign the dimensional data of all the measurement points to the corresponding section based on the upper and lower limits of each section, adjacent The boundary line of each section is obtained and drawn, the measurement is performed at regular intervals, and the boundary line and each section obtained at each measurement time are overlapped and displayed on the same surface in a distinguishable manner.

【0011】また上記構成の測定対象物の物理量遷移状
態表示方法では、前記各測定時の境界線の色や種類等の
属性を各測定時期とを対応させ、かつ前記各区分の領域
を色分け等により識別可能に表示する。
Further, in the method for displaying the physical quantity transition state of the measurement object having the above-mentioned configuration, the attributes such as the color and type of the boundary line at each measurement are associated with each measurement time, and the areas of each section are color-coded. Are displayed so that they can be identified.

【0012】更に上記構成の測定対象物の物理量遷移状
態表示装置では、処理手段は、入力手段から各測定時期
毎に測定対象物の表面上に横線と縦線とで格子状に区切
って設定された各格子点上で測定した寸法データを取り
込み、これらの寸法データの最大値と最小値とを求め、
かつ該最大値と最小値との差を必要とする精度に応じて
決定される区分数n(nは自然数)で除することにより
各区分間のピッチを求め、各区分の上限値及び下限値を
求め、該各区分の上限値及び下限値に基づいて全ての測
定点の寸法データを該当する区分に割付け、隣接する各
区分の境界線を求めて作画すると共に、前記測定を一定
期間毎に行ない、かつ各測定時期において得られた前記
境界線及び各区分を前記測定時境界線配色テーブル及び
データ区分配色テーブルを参照して同一色を使用しない
で色分けし、前記表示手段の画面上に重ねて表示する。
Further, in the apparatus for displaying the physical quantity transition state of the measurement object having the above-mentioned configuration, the processing means is set on the surface of the measurement object from the input means at each measurement time and divided into horizontal and vertical lines in a grid pattern. Import the dimension data measured on each grid point, find the maximum and minimum values of these dimension data,
Further, the pitch between the sections is obtained by dividing the difference between the maximum value and the minimum value by the number of sections n (n is a natural number) determined according to the required accuracy, and the upper limit value and the lower limit value of each section are calculated. Obtain, allocate the dimensional data of all the measurement points to the corresponding section based on the upper limit value and the lower limit value of each section, determine the boundary line of each adjacent section and draw the image, and perform the measurement at regular intervals. And, the boundary line and each section obtained at each measurement time are color-coded without using the same color by referring to the measurement-time boundary line coloration table and the data section distribution color table, and superimposed on the screen of the display means. indicate.

【0013】したがって、測定対象物の測定量である物
理量の一定時間当たりの変化量である遷移速度を表示す
ることができる。また等量線図の境界線(輪郭線)及び
寸法データの分布を示す区分を色分けする等の画像処理
を行なうので、遷移速度を各区分毎に容易に視認するこ
とが可能となる。
Therefore, it is possible to display the transition speed, which is the amount of change in the physical quantity, which is the measured quantity of the object to be measured, per fixed time. Further, since image processing such as color-coding the boundary line (outline) of the isoquantity diagram and the section indicating the distribution of the dimension data is performed, the transition speed can be easily visually recognized for each section.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0015】図1には本発明に係る物理量遷移状態表示
装置の一実施例の構成が示されている。同図において物
理量遷移状態表示装置は、測定対象物の各測定点におけ
る肉圧の寸法データを含む各種データを入力する入力装
置1と、入力されたデータを記憶する記憶装置2と、各
種の演算処理を行なう中央処理装置6と、肉圧の寸法デ
ータの遷移状態を表示する画面表示装置11とから構成
されている。
FIG. 1 shows the configuration of an embodiment of the physical quantity transition state display device according to the present invention. In the figure, a physical quantity transition state display device includes an input device 1 for inputting various data including wall pressure dimension data at each measurement point of a measurement object, a storage device 2 for storing the input data, and various calculations. It is composed of a central processing unit 6 for processing and a screen display unit 11 for displaying a transition state of the dimension data of the wall pressure.

【0016】記憶装置2は、寸法データが格納されるデ
ータ格納部3と、色番号で構成されたカラーテーブルが
予め格納されているカラーテーブル格納部4と、測定時
期と該測定時期に得られた寸法データに基づいて作成さ
れた等量線図の境界線の色との対応関係を示す測定時境
界線配色テーブル及び各測定時期に得られた寸法データ
に基づいて作成された等量線図の前記寸法データの分布
範囲を示す区分と該区分に色塗される色との対応関係を
示すデータ区分配色テーブルが格納されるテーブル格納
部5とを有している。
The storage device 2 includes a data storage unit 3 in which dimension data is stored, a color table storage unit 4 in which a color table composed of color numbers is stored in advance, a measurement time point and a measurement time point. Boundary line color arrangement table at the time of measurement showing the correspondence with the color of the boundary line of the contour map created based on the measured dimension data and the contour map created based on the dimension data obtained at each measurement time. And a table storage unit 5 for storing a data section distribution color table showing a correspondence relationship between the section indicating the distribution range of the dimension data and the color painted on the section.

