JPH07286570A - Fuel injection nozzle for diesel engine - Google Patents

Fuel injection nozzle for diesel engine

Info

Publication number
JPH07286570A
JPH07286570A JP8015994A JP8015994A JPH07286570A JP H07286570 A JPH07286570 A JP H07286570A JP 8015994 A JP8015994 A JP 8015994A JP 8015994 A JP8015994 A JP 8015994A JP H07286570 A JPH07286570 A JP H07286570A
Authority
JP
Japan
Prior art keywords
injection
fuel
needle valve
nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8015994A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tabata
田端康弘
Yoshihisa Takeda
武田好央
Keiichi Niimura
新村恵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN A C II KK
Original Assignee
SHIN A C II KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN A C II KK filed Critical SHIN A C II KK
Priority to JP8015994A priority Critical patent/JPH07286570A/en
Publication of JPH07286570A publication Critical patent/JPH07286570A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To reduce initial injection quantity, and mitigate work precision largely. CONSTITUTION:A device is provided with a bag part 2 formed at a forward end of a nozzle main body 1, a single or plural injection hole(s) 3 formed in the nozzle main body 1 to open from the bag part 2 toward the external, a needle valve 4 disposed slidably in the nozzle main body 1, a columnar 1 part 6 formed at a forward end part of the needle valve 4 and engaged with the inside of the bag part 2, and a fuel passage 7 formed between the columnar part 6 and an inner wall of the bag part 2, where a ratio T/H of a total passage surface of the injection hole(s) 3 to a passage surface of the columnar part 6 is set to be within a range of 2<T/H<6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料の初期噴射量を低
減させるためのディーゼルエンジン用燃料噴射ノズルに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection nozzle for a diesel engine for reducing the initial injection amount of fuel.

【0002】[0002]

【従来の技術】現在、ディーゼルエンジンにおいて、ス
モーク及びNOX の低減は重要な課題であり、この問題
を解決するために、高圧噴射(例えば噴射圧1000k
g/cm2 以上)、小噴孔径ノズル、浅皿燃焼室及び低
スワールを組合せる方式が知られている。この方式によ
れば、ピストンが上昇し上死点付近に達したとき、ノズ
ルから噴射された燃料の噴霧は、壁面近傍で一気に着火
した後、火炎は、燃焼室中心に向かって膨張するが、噴
霧のもつエネルギーが大きいため噴射の終了まで中心部
は不燃域として残る。すなわち、噴霧は壁面に到達する
まで燃焼室中心に近い不燃域側で十分に空気を巻き込み
ながら進行し、壁面側では既燃ガスを導入しながら壁面
に衝突する燃焼経路をたどるため、スモークは低く、噴
射時期を大幅に遅らせても火がつくため、噴射時期遅延
との組み合わせで、低圧噴射と比較してスモーク及びN
X の同時低減を図ることができる。
2. Description of the Related Art At present, reduction of smoke and NO x is an important issue in diesel engines, and in order to solve this problem, high pressure injection (for example, injection pressure 1000 k
g / cm 2 or more), a method of combining a small nozzle nozzle, a shallow dish combustion chamber and a low swirl is known. According to this method, when the piston rises and reaches the vicinity of the top dead center, the spray of fuel injected from the nozzle ignites at once in the vicinity of the wall surface, and then the flame expands toward the center of the combustion chamber, Since the energy of the spray is large, the central part remains as a non-combustible area until the end of injection. In other words, the spray progresses while sufficiently entraining air on the side of the non-combustible area near the center of the combustion chamber until it reaches the wall surface, and on the side of the wall surface, it follows the combustion path where it collides with the wall surface while introducing burned gas, so smoke is low. However, even if the injection timing is greatly delayed, it will catch fire, so in combination with the injection timing delay, smoke and N
Simultaneous reduction of O X can be achieved.

