JPH07285326A - Heat pump type cooling/heating device for vehicle - Google Patents

Heat pump type cooling/heating device for vehicle

Info

Publication number
JPH07285326A
JPH07285326A JP6081776A JP8177694A JPH07285326A JP H07285326 A JPH07285326 A JP H07285326A JP 6081776 A JP6081776 A JP 6081776A JP 8177694 A JP8177694 A JP 8177694A JP H07285326 A JPH07285326 A JP H07285326A
Authority
JP
Japan
Prior art keywords
air
refrigerant
heat exchanger
heat
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6081776A
Other languages
Japanese (ja)
Other versions
JP3301209B2 (en
Inventor
Takayoshi Matsuoka
孝佳 松岡
Junichiro Hara
潤一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP08177694A priority Critical patent/JP3301209B2/en
Publication of JPH07285326A publication Critical patent/JPH07285326A/en
Application granted granted Critical
Publication of JP3301209B2 publication Critical patent/JP3301209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To keep the effective temperature of an occupant constant in the environment requiring frequent switching of cooling and heating by starting the distribution of a refrigerant to a heat exchanger outside a car room and a blast in response to the prescribed temperature difference between the estimated value and target value of the blowout temperature when the heating operation state is changed to the cooling operation state. CONSTITUTION:A three-way valve 32 distributing a refrigerant from a compressor 31 to a heat exchanger 38 outside a car room and a heat exchanger 33 in the car room for radiation is controlled by a control device 43 based on the heat environmental information together with a cooling fan 30, the compressor 31, and a blower motor 44. The control device 43 calculates the target value and estimated value of the blowout temperature based on the heat environmental information, adjusts the blast quantity of the cooling fan 30 in response to the difference of them, starts the distribution of the refrigerant with an aperture setting means when the estimated value becomes higher than the target value and the absolute value of the difference becomes the first set value in changing the heating operation to the cooling operation, and starts a blast when the absolute value of the difference becomes the second set value higher than the first set value. The blowout temperature can be lowered to the target value without stopping the compressor 31 under the environmental condition requiring frequent switching of cooling and heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車室内の空調を行う車両
用ヒートポンプ式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner for a vehicle which air-conditions a passenger compartment.

【0002】[0002]

【従来の技術】暖房運転時と冷房運転時とで四方弁によ
り冷媒の流れを逆転させ、暖房運転時には車室外熱交換
器(以下、室外熱交換器または室外機と呼ぶ)を吸熱器
として使用するとともに車室内熱交換器(以下、室内熱
交換器または室内機と呼ぶ)を放熱器として使用し、冷
房運転時には室外機を放熱器として使用するとともに室
内機を吸熱器として使用するようにした車両用ヒートポ
ンプ式冷暖房装置が知られている(例えば、特開平2−
290475号公報参照)。この種の車両用ヒートポン
プ式冷暖房装置の構成を図12に示す。
2. Description of the Related Art A refrigerant flow is reversed by a four-way valve during heating operation and during cooling operation, and an exterior heat exchanger (hereinafter referred to as an outdoor heat exchanger or an outdoor unit) is used as a heat absorber during heating operation. In addition, the vehicle interior heat exchanger (hereinafter referred to as indoor heat exchanger or indoor unit) is used as a radiator, and the outdoor unit is used as a radiator and the indoor unit is used as a heat absorber during cooling operation. A heat pump type air conditioner for a vehicle is known (for example, JP-A-2-
(See JP-A-290475). FIG. 12 shows the configuration of this type of vehicle heat pump type air conditioner.