【0017】中央処理装置6は、等量線図を作画するた
めの点を生成する点演算部7と、該点演算部7により生
成された点を使用し等量線図を作画する等量線図作画処
理部8と、測定時境界線配色テーブルとデータ区分配色
テーブルを生成するテーブル生成部9と、等量線図作画
処理部8で作画された等量線図に色付け色塗りをする等
量線図の色塗処理部10とを有している。
The central processing unit 6 uses a point calculation unit 7 for generating points for drawing a contour map, and an equal amount for drawing a contour map using the points generated by the point calculation unit 7. A line drawing drawing processing unit 8, a table generation unit 9 for generating a measurement boundary line color arrangement table and a data section distribution color table, and a coloring drawing for the isogram drawn by the isogram drawing processing unit 8. It has a color painting processing unit 10 for an isogram.

【0018】本実施例は発電所の熱交換器を対象とした
予防保全システムである。熱交換器は長時間使用してい
る間に容器内に流通している高温高圧の蒸気によって容
器の肉厚が減少する。そこで点検時に超音波肉厚測定装
置等で肉厚を測定し、その経年的に減少する肉圧の寸法
データか等量線図(等厚線図)を作画し、熱交換器の容
器の肉厚の遷移状態図を表示して熱交換器における各部
位の危険度を評価するものである。
The present embodiment is a preventive maintenance system for a heat exchanger of a power plant. In the heat exchanger, the wall thickness of the container is reduced by the high-temperature and high-pressure steam flowing in the container during long-time use. Therefore, at the time of inspection, measure the wall thickness with an ultrasonic wall thickness measuring device, etc., and draw a dimensional data of the wall pressure that decreases over time or a contour map (constant thickness map), and draw the meat of the container of the heat exchanger. The transition state diagram of thickness is displayed to evaluate the degree of danger of each part in the heat exchanger.

【0019】まず熱交換器の容器の肉圧を示す寸法デー
タについて図2を用いて説明する。ここでは熱交換器の
点検を4年前から2年毎に行っている。肉厚の測定と
は、熱交換器の容器の表面を横線と縦線で格子状に区切
り、その格子点上の位置(x,y)(x;ある格子点上
の一点を原点(ここでは右上の点)とした場合の原点か
らの横方向の距離、y;同じく原点からの縦方向の距
離)について厚さzを計ることをいう。例えば格子点上
の位置(x1,y1)について4年前の肉厚寸法z1
(4)、2年前の肉厚寸法z1(2)、今年の肉厚寸法z1
(0)が測定より得られる。他の格子点上の位置(x2,
y2)、(x3,y3)、・・・・・についても同様に
得られる。つまり肉厚の寸法データは一つの位置に対し
て測定回数分、得られる。ここでは3回測定したので3
つづつ得られることになる。
First, dimensional data indicating the wall pressure of the container of the heat exchanger will be described with reference to FIG. Here, the heat exchanger is inspected every four years from four years ago. The measurement of wall thickness is to divide the surface of the container of the heat exchanger into horizontal and vertical lines in a grid pattern, and position (x, y) (x; one point on a grid point is the origin (here: In the case of the upper right point), the thickness z is measured with respect to the lateral distance from the origin, y; also the vertical distance from the origin). For example, for the position (x1, y1) on the grid point, the wall thickness dimension z1 four years ago
(4) Two years ago wall thickness z1 (2), this year wall thickness z1
(0) is obtained from the measurement. Positions on other grid points (x2,
The same can be obtained for y2), (x3, y3), .... That is, the thickness dimension data can be obtained for one position for the number of measurements. I measured 3 times here, so 3
You will get one after another.

【0020】肉厚の寸法データから等厚線図を得るまで
の手順を図3を使って説明する。
The procedure for obtaining the contour map from the thickness dimension data will be described with reference to FIG.

【0021】まず一番新しいデータである今年の測定時
に得られた寸法データの最大値、最小値から得た差を利
用者が予想精度に応じて必要な区分数n(nは自然数)
で割ピッチを求める。ここで最大値は18、最小値は1
2、区分数は3であるとすると、最大値と最小値の差6
を区分数3で割ってピッチは2となる。この時、最小値
12以上14未満のデータは区分1に属し、14以上1
6未満のデータを区分2に属し、16以上最大値18以
下のデータを区分3に属すると決める。
First, the number n of divisions (n is a natural number) required by the user for the difference obtained from the maximum value and the minimum value of the dimensional data obtained at the measurement of this year, which is the newest data, is required.
Calculate the split pitch with. Where the maximum is 18 and the minimum is 1.
2 and the number of categories is 3, the difference between the maximum value and the minimum value is 6
Is divided by 3 to obtain a pitch of 2. At this time, data with a minimum value of 12 or more and less than 14 belongs to Category 1, and data of 14 or more and 1
It is determined that the data of less than 6 belongs to the category 2, and the data of 16 or more and the maximum value of 18 or less belongs to the category 3.

【0022】寸法データから等量線図を得るまでの手順
としては、まずデータの最大値、最小値の差と利用者に
とって必要な区分数から各区分の下限値、上限値を計算
して求めておく。上限値と下限値の差がピッチになるよ
うに設定する。ここでは、区分1の下限値は最小値14
上限値は16、区分2の下限値は14上限値は16、区
分3の下限値は16上限値は最大値18となる。
As a procedure for obtaining the isogram from the dimension data, first, the lower and upper limits of each section are calculated from the difference between the maximum value and the minimum value of the data and the number of sections necessary for the user. Keep it. Set so that the difference between the upper and lower limits becomes the pitch. Here, the lower limit of Category 1 is the minimum value 14
The upper limit is 16, the lower limit of category 2 is 14, the upper limit is 16, and the lower limit of category 3 is 16 and the upper limit is maximum 18.