【0003】このディーゼルエンジンに用いられる燃料
噴射ノズルは、図8(A)に示すように、ノズル本体1
の先端に袋部2が形成され、この袋部2から外部に開口
する単数または複数の噴孔3が形成され、ニードル弁4
の摺動により、加圧された燃料を燃料供給路5、袋部2
を経て噴孔3から噴射する構造になっている。しかしな
がら、この燃料噴射ノズルは、燃料の初期噴射量が多
く、着火遅れ期間中の噴射量が増大するため、排ガス特
性や騒音特性が悪化するという問題を有している。そこ
で、図8(B)に示すように、ニードル弁4の先端部に
袋部2の内壁に嵌合する長さLの円柱部6を設け、この
円柱部6とノズル本体1との間にクリアランスを形成し
て、燃料の初期噴射量を絞るようにした燃料噴射ノズル
が提案されている。
The fuel injection nozzle used in this diesel engine has a nozzle body 1 as shown in FIG. 8 (A).
Is formed with a bag portion 2 at the tip thereof, and a single or a plurality of injection holes 3 opening from the bag portion 2 to the outside are formed.
The fuel pressurized by the sliding of the fuel supply passage 5 and the bag portion 2
The structure is such that the injection is performed from the injection hole 3 via. However, this fuel injection nozzle has a problem that exhaust gas characteristics and noise characteristics are deteriorated because the initial injection amount of fuel is large and the injection amount increases during the ignition delay period. Therefore, as shown in FIG. 8B, a columnar portion 6 having a length L that fits into the inner wall of the bag portion 2 is provided at the tip of the needle valve 4, and the columnar portion 6 and the nozzle body 1 are provided between the columnar portion 6 and the nozzle body 1. A fuel injection nozzle has been proposed in which a clearance is formed to reduce the initial injection amount of fuel.

【0004】[0004]

【発明が解決しようとする課題】上記図8(B)の燃料
噴射ノズルは、燃料の初期噴射量を低減させることによ
り、着火遅れ期間中の噴射量を低減させ、排ガス特性や
騒音特性を改善させることができるが、高圧噴射をベー
スとするディーゼルエンジンにおいては、噴孔3の径を
小さくした仕様で燃焼マッチングを図ることが多く、そ
のためさらに総噴孔流路面積(1噴孔の流路面積×噴孔
数)に対して円柱部6とノズル本体1との間の流路面積
を小さくして絞り効果を得るクリアランスを形成するこ
とは加工精度上困難であるという問題を有している。
In the fuel injection nozzle of FIG. 8B, the initial injection amount of fuel is reduced to reduce the injection amount during the ignition delay period and improve the exhaust gas characteristics and noise characteristics. However, in a diesel engine based on high-pressure injection, combustion matching is often achieved with a specification in which the diameter of the injection hole 3 is small, and therefore, the total injection hole flow path area (flow path of one injection hole is further increased). There is a problem in that it is difficult in terms of processing accuracy to reduce the flow passage area between the cylindrical portion 6 and the nozzle body 1 with respect to (area x number of injection holes) to form a clearance for obtaining a throttling effect. .

【0005】本発明は、上記問題を解決するものであっ
て、初期噴射量を低減させることができるとともに、加
工精度を大幅に緩和することができるディーゼルエンジ
ン用燃料噴射ノズルを提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a fuel injection nozzle for a diesel engine, which can reduce the initial injection amount and can significantly reduce the processing accuracy. And

【0006】[0006]

【課題を解決するための手段】そのために本発明のディ
ーゼルエンジン用燃料噴射ノズルは、ノズル本体1の先
端に形成される袋部2と、この袋部2から外部に開口す
るようにノズル本体1に形成される単数または複数の噴
孔3と、ノズル本体1内に摺動可能に配設されるニード
ル弁4と、ニードル弁4の先端部に形成され袋部2内に
嵌合される円柱部6と、この円柱部6と袋部2内壁1と
の間に形成される燃料流路7とを備え、噴孔3の総流路
面積に対する円柱部の流路面積の比T/Hが、2<T/
H<6の範囲になるようにしたことを特徴とする。な
お、上記構成に付加した番号は、本発明の理解を容易に
するために図面と対比させるためのもので、これにより
本発明の構成が何ら限定されるものではない。
Therefore, the fuel injection nozzle for a diesel engine of the present invention has a bag portion 2 formed at the tip of the nozzle body 1 and the nozzle body 1 so that the bag portion 2 is opened to the outside. Or a plurality of injection holes 3 formed in the nozzle body, a needle valve 4 slidably arranged in the nozzle body 1, and a cylinder formed at the tip of the needle valve 4 and fitted in the bag portion 2. The portion 6 and the fuel passage 7 formed between the column portion 6 and the inner wall 1 of the bag portion 2 are provided, and the ratio T / H of the passage area of the column portion to the total passage area of the injection hole 3 is T / H. 2 <T /
It is characterized in that the range is H <6. It should be noted that the numbers added to the above-mentioned configurations are for comparison with the drawings in order to facilitate understanding of the present invention, and the configurations of the present invention are not limited thereby.