【0003】暖房運転時には四方弁2が実線示のように
切り換えられ、冷媒がコンプレッサー1→四方弁2→第
1室内熱交換器3→加熱用熱交換器4→第2室内熱交換
器5→膨張弁6→室外熱交換器7→四方弁2→レシーバ
ー8→コンプレッサー1の経路で循環する。この時、第
1室内機3においてコンプレッサー1から吐出された高
温の冷媒の熱がブロアファン9により導入された空気に
放熱され、温風が作られる。さらに加熱用熱交換器4に
おいて、第1室内機3における熱交換によって温度が低
下した冷媒がエンジン10からの廃熱を利用して加熱さ
れ、第2室内機5へ送られる。第2室内機5では、加熱
用熱交換器4で加熱された冷媒の熱がブロアファン11
により導入された空気に放熱され、温風が作られる。一
方、室外機7では、第2室内機5における熱交換によっ
て温度が低下した冷媒がファン12により導入された外
気の熱を吸熱する。つまり、暖房運転時には室外機7を
吸熱器として使用するとともに、室内機3、5を放熱器
として使用して温風を作っている。
During the heating operation, the four-way valve 2 is switched as shown by the solid line, and the refrigerant is compressor 1 → four-way valve 2 → first indoor heat exchanger 3 → heating heat exchanger 4 → second indoor heat exchanger 5 → It circulates in the path of expansion valve 6-> outdoor heat exchanger 7-> four-way valve 2-> receiver 8-> compressor 1. At this time, the heat of the high-temperature refrigerant discharged from the compressor 1 in the first indoor unit 3 is radiated to the air introduced by the blower fan 9 to generate warm air. Further, in the heat exchanger 4 for heating, the refrigerant whose temperature has dropped due to heat exchange in the first indoor unit 3 is heated by utilizing the waste heat from the engine 10 and sent to the second indoor unit 5. In the second indoor unit 5, the heat of the refrigerant heated by the heating heat exchanger 4 is transferred to the blower fan 11
Heat is dissipated to the air introduced by and hot air is created. On the other hand, in the outdoor unit 7, the refrigerant whose temperature has dropped due to heat exchange in the second indoor unit 5 absorbs the heat of the outside air introduced by the fan 12. That is, during the heating operation, the outdoor unit 7 is used as a heat absorber and the indoor units 3, 5 are used as radiators to generate warm air.

【0004】冷房運転時には、四方弁2が点線示のよう
に切り換えられ、冷媒がコンプレッサー1→室外機7→
膨張弁6→第2室内機5→第1室内機3→四方弁2→レ
シーバー8→コンプレッサー1の流路で循環する。この
時、室外機7ではコンプレッサー1から吐出された高温
の冷媒の熱が外気に放熱され、第1および第2室内機
3、5では室外機7で放熱して温度が低下した冷媒がブ
ロアファン9、11により導入された空気の熱を吸熱す
る。つまり、冷房運転時には室外機7を放熱器として使
用するとともに、室内機3、5を吸熱器として使用して
冷風を作っている。
During cooling operation, the four-way valve 2 is switched as shown by the dotted line, and the refrigerant is compressed from the compressor 1 to the outdoor unit 7 to
The expansion valve 6 → the second indoor unit 5 → the first indoor unit 3 → the four-way valve 2 → the receiver 8 → the compressor 1 circulates in the flow path. At this time, in the outdoor unit 7, the heat of the high-temperature refrigerant discharged from the compressor 1 is radiated to the outside air, and in the first and second indoor units 3 and 5, the refrigerant whose heat is radiated by the outdoor unit 7 and whose temperature is lowered is blower fan. The heat of the air introduced by 9 and 11 is absorbed. That is, during the cooling operation, the outdoor unit 7 is used as a radiator and the indoor units 3 and 5 are used as heat absorbers to produce cold air.