【0023】次に求めた各区分の上限値と下限値を使っ
て、全ての寸法データがどの区分に属するか振り分け
る。例えばある寸法データが13とすれば、13は区分
1の下限値12以上上限値14未満なので区分1に属す
る。また寸法データが15であれば区分2の下限値14
以上、上限値16未満なので区分2に属する。
Next, by using the upper limit value and the lower limit value of each section obtained, it is sorted out to which section all the dimension data belong. For example, if a certain dimension data is 13, 13 belongs to Category 1 since 13 is less than the lower limit 12 and less than the upper limit 14 of Category 1. If the size data is 15, the lower limit of Category 2 is 14
As described above, since it is less than the upper limit value 16, it belongs to Category 2.

【0024】このように全ての寸法データの区分分けを
行った後に、各区分毎に等厚線図を作画するための輪郭
線の点を求める。図3(a)の31は測定した寸法デー
タを区分分けして得られた結果の分布図である。符号○
と符号□はその格子上の寸法データが異なる区分に属す
るものである。等量線図の輪郭線は一般に各区分の境界
線である。例えば区分数が3であれば、区分1と区分2
の境界線、区分2と区分3の境界線が2つの等量線図の
輪郭線として現れる。そして区分nと区分n+1との境界
線は端点の寸法データが一方は区分nに属し、他方は区
分n+1に属する線分と必ず交差する。つまり境界線と線
分の交点を境界点と称すると、図3(a)の分布図31
でいえば端点が符号○と符号□である線分上に存在す
る。また区分nと区分n+1の境界点の肉厚の寸法は、区
分nの上限値であり区分n+1の下限値である寸法に相当
することから、境界点の位置を比例配分式を使って求め
る。比例配分式は符号○の位置の寸法データZn、符号
□の位置の寸法データZn+1、区分nと区分n+1の境
界点の寸法、つまり区分nの上限値であり区分n+1の
下限値である値L、比率Pを使って次の式で表される。
After dividing all the dimension data in this way, the points of the contour line for drawing the isosmogram are obtained for each division. Reference numeral 31 in FIG. 3A is a distribution chart of the results obtained by dividing the measured dimension data. Code ○
And the symbol .quadrature. Belong to the sections having different dimensional data on the grid. The contour line of the isogram is generally the boundary line of each section. For example, if the number of categories is 3, then category 1 and category 2
The boundary line of, and the boundary lines of section 2 and section 3 appear as the contour lines of the two isograms. In the boundary line between the section n and the section n + 1, the dimensional data of the end point always intersects with the line segment that belongs to the section n on the one hand and belongs to the section n + 1 on the other hand. That is, when the intersection of the boundary line and the line segment is called a boundary point, the distribution chart 31 of FIG.
In other words, the end points exist on the line segment with the code ◯ and the code □. Further, since the dimension of the wall thickness of the boundary point between the section n and the section n + 1 corresponds to the dimension which is the upper limit value of the section n and the lower limit value of the section n + 1, the position of the boundary point is proportionally distributed. Ask using. The proportional distribution formula is the size data Zn at the position of the symbol ◯, the size data Zn + 1 at the position of the symbol □, the size of the boundary point between the section n and the section n + 1, that is, the upper limit value of the section n and the lower limit value of the section n + 1. It is expressed by the following equation using the value L and the ratio P.

【0025】[0025]

【数1】 [Equation 1]

【0026】まず区分1に属する寸法データと区分2に
属する寸法データについて着目する。図3(a)の分布
図31中、格子点上の符号○の位置は寸法データが区分
1に属し、符号□の位置は寸法データが区分2に属す
る。この時、図3(b)に示すように区分1と区分2と
の境界線は、必ず端点が符号○と符号□である線分32
と交差する。境界線と線分の交点を境界点と称するとす
ると、区分1と区分2の境界点X0は端点が○と□であ
る線分上に存在する。例えば図3(b)に示す線分32
で位置X1における肉厚の寸法データを13、位置X2
における肉厚の寸法データを15とすると、区分1と区
分2の境界点X0における肉厚の寸法は、区分1の上限
値であり区分2の下限値である寸法14に相当すること
から、境界点X0の位置Pは前記の比例配分の式(数
1)のZnに13、Zn+1に15、Lに14を代入して
First, attention is paid to the dimension data belonging to Category 1 and the dimension data belonging to Category 2. In the distribution diagram 31 of FIG. 3A, the dimension data belongs to the section 1 at the position of the symbol ◯ on the grid point, and the dimension data belongs to the section 2 at the position of the symbol □. At this time, as shown in FIG. 3B, the boundary line between the division 1 and the division 2 is always the line segment 32 whose end points are the symbols ◯ and □.
Intersect with. When the intersection of the boundary line and the line segment is called a boundary point, the boundary point X0 of the section 1 and the section 2 exists on the line segment whose end points are ◯ and □. For example, the line segment 32 shown in FIG.
At the position X1, the wall thickness dimension data is 13, and at the position X2
Assuming that the wall thickness dimension data in section 15 is 15, the wall thickness dimension at the boundary point X0 between section 1 and section 2 corresponds to dimension 14 which is the upper limit value of section 1 and the lower limit value of section 2. The position P of the point X0 is obtained by substituting 13 for Zn, 15 for Zn + 1, and 14 for L in the proportional distribution equation (Equation 1).