【0007】[0007]

【作用】本発明においては、例えば図5(C)に示すよ
うに、噴射初期は、円柱部6とノズル本体1との間の燃
料流路7から流出した燃料は、ニードル弁4先端に沿わ
ない軸方向下向きの流線となり、袋部2内壁に沿ってほ
ぼ垂直に流れ、噴孔3に流入するには大きくその流れの
方向転換を要すること、また、その流れが噴孔3の流入
口を塞ぎ袋部2中央の燃料の噴孔3への進入を妨害する
ことが、噴射初期における噴射率の低減に対する要因と
なっている。
In the present invention, for example, as shown in FIG. 5 (C), at the initial stage of injection, the fuel flowing out from the fuel flow passage 7 between the columnar portion 6 and the nozzle body 1 flows along the tip of the needle valve 4. There is no downward streamline in the axial direction, which flows substantially vertically along the inner wall of the bag portion 2 and requires a large change in direction of the flow to flow into the injection hole 3. The obstruction of the fuel at the center of the bag portion 2 to the injection hole 3 is a factor for reducing the injection rate in the initial stage of injection.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明のディーゼルエンジン用燃料噴射
ノズルの1実施例を示し、図1(A)は軸方向断面図、
図1(B)は図1(A)のB部の拡大断面図、図1
(C)は図1(A)のC−C線に沿って矢印方向に見た
断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 shows an embodiment of a fuel injection nozzle for a diesel engine of the present invention, FIG. 1 (A) is an axial sectional view,
1B is an enlarged cross-sectional view of a portion B of FIG.
FIG. 1C is a sectional view taken along the line C-C in FIG.

【0009】図1において、燃料噴射ノズルは、ノズル
本体1の先端に形成される袋部2と、この袋部2から外
部に開口するようにノズル本体1に形成される単数また
は複数の噴孔3と、ノズル本体1内に摺動可能に配設さ
れるニードル弁4とを備え、ニードル弁4の摺動によ
り、加圧された燃料が燃料供給路5、袋部2を経て噴孔
3から噴射される。ニードル弁4の先端部には袋部2内
に嵌合される長さLの円柱部6が設けられ、この円柱部
6と袋部2内壁1との間にクリアランスWの燃料流路7
が形成されている。
In FIG. 1, a fuel injection nozzle includes a bag portion 2 formed at the tip of a nozzle body 1, and a single or a plurality of injection holes formed in the nozzle body 1 so as to open from the bag portion 2 to the outside. 3 and a needle valve 4 slidably arranged in the nozzle body 1, and the fuel pressurized by the sliding of the needle valve 4 passes through the fuel supply passage 5 and the bag portion 2 and the injection hole 3 Is jetted from. A cylindrical portion 6 having a length L and fitted in the bag portion 2 is provided at the tip of the needle valve 4, and a fuel passage 7 having a clearance W is provided between the cylindrical portion 6 and the inner wall 1 of the bag portion 2.
Are formed.

【0010】噴孔3の数をn、一つの噴孔3の流路面積
をa、従って噴孔3の総流路面積Hをa×n、円柱部6
とノズル本体1との間の燃料流路7の流路面積(図1
(C)での平面視の面積)をTとしたとき、噴孔3の総
流路面積Hに対する円柱部の流路面積Tの比T/Hは、
図8(B)で説明した従来の燃料噴射弁ではT/H<1
の関係として、流路面積上で絞り効果を得るようにして
いるが、本発明においては、流路面積上の絞りとはなら
ないT/H>1の関係となるようにして種々の実験を行
った。表1は、図8(A)の従来例と本実施例の燃料噴
射ノズルの仕様を示している。なお、両ノズルの袋部は
実施例の円柱部6の燃料流路7に相当する体積分だけ異
なっている。
The number of the injection holes 3 is n, the flow passage area of one injection hole 3 is a, therefore the total flow passage area H of the injection holes 3 is a × n, and the cylindrical portion 6 is used.
Area of the fuel flow path 7 between the nozzle body 1 and the nozzle body 1 (see FIG.
When the area in plan view in (C)) is T, the ratio T / H of the flow passage area T of the cylindrical portion to the total flow passage area H of the injection hole 3 is
In the conventional fuel injection valve described in FIG. 8B, T / H <1
As for the relationship, the throttling effect is obtained on the flow channel area. However, in the present invention, various experiments were conducted so that the relationship of T / H> 1 which does not result in the throttling on the flow channel area is satisfied. It was Table 1 shows the specifications of the fuel injection nozzles of the conventional example and the present example of FIG. 8 (A). The bag portions of both nozzles are different from each other by the volume corresponding to the fuel flow path 7 of the cylindrical portion 6 of the embodiment.