【0005】また、放熱用補助室内熱交換器(以下、補
助放熱器と呼ぶ)を放熱用室外熱交換器(以下、室外機
と呼ぶ)と並列に冷凍サイクルに接続し、この補助放熱
器を空調ダクトの吸熱用室内熱交換器(以下、吸熱器と
呼ぶ)の上流側に配置するとともに、室外機および補助
放熱器への冷媒の流量配分を調節する調節バルブを冷凍
サイクルに設置した車両用ヒートポンプ式冷暖房装置が
知られている(例えば、特開昭63−103727号公
報参照)。この種の車両用ヒートポンプ式冷暖房装置の
構成を図13に示す。
Further, a heat dissipation auxiliary indoor heat exchanger (hereinafter referred to as an auxiliary heat radiator) is connected in parallel with a heat dissipation outdoor heat exchanger (hereinafter referred to as an outdoor unit) to a refrigeration cycle, and the auxiliary heat radiator is connected. For vehicles equipped with a control valve installed in the refrigeration cycle on the upstream side of the indoor heat exchanger for heat absorption of the air conditioning duct (hereinafter referred to as heat absorber), and which has a control valve that adjusts the flow rate distribution of the refrigerant to the outdoor unit and the auxiliary radiator. A heat pump type air conditioner is known (for example, see Japanese Patent Laid-Open No. 63-103727). FIG. 13 shows the configuration of this type of vehicle heat pump type air conditioner.

【0006】夏季には、通常運転時に吸熱器21が凍結
するおそれがないので補助放熱器18へ冷媒を流さず、
コンプレッサー15→室外機17→液タンク19→膨張
弁20→吸熱器21→コンプレッサー15の経路で冷媒
を流し、ブロアファン23により導入され吸熱器21を
通過する空気を冷却する。冷却された空気はエアーミッ
クスドア24へ導かれ、このエアーミックスドア24の
開度を制御してヒーターコア25を通過する冷却風の風
量を調節し、目標吹き出し風温度に温調される。
In summer, the heat absorber 21 is not likely to freeze during normal operation, so that no refrigerant flows to the auxiliary radiator 18,
Refrigerant is caused to flow in the path of the compressor 15 → the outdoor unit 17 → the liquid tank 19 → the expansion valve 20 → the heat absorber 21 → the compressor 15, and the air introduced by the blower fan 23 and passing through the heat absorber 21 is cooled. The cooled air is guided to the air mix door 24, the opening degree of the air mix door 24 is controlled, the air volume of the cooling air passing through the heater core 25 is adjusted, and the temperature is adjusted to a target air temperature.

【0007】一方、冬季の外気温が低い時や内気循環に
よる空調時に、吸熱器21が凍結する可能性がある場合
には、調節バルブ16を調節してコンプレッサー15→
室外機17→液タンク19→膨張弁20→吸熱器21→
コンプレッサー15の第1経路と、コンプレッサー15
→補助放熱器18→液タンク19→膨張弁20→吸熱器
21→コンプレッサー15の第2経路との2つの経路で
冷媒を流し、室外機17と補助放熱器18とにより放熱
を行う。ブロアファン23により導入された空気は、補
助放熱器18により暖められて吸熱器21へ送られるの
で、吸熱器21が凍結することがなくなる上に、吸熱器
21により冷却されて冬季にも充分な除湿を行うことが
できる。
On the other hand, when there is a possibility that the heat absorber 21 will freeze when the outside air temperature is low in winter or during air conditioning by internal air circulation, the control valve 16 is adjusted to adjust the compressor 15 →
Outdoor unit 17 → liquid tank 19 → expansion valve 20 → heat absorber 21 →
The first path of the compressor 15 and the compressor 15
→ Auxiliary radiator 18 → Liquid tank 19 → Expansion valve 20 → Heat absorber 21 → Compressor 15 flows the refrigerant through two paths, and the outdoor unit 17 and the auxiliary radiator 18 radiate heat. The air introduced by the blower fan 23 is warmed by the auxiliary radiator 18 and sent to the heat absorber 21, so that the heat absorber 21 does not freeze and is cooled by the heat absorber 21 to be sufficient even in winter. Dehumidification can be performed.