【0027】[0027]

【数2】 [Equation 2]

【0028】この式から境界点X0の位置Pは図3
(b)に示すように線分の中央となる。
From this equation, the position P of the boundary point X0 is shown in FIG.
It becomes the center of the line segment as shown in (b).

【0029】このようにして比例配分式から全ての境界
点の位置を計算し、最小二乗法等の数学的手段を用いて
境界点を結べば、区分1について図3(c)に示すよう
な区分1の等厚線が得られる。区分2についても同様に
して等厚線を描けば等厚線図を求めることが出来る。区
分3については、区分1と区分2を描くとそれ以外が区
分3であるため描く必要はない。
In this way, the positions of all the boundary points are calculated from the proportional distribution formula, and the boundary points are connected by using a mathematical means such as the least squares method. As shown in FIG. Section 1 isobaric lines are obtained. In the case of section 2 as well, a contour map can be obtained by drawing contour lines in the same manner. It is not necessary to draw the section 3 when the section 1 and the section 2 are drawn because the other sections are the section 3.

【0030】図4は遷移状態図を表示するための一連の
処理のフローチャートである。同図において、ステップ
41では寸法データを各測定時毎にデータ格納部3に入
力する。これと同時に必要な区分数も入力しておく。
FIG. 4 is a flowchart of a series of processes for displaying the transition state diagram. In the figure, in step 41, the dimension data is input to the data storage unit 3 at each measurement time. At the same time, enter the required number of categories.

【0031】次にステップ42ではステップ41で入力
したデータをテーブル生成部9に読み込む。ここではテ
ーブルを2つ生成する。カラーテーブル格納部4から寸
法データの属する区分と各測定時における等量線図の境
界線に対する色番号を重複しないように選出して、テー
ブル生成部9で各測定時の等量線図の境界線に対応つけ
る測定時境界線配色テーブル、寸法データの属する区分
の色番号を入れるデータ配色テーブルを生成し、テーブ
ル格納部5に格納する。
Next, at step 42, the data input at step 41 is read into the table generating section 9. Here, two tables are generated. From the color table storage unit 4, the division to which the dimensional data belongs and the color number for the boundary line of the contour map at each measurement are selected so as not to overlap, and the table generation unit 9 selects the boundary of the contour map at each measurement. A border color table at the time of measurement, which is associated with the line, and a data color table in which the color numbers of the sections to which the dimension data belong are generated and stored in the table storage unit 5.

【0032】ステップ43では全寸法データについて各
寸法データがどの区分に属するか区分分けをし、44で
は前記比例配分式で境界点の位置を計算し、計算した点
をもう一度データ格納部2に測定時期別に分類して格納
する。尚、ステップ43、44の処理は点演算部7で行
う。
In step 43, it is divided into categories to which each dimension data belongs for all dimension data. In step 44, the positions of the boundary points are calculated by the proportional distribution formula, and the calculated points are measured again in the data storage unit 2. Store by classifying by time. The processing of steps 43 and 44 is performed by the point calculation unit 7.

【0033】更にステップ45では測定時別に格納して
いた点の中からある測定時の境界点群を取り出し、その
後ステップ46でその境界点群が今年のものかどうか判
定する。今年の境界点群であればステップ47で数学的
手段を用いて取り出した境界点と境界点を結ぶように等
量線図作画処理部8で演算を行い、ステップ48で色塗
り処理部10によりデータ区分配色テーブルから参照さ
れた色で色付け色塗りして画面表示装置11に作画表示
する。
Further, at step 45, a boundary point group at a certain measurement is taken out from the points stored for each measurement, and then at step 46, it is judged whether or not the boundary point group is for this year. If it is the boundary point group of this year, the isogram drawing processing unit 8 performs an operation so as to connect the boundary points extracted by using the mathematical means in Step 47, and the color painting processing unit 10 in Step 48. The screen is drawn and displayed on the screen display device 11 by applying a coloring color with the color referred to from the data block distribution color table.

【0034】またステップ49では、ステップ44で測
定時別に分けてデータ格納部3に格納していた境界点の
中から過去の一測定時の境界点群を取り出す。
In step 49, a group of boundary points at one measurement in the past is extracted from the boundary points stored in the data storage unit 3 in step 44 separately for each measurement time.

【0035】更にステップ60では過去の測定時の等量
線図を描くために取りだした境界点群の境界点と境界点
を結ぶための演算処理を行い、ステップ61では色を測
定時境界線配色テーブルで参照し、ステップ46で色付
け色塗り作画表示した今年の等量線図上に過去の等量線
図の境界線を重ねて画面表示装置11に作画表示する。
図5は図4における処理42の具体的内容を示すフロ
ーチャートである。同図においてステップ50では、利
用者の予想精度に応じた必要な区分数と過去何回測定し
たか測定回数を抽出する。次のステップ51でテーブル
を二つ用意し、ステップ52ではカラーテーブル格納部
4に格納してあるカラーテーブルを参照して、各測定時
と対応つける色番号を選ぶ。
Further, in step 60, arithmetic processing is performed to connect the boundary points of the boundary point group extracted to draw the contour map in the past measurement, and in step 61, the color is colored in the boundary line during measurement. The table is referred to, and the boundary line of the past contour map is superimposed on the contour map of this year displayed in step 46 with coloring and color painting, and the image is displayed on the screen display device 11.
FIG. 5 is a flowchart showing the specific contents of the process 42 in FIG. In step 50 in the figure, the required number of categories according to the prediction accuracy of the user and the number of measurements in the past are extracted. In the next step 51, two tables are prepared, and in step 52, the color table stored in the color table storage unit 4 is referred to and the color number associated with each measurement is selected.