【0011】[0011]

【表1】 [Table 1]

【0012】図2は、圧力9.8MPaの定常流でニー
ドル弁4をリフトしていったときの油圧流量特性を示
し、実線が従来例を点線が実施例を示している。実施例
の油圧流量特性は、従来例に対してリフト全域において
ほぼ同等であり、リフトが0.35mm以下のリフト期
間での流量絞り効果は見られない。
FIG. 2 shows a hydraulic flow rate characteristic when the needle valve 4 is lifted by a steady flow having a pressure of 9.8 MPa. The solid line shows the conventional example and the dotted line shows the embodiment. The hydraulic flow rate characteristic of the embodiment is almost the same as that of the conventional example in the entire lift range, and the flow restriction effect is not seen in the lift period when the lift is 0.35 mm or less.

【0013】図3はボッシュ式噴射率計を用いて両ノズ
ルの噴射率特性を調べた結果である。ポンプ回転500
rpm、噴射量150mm3/st、噴射圧力150M
Paの条件にて測定し、実線が従来例を点線が実施例を
示している。実施例は従来例に対して噴射開始からカム
角度で約2.5degの間に噴射率の低減が見られる。
この現象は、図2に示すように、実施例の燃料流路7の
油圧流量特性が従来例とほぼ同一であることや、噴射率
低減がフルリフト後も続いていることから、定常流にお
ける流量特性からは説明できず、非定常流の場合に特有
な現象であると考えられる。
FIG. 3 shows the results of examining the injection rate characteristics of both nozzles using a Bosch type injection rate meter. Pump rotation 500
rpm, injection amount 150 mm 3 / st, injection pressure 150 M
The measurement is performed under the condition of Pa, and the solid line shows the conventional example and the dotted line shows the example. In the embodiment, the injection rate is reduced from the start of injection to about 2.5 deg in cam angle from the start of injection.
As shown in FIG. 2, this phenomenon is due to the fact that the hydraulic flow rate characteristic of the fuel passage 7 of the embodiment is almost the same as that of the conventional example, and that the injection rate reduction continues even after the full lift. It cannot be explained from the characteristics, and is considered to be a unique phenomenon in the case of unsteady flow.

【0014】次に、本発明における燃料流路7内の燃料
の流れに与える影響を調べるために、三次元定常流計算
によりノズル内の流れを解析した。図4は、ニードル弁
4のリフト量0.15mm、圧力58MPaにおけるT
/Hと流量の関係を示している。図中、X線は本発明の
場合、Y線は従来例を示している。本発明の場合、燃料
流路7内の燃料流量は、総噴孔流路面積に対する円柱部
の流路面積の比T/Hが2以上になると、従来例とほぼ
等しくなり、定常流における流量絞り効果が失われるこ
とが分かる。
Next, in order to investigate the influence on the flow of fuel in the fuel passage 7 in the present invention, the flow in the nozzle was analyzed by three-dimensional steady flow calculation. FIG. 4 shows T at a lift amount of the needle valve 4 of 0.15 mm and a pressure of 58 MPa.
The relationship between / H and the flow rate is shown. In the figure, X-rays indicate the case of the present invention, and Y-lines indicate the conventional example. In the case of the present invention, the fuel flow rate in the fuel flow path 7 becomes substantially equal to that of the conventional example when the ratio T / H of the flow path area of the cylindrical portion to the total injection hole flow path area becomes 2 or more, and the flow rate in the steady flow It can be seen that the diaphragm effect is lost.