【0008】[0008]

【発明が解決しようとする課題】上述した前者の車両用
ヒートポンプ式冷暖房装置では、暖房運転時と冷房運転
時とで四方弁2により冷媒の流れを逆転させ、暖房運転
時には室外機7を吸熱器として使用するとともに室内機
3、5を放熱器として使用して温風を作り、冷房運転時
には室外機7を放熱器として使用するとともに室内機
3、5を吸熱器として使用して冷風を作っている。その
ため、外気温が低い時、降雨時あるいは降雪時などの気
候条件下で暖房運転を行うと、室外機7における吸熱量
が減少し、コンプレッサー1の仕事量が一定であると仮
定すると、室外機7からの吸熱量とコンプレッサー1の
仕事量との合計熱量を放熱する室内機3、5における放
熱量が減少し、暖房能力が低下する。しかも、このよう
な気候条件下では着霜現象が発生しやすく、デフロスト
運転の回数が増加して暖房運転が不安定になるおそれが
ある。
In the former vehicle heat pump type cooling and heating apparatus described above, the flow of the refrigerant is reversed by the four-way valve 2 during the heating operation and the cooling operation, and the outdoor unit 7 is absorbed by the heat absorber during the heating operation. The indoor units 3 and 5 are used as radiators to generate warm air, and the outdoor unit 7 is used as a radiator during cooling operation, and the indoor units 3 and 5 are used as heat absorbers to generate cold air. There is. Therefore, if heating operation is performed under climatic conditions such as low outdoor temperature, rain or snow, the amount of heat absorbed by the outdoor unit 7 decreases, and assuming that the work of the compressor 1 is constant, The heat radiation amount in the indoor units 3, 5 that radiate the total heat amount of the heat absorption amount from 7 and the work amount of the compressor 1 is reduced, and the heating capacity is reduced. Moreover, under such a climatic condition, a frosting phenomenon is likely to occur, and the number of defrosting operations increases, which may make the heating operation unstable.

【0009】また、車室外温度(以下、外気温と呼ぶ)
が20℃位の中間気温の状態では、暖房運転時も冷房運
転時も冷凍サイクルの運転効率がほぼ最高になるので、
最低の回転数でコンプレッサー1を運転してもまだ能力
過剰となり、冷凍サイクルの運転停止を繰り返しながら
暖房運転または冷房運転を行わなければならない。とこ
ろが、電動コンプレッサーを用いる場合には、起動トル
クの低減やコンプレッサー保護のため、いったんコンプ
レッサーを停止した後は数分間停止状態を保持して冷凍
サイクルの低圧と高圧のバランスを取らなければならな
い。また、暖房運転と冷房運転とを切り換える場合には
冷媒の流れる方向が逆転するので、冷凍サイクル内の圧
力バランスを取るために数分間コンプレッサーを停止し
なければならない。車両の場合には、数分間コンプレッ
サーを停止すると乗員は吹き出し風温度の変化を感じ、
暖房運転と冷房運転の切り換わりに応じて車室内温度
(以下、内気温と呼ぶ)がハンチングを起こし、快適感
が損われてしまう。
The outside temperature of the vehicle compartment (hereinafter referred to as the outside air temperature)
At an intermediate temperature of around 20 ° C, the operating efficiency of the refrigeration cycle is almost the maximum during both heating operation and cooling operation.
Even if the compressor 1 is operated at the lowest rotation speed, the capacity is still excessive, and the heating operation or the cooling operation must be performed while repeatedly stopping the operation of the refrigeration cycle. However, in the case of using an electric compressor, in order to reduce the starting torque and protect the compressor, it is necessary to hold the stopped state for several minutes after the compressor is once stopped to balance the low pressure and the high pressure of the refrigeration cycle. Further, when switching between the heating operation and the cooling operation, the flow direction of the refrigerant is reversed, so that the compressor must be stopped for several minutes in order to balance the pressure in the refrigeration cycle. In the case of a vehicle, if the compressor is stopped for a few minutes, the occupants will feel the change in the air temperature,
Depending on the switching between the heating operation and the cooling operation, the passenger compartment temperature (hereinafter referred to as the inside temperature) causes hunting, and the comfort feeling is impaired.