【0036】更にステップ53では、もし選んだ色番号
があればそれと重複するか否か判別して、重複しなけれ
ばステップ54でテーブル格納部5内の測定時境界線配
色テーブルに格納し、ステップ55で測定回数が終了し
たか否かを判定する。ここでステップ52からステップ
54までの処理を測定回数分より一回分少なく繰り返
す。これは今年の等量線図は色塗り処理を施すため境界
線は不必要だからである。
Further, in step 53, if there is a selected color number, it is judged whether or not it overlaps, and if it does not overlap, it is stored in the measurement boundary line color arrangement table in the table storage part 5 in step 54, At 55, it is determined whether or not the number of measurements has been completed. Here, the processing from step 52 to step 54 is repeated by one less than the number of times of measurement. This is because the contour lines for this year's contour map are color-painted, so no boundaries are necessary.

【0037】次にステップ56では区分の色としてカラ
ーテーブル格納部4に格納されているカラーテーブルか
ら選び出した色番号をステップ57でそれまでに決定し
た色番号と重ならないか否か判別して、重ならなければ
ステップ58でテーブル格納部5内のデータ区分配色テ
ーブルに格納する。ここでステップ56からステップ5
8までの処理を区分数回分繰り返す。この様な流れで測
定時境界線配色テーブルとデータ区分配色テーブルを生
成する。
Next, at step 56, it is judged whether or not the color number selected from the color table stored in the color table storage unit 4 as the color of the section does not overlap with the color number determined so far at step 57, If they do not overlap, in step 58, they are stored in the data area distribution color table in the table storage unit 5. Here, step 56 to step 5
The processes up to 8 are repeated several times for each category. In such a flow, the border color table at the time of measurement and the data area color table are generated.

【0038】図6はカラーテーブルと図4のステップ4
2で生成する二つのテーブルの関係を示す説明図であ
る。測定時配色テーブルとデータ区分配色テーブルの色
番号は、互いに重複しないという関係を有している。
FIG. 6 shows the color table and step 4 of FIG.
It is explanatory drawing which shows the relationship of the two tables produced | generated in 2. The color numbers in the measurement color arrangement table and the data area distribution color table have a relationship that they do not overlap each other.

【0039】図7は出力結果画面である。ここで危険レ
ベルというのは、寸法データの許容値10までの差で分
けている。よって危険度レベル1は上記区分1のことで
あり、危険度レベル2は上記区分2のことであり、危険
度レベル3は上記区分3のことである。まず区分である
危険度レベルにおいて今年と2年前の変位差A、A1を
比較すると、AとA1の大きさがA1よりもAのほうが
大きいことからA1よりもAのほうが遷移速度が大きい
ことが読み取れる。
FIG. 7 is an output result screen. Here, the danger level is divided by the difference up to the allowable value 10 of the dimension data. Therefore, the risk level 1 is the category 1, the risk level 2 is the category 2, and the risk level 3 is the category 3. First, when comparing the displacement differences A and A1 between this year and two years ago in the risk level, which is a category, since the size of A and A1 is larger than A1, the transition speed of A is faster than A1. Can be read.

【0040】また危険度レベル1において今年と2年前
の変位差B、B1の大きさを比較すると、BとB1の大
きさからB1よりもBのほうが大きいことからB1より
もBのほうが遷移速度が大きいことが読み取れる。さら
にこれらの結果から左側の部位A、Bの遷移速度は右側
の部位A1、B1の遷移速度に比べて大きいことが判
る。
Further, when comparing the magnitudes of the displacement differences B and B1 between this year and two years ago at the risk level 1, B is larger than B1 because of the magnitudes of B and B1. Therefore, B is more transitional than B1. It can be read that the speed is high. Further, from these results, it is understood that the transition speed of the left side portions A and B is higher than that of the right side portions A1 and B1.

【0041】また測定時期別にみると、危険度レベル2
において、2年前と4年前の変位差A(1)と今年と2年
前の変位差Aを比較すると、A(1)よりもAのほうが大
きいことからA(1)よりもAのほうが遷移速度が大きい
ことが読み取れる。
Looking at each measurement time, the risk level 2
In comparing the displacement difference A (1) two years ago and four years ago with the displacement difference A this year and two years ago, A is larger than A (1), so A of A is larger than A (1). It can be seen that the transition speed is higher.