【0015】図5は、ニードル弁のシート部から流出し
た燃料が噴孔に流入するまでの軌跡を示す図である。図
5(A)、図5(B)は従来の燃料噴射ノズルを示し、
ニードル弁4のシート部4aから流出した燃料は、ニー
ドル弁4先端に沿ってノズル中心軸方向に進み、その
後、流線は緩やかな弧を描いて噴孔3へ流入している。
また、この流れパターンは図5(B)に示すようにニー
ドル弁4のリフト量を上げても変化しない。
FIG. 5 is a diagram showing a locus until the fuel flowing out from the seat portion of the needle valve flows into the injection hole. 5 (A) and 5 (B) show a conventional fuel injection nozzle,
The fuel flowing out from the seat portion 4a of the needle valve 4 advances in the direction of the central axis of the nozzle along the tip of the needle valve 4, and then the streamline flows into the injection hole 3 in a gentle arc.
Further, this flow pattern does not change even if the lift amount of the needle valve 4 is increased as shown in FIG. 5 (B).

【0016】図5(C)、図5(D)は本発明の燃料噴
射ノズルを示している。なお、T/Hは2としている。
図5(C)に示すように、ニードル弁4のリフト量が小
さい場合には、円柱部6とノズル本体1との間の燃料流
路7から流出した燃料は、ニードル弁4先端に沿わない
軸方向下向きの流線となり、袋部2内壁に沿ってほぼ垂
直に流れる。袋部2内壁に沿ってほぼ垂直に進んだ燃料
が噴孔3に流入するには、その流れの方向を約90゜転
向せねばならないこと、また、噴孔3への流入口が袋部
2内壁に沿った流れによって塞がれ、袋部2中央付近の
燃料が噴孔3に流入するのを妨害することが、噴射初期
における噴射率の低減に対する要因となっている。一
方、図5(D)に示すように、ニードル弁4のリフト量
が大きくなると、燃料はニードル弁4先端に沿う流れに
変化する。しかし、一旦図5(C)の状態になった流れ
は、瞬時に図5(D)の状態に変化してしまう訳ではな
く、図5(D)の流れによって図5(C)の流れが徐々
に図5(D)に近づいていくということであり、このた
め、初期噴射率の低減効果はニードル弁4がリフトした
後もしばらくは継続する。
5 (C) and 5 (D) show the fuel injection nozzle of the present invention. Note that T / H is 2.
As shown in FIG. 5C, when the lift amount of the needle valve 4 is small, the fuel flowing out from the fuel flow path 7 between the columnar portion 6 and the nozzle body 1 does not follow the tip of the needle valve 4. The streamline is downward in the axial direction, and flows almost vertically along the inner wall of the bag portion 2. In order for the fuel, which has proceeded almost vertically along the inner wall of the bag portion 2, to flow into the injection hole 3, the direction of the flow must be turned by about 90 °, and the inlet port to the injection hole 3 is the bag portion 2. The fact that the fuel is blocked by the flow along the inner wall and the fuel in the vicinity of the center of the bag portion 2 is prevented from flowing into the injection hole 3 is a factor for reducing the injection rate in the initial stage of injection. On the other hand, as shown in FIG. 5D, when the lift amount of the needle valve 4 increases, the fuel changes to flow along the tip of the needle valve 4. However, the flow once in the state of FIG. 5C does not instantly change to the state of FIG. 5D, and the flow of FIG. This means that it gradually approaches FIG. 5D. Therefore, the effect of reducing the initial injection rate continues for a while even after the needle valve 4 is lifted.

【0017】図6は本発明においてT/Hを変化させた
ときの初期噴射量低減率と加工工数の実験結果を示して
いる。これによれば、初期噴射量低減に効果があるの
は、T/H<6の範囲で、加工工数低減に効果があるの
はT/H>2の範囲となる。従って、2<T/H<6の
範囲を満足すればよいことが分かる。なお、加工工数の
低減効果を十分に大きくし、初期噴射量低減が確実に行
われるように余裕をもたせるため、3<T/H<5の範
囲にすることが好ましい。
FIG. 6 shows the experimental results of the initial injection amount reduction rate and the processing man-hour when the T / H is changed in the present invention. According to this, the effect of reducing the initial injection amount is in the range of T / H <6, and the effect of reducing the processing man-hour is in the range of T / H> 2. Therefore, it is understood that it is sufficient to satisfy the range of 2 <T / H <6. Note that it is preferable to set the range of 3 <T / H <5 in order to sufficiently increase the effect of reducing the processing man-hours and to provide a margin for surely reducing the initial injection amount.