【0010】一方、上述した後者の車両用ヒートポンプ
式冷暖房装置では、吸熱器21の上流に補助放熱器18
を設置すれば低外気温時や内気循環空調時にもウインド
ウパネルの防曇が容易になるが、吸熱器21で冷却され
た冷風を目標吹き出し風温度まで暖めるにはエンジンの
冷却水を利用したヒーターや電気ヒーターなどの何等か
の加熱手段を必要とし、ソーラーカーや電気自動車のよ
うに大きな熱源を持たない車両には不向きである。しか
も、補助放熱器18から放熱された熱量は下流の吸熱器
21で吸熱されてしまうので、補助放熱器18の放熱に
より暖房を行うことはできない。
On the other hand, in the latter vehicle heat pump type cooling and heating apparatus described above, the auxiliary radiator 18 is provided upstream of the heat absorber 21.
If you install this, you can easily prevent fog of the window panel even at low outside air temperature and inside air circulation air conditioning, but to warm the cold air cooled by the heat absorber 21 to the target blowing air temperature, a heater that uses engine cooling water. It is not suitable for vehicles that do not have a large heat source, such as solar cars and electric vehicles, which require some kind of heating means such as electric heaters and electric heaters. Moreover, the amount of heat radiated from the auxiliary radiator 18 is absorbed by the downstream heat absorber 21, so that the auxiliary radiator 18 cannot radiate heat.

【0011】このような問題を解決するために、コンプ
レッサーの吐出側に調節バルブを設けるとともに、吸熱
用室内熱交換器の下流に放熱用室内熱交換器を設け、暖
房運転時に除湿の可能な車両用ヒートポンプ式冷暖房装
置を提案している(特願平3−345950号)。この
装置では、内気温度と外気温度との関係で窓曇りを生じ
ない境界の温度と、熱環境条件に応じた目標吹き出し風
温度とが概ね一致する温度で冷房運転と暖房運転を切り
換えている。しかし、この切り換え時には冷房運転も暖
房運転も冷凍サイクルの運転効率がほぼ最高となるの
で、コンプレッサーを最低回転数で運転しても冷やし過
ぎや暖め過ぎになる。また、コンプレッサーを停止させ
て送風だけを行うと、車両に要求されるウインドウパネ
ルの防曇性維持が困難となるので、結果的に冷房運転と
暖房運転を交互に切り換えて比較的短い周期で乗員の設
定温度を中心に内気温をハンチングさせながら温調せざ
るをえず、乗員の快適感が損われるという問題がある。
In order to solve such a problem, a control valve is provided on the discharge side of the compressor, and a heat radiating indoor heat exchanger is provided downstream of the heat absorbing indoor heat exchanger to enable dehumidification during heating operation. Has proposed a heat pump type cooling and heating device for a vehicle (Japanese Patent Application No. 3-345950). In this device, the cooling operation and the heating operation are switched at a temperature at which the boundary temperature at which window fogging does not occur due to the relationship between the inside air temperature and the outside air temperature and the target blow-out air temperature according to the thermal environment conditions substantially match. However, at the time of this switching, the operating efficiency of the refrigerating cycle becomes almost the maximum in both the cooling operation and the heating operation, so that even if the compressor is operated at the minimum rotation speed, it will be overcooled or overheated. Also, if only the air is blown with the compressor stopped, it will be difficult to maintain the anti-fog property of the window panel required for the vehicle, and as a result, the cooling operation and the heating operation will be switched alternately and the occupants will have a relatively short cycle. There is a problem that the occupant's feeling of comfort is impaired because the temperature must be adjusted while hunting the inside temperature around the set temperature.

【0012】本発明の目的は、外気温が20℃前後の冷
房運転と暖房運転の切り換えが頻繁に必要となる環境条
件下でも、乗員の体感温度を一定に保つようにした車両
用ヒートポンプ式冷暖房装置を提供することにある。
An object of the present invention is to provide a heat pump type air conditioner for a vehicle, which keeps the sensible temperature of an occupant constant even under environmental conditions where the outside air temperature is around 20 ° C. and frequent switching between cooling operation and heating operation is required. To provide a device.