【0042】また危険度レベル1において、2年前と4
年前の変位差B(1)と今年と2年前の変位差Bを比較す
ると、B(1)よりもBのほうが大きいことからB(1)より
もBのほうが遷移速度が大きいことが読み取れる。これ
らの結果から右側の部位A(1)、A、B(1)、Bにおいて
は、4年前から2年前までの遷移速度よりも2年前から
今年までの遷移速度のほうが大きくなっていることが判
る。つまり遷移速度は年が経過する毎に増加傾向である
ことが判る。
At the risk level 1, two years ago and four
Comparing the displacement difference B (1) from one year ago and the displacement difference B from this year and two years ago, B is larger than B (1), so B has a higher transition speed than B (1). Can be read. From these results, the transition speeds from 2 years ago to this year are higher than those from 4 years ago to 2 years ago at the parts A (1), A, B (1), and B on the right side. It is understood that there is. In other words, it can be seen that the transition speed tends to increase as the year passes.

【0043】尚、1年に1度行なわれる定期点検で測定
する際は、熱交換器全体を測定するのではなく、測定範
囲を限定する。一般的に熱交換器は保温材で覆われてい
る。熱交換器の肉厚寸法を測定するときは保温材を一
旦、剥がしてから測定する。肉厚寸法変化速度、変化の
方向性を読み取ることによって変化量の特に大きい部位
を正確に限定することができるため、保温材を剥がす面
積や測定面積の特定ができると共に、保温材の廃棄物を
低減できる。
When the measurement is carried out in a regular inspection once a year, the measurement range is limited, not the entire heat exchanger. Generally, the heat exchanger is covered with a heat insulating material. When measuring the wall thickness of the heat exchanger, first peel off the heat insulating material and then measure. By reading the rate of change in wall thickness dimension and the direction of change, it is possible to accurately limit the area where the amount of change is particularly large, so that the area from which the heat insulating material is to be peeled off and the measurement area can be specified, and the waste heat insulating material It can be reduced.

【0044】また測定作業時間が短縮できるため、点検
作業者の安全度が高くなる。
Further, since the measurement work time can be shortened, the safety of the inspection worker is enhanced.

【0045】更に評価時間が短縮できるため、点検費用
が低減できる。
Further, since the evaluation time can be shortened, the inspection cost can be reduced.

【0046】また許容値に達しようとする不健全部位を
切り取って張り替えるメインテナンスを行なう際に、変
化速度の特に大きい部位が判れば、許容値に到達しなく
ても張り替えるか否かの判断を促すための有効な材料と
なることができる。
Further, when performing maintenance to cut and replace the unhealthy portion that is about to reach the allowable value, if a portion with a particularly large change speed is known, it is determined whether or not to replace the portion even if the allowable value is not reached. It can be an effective material for promoting.

【0047】尚、遷移速度を読みとるときの注意点を本
発明の一実施例である図8を参照して説明する。図8
は、遷移速度が非常に大きいときに前回の測定時には存
在しなかった区分が今回の測定で新たに出現する場合の
遷移状態図である。図8の81は今回の測定で新たに出
現した区分1である。区分に着目して遷移速度をみるに
は、新しい区分が出現した場合、各区分の変位差は区分
の大きい方から見る必要がある。つまりここでは区分3
の変位差をとり、区分2の変位差を取る。区分1は前回
測定時には存在していなかったため変位差をとることが
出来ない。この様な点に注意して読みとると、新たな区
分が出現しても誤認識を防ぐことが出来る。
The points to be noted when reading the transition speed will be described with reference to FIG. 8 which is an embodiment of the present invention. Figure 8
[Fig. 6] is a transition state diagram in the case where a section that did not exist in the previous measurement newly appears in the current measurement when the transition speed is very high. Reference numeral 81 in FIG. 8 represents Category 1 newly appearing in this measurement. In order to look at the transition speed focusing on the division, when a new division appears, the displacement difference of each division needs to be seen from the larger division. In other words, here, Category 3
Then, the displacement difference of is calculated, and the displacement difference of Category 2 is calculated. Since Category 1 did not exist at the previous measurement, the displacement difference cannot be obtained. If you read this carefully, you can prevent erroneous recognition even if a new segment appears.

【0048】[0048]

【0049】[0049]

【発明の効果】以上説明したように本発明によれば、各
測定時の等量線図を同一面に重ねて表示することによっ
て、データの一定時間の変化量である遷移速度が読み取
れるようになる。つまり本発明によると位置(縦方向距
離、横方向距離)、寸法の三次元の情報に時間という次
元が加わって四次元の情報が表現できる。
As described above, according to the present invention, by displaying the contour plots for each measurement on the same plane, the transition speed, which is the change amount of data for a certain time, can be read. Become. That is, according to the present invention, four-dimensional information can be expressed by adding the dimension of time to the three-dimensional information of position (distance in the vertical direction, distance in the horizontal direction) and dimension.

【0050】更に変化量がどちらの方向の変化量がどれ
だけ多く変化しているか、どの位置のが一番大きく変化
しているかというような、変化の方向性を読みとること
が出来るようになる。
Further, it becomes possible to read the direction of change such as how much the change amount in which direction the change amount is changing, and at which position the change amount is the largest.

【0051】これらの効果によって対象物全体の現状把
握が容易になるだけでなく将来の状態の予測が可能とな
る。本発明を発電所の熱交換器の監視システムに適用す
れば、その熱交換器の余寿命が判断できるようになり、
その結果に基づいて取り替える時期や部位を推定するこ
とが出来る。
These effects not only make it easy to grasp the current state of the entire object, but also make it possible to predict the future state. When the present invention is applied to the heat exchanger monitoring system of a power plant, the remaining life of the heat exchanger can be determined,
Based on the result, it is possible to estimate the time and site for replacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る物理量遷移状態表示装置の一実施
例の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a physical quantity transition state display device according to the present invention.