【0018】図7は本発明のディーゼルエンジン用燃料
噴射ノズルの他の実施例を示し、図1(B)と同様の拡
大断面図である。本実施例は、円柱部6に窪み部8を形
成し、燃料の流れの方向を積極的に袋部2の内壁に沿っ
て下向きに流すことが可能になる。これにより、T/H
の大きい範囲での適用が可能となり、加工工数比の小さ
い領域を使用することができる。
FIG. 7 shows another embodiment of the fuel injection nozzle for a diesel engine of the present invention, and is an enlarged sectional view similar to FIG. 1 (B). In this embodiment, the hollow portion 8 is formed in the columnar portion 6 so that the direction of fuel flow can be positively flowed downward along the inner wall of the bag portion 2. By this, T / H
Can be applied in a large range, and a region having a small processing man-hour ratio can be used.

【0019】[0019]

【発明の効果】以上の説明から明らかなように本発明に
よれば、流路面積が総噴孔面積よりも大きい燃料流路を
ニードル弁の先端に設けることによって、初期噴射量を
低減させることができる。また、加工精度を大幅に緩和
して実質的な初期噴射量の絞り効果を得ることができ
る。
As is apparent from the above description, according to the present invention, the fuel injection passage having the passage area larger than the total injection hole area is provided at the tip of the needle valve to reduce the initial injection amount. You can Further, it is possible to significantly reduce the processing accuracy and obtain a substantial effect of reducing the initial injection amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のディーゼルエンジン用燃料噴射ノズル
の1実施例を示し、図1(A)は軸方向断面図、図1
(B)は図1(A)のB部の拡大断面図、図1(C)は
図1(A)のC−C線に沿って矢印方向に見た断面図で
ある。
1 shows an embodiment of a fuel injection nozzle for a diesel engine of the present invention, FIG. 1 (A) is an axial sectional view, FIG.
1B is an enlarged cross-sectional view of a B portion of FIG. 1A, and FIG. 1C is a cross-sectional view taken along the line C-C of FIG.

【図2】従来例と実施例の定常流での油圧流量特性を示
す図である。
FIG. 2 is a diagram showing hydraulic flow rate characteristics in a steady flow of a conventional example and an example.

【図3】従来例と実施例のノズルの噴射率特性を実験し
た図である。
FIG. 3 is a diagram in which injection rate characteristics of nozzles of a conventional example and an example are tested.

【図4】本発明におけるT/Hと燃料流量の関係を示す
図である。
FIG. 4 is a diagram showing a relationship between T / H and a fuel flow rate in the present invention.

【図5】従来例と実施例におけるノズル内部の燃料の軌
跡を示す図である。
FIG. 5 is a diagram showing a trajectory of fuel inside a nozzle in a conventional example and an example.

【図6】本発明においてT/Hを変化させたときの初期
噴射量低減率と加工工数の実験結果を示す図である。
FIG. 6 is a diagram showing experimental results of an initial injection amount reduction rate and a processing man-hour when T / H is changed in the present invention.

【図7】本発明のディーゼルエンジン用燃料噴射ノズル
の他の実施例を示し、図1(B)と同様の拡大断面図で
ある。
FIG. 7 is an enlarged sectional view similar to FIG. 1B, showing another embodiment of the fuel injection nozzle for a diesel engine of the present invention.

【図8】従来のディーゼルエンジン用燃料噴射ノズルの
例を示す軸方向断面図である。
FIG. 8 is an axial sectional view showing an example of a conventional fuel injection nozzle for a diesel engine.

【符号の説明】[Explanation of symbols]

1…ノズル本体、2…袋部、3…噴孔、4…ニードル
弁、5…燃料供給路 6…円柱部、7…燃料流路
DESCRIPTION OF SYMBOLS 1 ... Nozzle body, 2 ... Bag part, 3 ... Injection hole, 4 ... Needle valve, 5 ... Fuel supply path 6 ... Column part, 7 ... Fuel flow path