【図2】熱交換器の容器の肉厚の寸法データを得るまで
の過程を示す説明図である。
FIG. 2 is an explanatory diagram showing a process until obtaining dimension data of wall thickness of a container of a heat exchanger.

【図3】寸法データから等量線図を得るための手順を示
した説明図である。
FIG. 3 is an explanatory diagram showing a procedure for obtaining a contour map from dimension data.

【図4】図1に示した物理量遷移状態表示装置により遷
移状態図を表示する際の一連の処理内容を示すフローチ
ャートである。
FIG. 4 is a flowchart showing a series of processing contents when a transition state diagram is displayed by the physical quantity transition state display device shown in FIG.

【図5】図4におけるステップ42の処理の具体的内容
を示すフローチャートである。
5 is a flowchart showing the specific content of the process of step 42 in FIG.

【図6】図6はカラーテーブルと図4のステップ42の
処理で生成される二つのテーブルの関係を示す説明図で
ある。
6 is an explanatory diagram showing a relationship between a color table and two tables generated by the processing of step 42 of FIG.

【図7】図1に示した物理量遷移状態表示装置の出力結
果を示す画面の表示例を示す図である。
7 is a diagram showing a display example of a screen showing an output result of the physical quantity transition state display device shown in FIG.

【図8】遷移速度が非常に大きいとき前回の測定時には
存在しなかった区分が今回の測定時に新たに出現した場
合の遷移状態を示す図である。
FIG. 8 is a diagram showing a transition state when a section that did not exist in the previous measurement and newly appears in the current measurement when the transition speed is very high.

【符号の説明】[Explanation of symbols]

1 入力装置 2 記憶装置 3 データ格納部 4 カラーテーブル 5 テーブル格納部 6 中央処理装置 7 点演算部 8 等量線図作画処理部 9 テーブル生成部 10 色塗り処理部 11 画面表示装置 DESCRIPTION OF SYMBOLS 1 Input device 2 Storage device 3 Data storage unit 4 Color table 5 Table storage unit 6 Central processing unit 7 Point calculation unit 8 Contour plotting processing unit 9 Table generation unit 10 Color painting processing unit 11 Screen display device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G09G 5/36 510 A 9471−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G09G 5/36 510 A 9471-5G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各測定時期毎に測定対象物の表面上に横
線と縦線とで格子状に区切って設定された各格子点上で
測定した寸法データを取り込み、これらの寸法データの
最大値と最小値とを求め、かつ該最大値と最小値との差
を必要とする精度に応じて決定される区分数n(nは自
然数)で除することにより各区分間のピッチを求め、各
区分の上限値及び下限値を求め、該各区分の上限値及び
下限値に基づいて全ての測定点の寸法データを該当する
区分に割付け、隣接する各区分の境界線を求めて作画す
ると共に、前記測定を一定期間毎に行ない、かつ各測定
時期において得られた境界線及び各区分を識別可能に同
一面上に重ねて表示することを特徴とする測定対象物の
物理量遷移状態表示方法。
1. The maximum value of these dimensional data is obtained by taking in the dimensional data measured at each grid point set on the surface of the object to be measured divided into horizontal and vertical lines in a grid shape at each measurement time. And the minimum value, and the pitch between the sections is calculated by dividing the difference between the maximum value and the minimum value by the number of sections n (n is a natural number) determined according to the required accuracy. The upper limit value and the lower limit value of, the dimensional data of all the measurement points based on the upper limit value and the lower limit value of each section is assigned to the corresponding section, and the boundary line of each adjacent section is determined and drawn, and A method of displaying a physical quantity transition state of an object to be measured, characterized in that the measurement is carried out at regular intervals, and the boundary line and each section obtained at each measurement time are overlapped and displayed on the same surface in a distinguishable manner.
【請求項2】 前記各測定時の境界線の色や種類等の属
性を各測定時期とを対応させ、かつ前記各区分の領域を
色分け等により識別可能に表示することを特徴とする請
求項1に記載の測定対象物の物理量遷移状態表示方法。
2. The attribute such as the color and type of the boundary line at each measurement is associated with each measurement time, and the area of each section is displayed in a distinguishable manner by color coding or the like. 1. A method for displaying a physical quantity transition state of a measurement object according to 1.
【請求項3】 各測定時期毎に測定対象物の表面上に横
線と縦線とで格子状に区切って設定された各格子点上で
測定した寸法データを入力する入力手段と、 測定時期と該測定時期に得られた寸法データに基づいて
作成された等量線図の境界線の色との対応関係を示す測
定時境界線配色テーブルと、各測定時期に得られた寸法
データに基づいて作成された等量線図の前記寸法データ
の分布範囲を示す区分と該区分色塗されるの色との対応
関係を示すデータ区分配色テーブルとを有する記憶手段
と、 前記記憶手段記憶されている測定時境界線配色テーブル
及びデータ区分配色テーブルを参照して前記入力手段か
ら入力された寸法データについて演算処理を行なう処理
手段と、 処理手段の演算結果に基づいて測定対象物の測定量であ
る物理量の遷移状態を表示する表示手段とを有し、 前記処理手段は、前記入力手段から前記寸法データを取
り込み、これらの寸法データの最大値と最小値とを求
め、かつ該最大値と最小値との差を必要とする精度に応
じて決定される区分数n(nは自然数)で除することに
より各区分間のピッチを求め、各区分の上限値及び下限
値を求め、該各区分の上限値及び下限値に基づいて全て
の測定点の寸法データを該当する区分に割付け、隣接す
る各区分の境界線を求めて作画すると共に、前記測定を
一定期間毎に行ない、かつ各測定時期において得られた
前記境界線及び各区分を前記測定時境界線配色テーブル
及びデータ区分配色テーブルを参照して同一色を使用し
ないで色分けし、前記表示手段の画面上に重ねて表示す
ることを特徴とする測定対象物の物理量遷移状態表示装
置。
3. An input means for inputting dimensional data measured at each grid point set by dividing the surface of the object to be measured into grids by horizontal and vertical lines at each measurement time, and the measurement time. Based on the measurement time boundary line color arrangement table showing the correspondence with the color of the boundary line of the contour map created based on the size data obtained at the measurement time, and the size data obtained at each measurement time A storage unit having a section showing a distribution range of the dimensional data of the created contour map and a data section distribution color table showing a correspondence relationship between the color of the section color painting, and the storage section Processing means for performing arithmetic processing on the dimensional data input from the input means with reference to the measurement boundary line color arrangement table and the data area distribution color table, and a physical quantity that is the measured quantity of the measuring object based on the arithmetic result of the processing means. Transition A display unit for displaying a state, the processing unit takes in the dimension data from the input unit, obtains the maximum value and the minimum value of these dimension data, and determines the difference between the maximum value and the minimum value. Is divided by the number of divisions n (n is a natural number) determined according to the required accuracy, the pitch between the divisions is obtained, the upper limit value and the lower limit value of each division are obtained, and the upper limit value and the lower limit value of each division are obtained. Allocate the dimensional data of all the measurement points to the corresponding section based on the value, draw the boundary line of each adjacent section and draw the image, perform the measurement at regular intervals, and obtain the measurement at each measurement time. A measuring object characterized in that the boundary line and each section are color-coded without using the same color by referring to the measurement-time boundary line color arrangement table and the data section distribution color table, and are superimposed and displayed on the screen of the display means. Physical quantity of Transition state display device.
JP6080179A 1994-04-19 1994-04-19 Method and device for displaying transition state of physical quantity of object to be measured Pending JPH07286864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080179A JPH07286864A (en) 1994-04-19 1994-04-19 Method and device for displaying transition state of physical quantity of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080179A JPH07286864A (en) 1994-04-19 1994-04-19 Method and device for displaying transition state of physical quantity of object to be measured

Publications (1)

Publication Number Publication Date
JPH07286864A true JPH07286864A (en) 1995-10-31

Family

ID=13711136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080179A Pending JPH07286864A (en) 1994-04-19 1994-04-19 Method and device for displaying transition state of physical quantity of object to be measured

Country Status (1)

Country Link
JP (1) JPH07286864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070871A (en) * 2006-09-13 2008-03-27 Tektronix Inc Method and device for displaying time sequence of two-dimensional data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070871A (en) * 2006-09-13 2008-03-27 Tektronix Inc Method and device for displaying time sequence of two-dimensional data

Similar Documents

Publication Publication Date Title
JP3057960B2 (en) Evaluation equipment for three-dimensional workpieces
CN106127771B (en) Tunnel orthography system and method is obtained based on laser radar LIDAR point cloud datas
US20030216830A1 (en) Method for displaying tool locus in NC data and method for analyzing NC data
CN110909738A (en) Automatic reading method of pointer instrument based on key point detection
WO1998016823A1 (en) Yarn and fabric simulation system
JP4695792B2 (en) Nondestructive wall thickness inspection method for structural parts
CN116308185A (en) Visual progress input and early warning method for constructional engineering
CN115082658A (en) Method and device for identifying reading of pointer meter
JPH07286864A (en) Method and device for displaying transition state of physical quantity of object to be measured
Schnur et al. A comparison of measured and perceived visual complexity for dynamic web maps
CN111724473A (en) Method for drawing ship distance line in real time based on reality augmentation system
CN115115889A (en) Instrument image analysis method and device
RU2164039C1 (en) Multiple-parameter dynamic process analyzing technique
Walsby The causes and effects of manual digitizing on error creation in data input to GIS
Jansen et al. Evaluating the consistency of cartographic generalization
CN112629432B (en) Interactive hole site multi-angle scanning control method and device
CN113192130B (en) Method and device for detecting spacing
Kattmann et al. Visualization of power quality data
CN111191562B (en) Pointer instrument indication value reading method based on CNN neural network
CN115357517B (en) Evaluation method for development superiority and inferiority of machine vision underlying algorithm
CN117523153B (en) Three-dimensional visualization method and device for reactor core data
CN114155344A (en) Method for generating closed region mark points and computer storage medium
CN118774964A (en) Coal mine monitoring data visualization method and device
CN114625942A (en) Visualization method of water quality monitoring result, computer device and storage medium
US20200233560A1 (en) Measurement device and method for three-dimensional displays