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月1日[Submission date] June 1, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ノズル本体の先端に形成される袋部と、該
袋部から外部に開口するようにノズル本体に形成される
単数または複数の噴孔と、前記ノズル本体内に摺動可能
に配設されるニードル弁と、該ニードル弁の先端部に形
成され前記袋部内に嵌合される円柱部と、該円柱部と袋
部内壁との間に形成される燃料流路とを備え、前記噴孔
の総流路面積に対する円柱部の流路面積の比T/Hが、
2<T/H<6の範囲になるようにしたことを特徴とす
るディーゼルエンジン用燃料噴射ノズル。
1. A bag portion formed at the tip of a nozzle body, a single or a plurality of injection holes formed in the nozzle body so as to open to the outside from the bag portion, and slidable in the nozzle body. A needle valve provided, a columnar portion formed at the tip of the needle valve and fitted in the bag portion, and a fuel flow path formed between the columnar portion and the inner wall of the bag portion, The ratio T / H of the flow passage area of the cylindrical portion to the total flow passage area of the injection hole is
A fuel injection nozzle for a diesel engine, characterized in that the range is 2 <T / H <6.
JP8015994A 1994-04-19 1994-04-19 Fuel injection nozzle for diesel engine Pending JPH07286570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8015994A JPH07286570A (en) 1994-04-19 1994-04-19 Fuel injection nozzle for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8015994A JPH07286570A (en) 1994-04-19 1994-04-19 Fuel injection nozzle for diesel engine

Publications (1)

Publication Number Publication Date
JPH07286570A true JPH07286570A (en) 1995-10-31

Family

ID=13710532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8015994A Pending JPH07286570A (en) 1994-04-19 1994-04-19 Fuel injection nozzle for diesel engine

Country Status (1)

Country Link
JP (1) JPH07286570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508684A (en) * 1999-09-04 2003-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Injection nozzle for internal combustion engine with ring groove in nozzle needle
WO2004074676A1 (en) * 2003-02-18 2004-09-02 Robert Bosch Gmbh Fuel injection valve for an internal combustion engine
JP2011027081A (en) * 2009-07-29 2011-02-10 Honda Motor Co Ltd Fuel injection device
JP2011052564A (en) * 2009-08-31 2011-03-17 Toyota Motor Corp Fuel injection valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508684A (en) * 1999-09-04 2003-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Injection nozzle for internal combustion engine with ring groove in nozzle needle
JP4709451B2 (en) * 1999-09-04 2011-06-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Injection nozzle for internal combustion engines with a ring groove in the nozzle needle
WO2004074676A1 (en) * 2003-02-18 2004-09-02 Robert Bosch Gmbh Fuel injection valve for an internal combustion engine
JP2011027081A (en) * 2009-07-29 2011-02-10 Honda Motor Co Ltd Fuel injection device
JP2011052564A (en) * 2009-08-31 2011-03-17 Toyota Motor Corp Fuel injection valve

Similar Documents

Publication Publication Date Title
US5092039A (en) Method of making fuel injectors for internal combustion engines
WO2015177898A1 (en) Combustion chamber structure for diesel engine
JP2008202483A (en) Cylinder injection type internal combustion engine and injector used therefor
US20150211460A1 (en) Fuel injection nozzle
JP2006274857A (en) Control device for diesel internal combustion engine
JP4709451B2 (en) Injection nozzle for internal combustion engines with a ring groove in the nozzle needle
CN102625878B (en) Fuelinjection nozzle
US20040164187A1 (en) Fuel injection valve
JPH07286570A (en) Fuel injection nozzle for diesel engine
JP3176696B2 (en) How to adjust the device
JP2017025929A (en) Combustion chamber structure of diesel engine
JP3213515B2 (en) Two-stage valve opening pressure type fuel injection valve
CN110566386A (en) Nozzle assembly for fuel injector, fuel injector
JP4222256B2 (en) Control device for internal combustion engine
JPH05106442A (en) Direct injection type diesel engine
US6918549B2 (en) Fuel injector tip for control of fuel delivery
JP2010007619A (en) Fuel injection control device and fuel injection control method for diesel engine
US6837211B2 (en) Stratified air-fuel mixture forming apparatus for internal combustion engine and method thereof
US20030116653A1 (en) Fuel injector tip
JPS5460622A (en) Internal combustion engine with fuel injector
JPH10288129A (en) Injection valve
JPS6014911B2 (en) Fuel injection valve for engine
JPH08312500A (en) Fuel injection valve
JP2006242159A (en) Fuel injection valve
JPH1122470A (en) Fuel injection device of lean burn engine