【0013】[0013]

【課題を解決するための手段】一実施例を示す図1およ
び図2に対応づけて本発明を説明すると、請求項1の発
明は、冷媒に仕事量を加えるコンプレッサー31と、こ
のコンプレッサー31から吐出された冷媒の熱を外気に
放熱する車室外熱交換器38と、第1の送風手段37に
より送風された空気にコンプレッサー31から吐出され
た冷媒の熱を放熱して温風を作る放熱用車室内熱交換器
33と、この放熱用車室内熱交換器33の冷媒流出側に
接続された膨張手段34と、この膨張手段34の冷媒流
出側とコンプレッサー31の冷媒吸入側とに接続され、
第1の送風手段37により送風された空気の熱を冷媒に
吸熱して冷風を作る吸熱用車室内熱交換器35と、コン
プレッサー31の冷媒吐出側に設けられ、コンプレッサ
ー31から吐出される冷媒を車室外熱交換器38と放熱
用車室内熱交換器33とに任意の割合で分配可能な冷媒
流路切換手段32とを備えた車両用ヒートポンプ式冷暖
房装置に、熱環境情報に基づいて吹き出し風温度の目標
値を演算する吹き出し風温度演算手段43と、熱環境情
報に基づいて吹き出し風温度を推定する吹き出し風温度
推定手段43と、車室外熱交換器38に送風して放熱量
を増加させるための第2の送風手段30と、吹き出し風
温度の目標値と推定値との差に応じて第2の送風手段3
0の送風量を調節する送風量調節手段43と、吹き出し
風温度の目標値と推定値との差に基づいて車室外熱交換
器38と放熱用車室内熱交換器33への冷媒分配割合を
演算して冷媒流路切換手段32の開度を設定する開度設
定手段43と、暖房運転状態から冷房運転状態に移行す
る場合に、吹き出し風温度の推定値が目標値よりも高く
なりそれらの差の絶対値が所定の温度T1になってから
開度設定手段43により車室外熱交換器38への冷媒の
分配を開始し、さらに推定値と目標値との差の絶対値が
所定の温度T2(ただし、T2>T1)になってから送
風量調節手段43により車室外熱交換器38への送風を
開始する制御手段43とを備え、これにより、上記目的
を達成する。請求項2の車両用ヒートポンプ式冷暖房装
置は、制御手段43によって、冷房運転状態から暖房運
転状態に移行する場合に、吹き出し風温度の推定値が目
標値よりも低くなりそれらの差の絶対値が所定の温度T
3になるまで送風量調節手段43により車室外熱交換器
38への送風を継続し、さらに推定値と目標値との差の
絶対値が所定の温度T4(ただし、T4>T3)になる
まで開度設定手段43により車室外熱交換器38への冷
媒の分配を継続するようにしたものである。請求項3の
発明は、冷媒に仕事量を加えるコンプレッサー31と、
このコンプレッサー31から吐出された冷媒の熱を外気
に放熱する車室外熱交換器38と、第1の送風手段37
により送風された空気にコンプレッサー31から吐出さ
れた冷媒の熱を放熱して温風を作る放熱用車室内熱交換
器33と、この放熱用車室内熱交換器33の冷媒流出側
に接続された膨張手段34と、この膨張手段34の冷媒
流出側とコンプレッサー31の冷媒吸入側とに接続さ
れ、第1の送風手段37により送風された空気の熱を冷
媒に吸熱して冷風を作る吸熱用車室内熱交換器35と、
コンプレッサー31の冷媒吐出側に設けられ、コンプレ
ッサー31から吐出される冷媒を車室外熱交換器38と
放熱用車室内熱交換器33とに任意の割合で分配可能な
冷媒流路切換手段32とを備えた車両用ヒートポンプ式
冷暖房装置に、熱環境情報に基づいて吹き出し風温度の
目標値を演算する吹き出し風温度演算手段43と、吹き
出し風温度を検出する吹き出し風温度検出手段と、車室
外熱交換器38に送風して放熱量を増加させるための第
2の送風手段30と、吹き出し風温度の目標値と検出値
との差に応じて第2の送風手段30の送風量を調節する
送風量調節手段43と、吹き出し風温度の目標値と検出
値との差に基づいて車室外熱交換器38と放熱用車室内
熱交換器33への冷媒分配割合を演算して冷媒流路切換
手段32の開度を設定する開度設定手段43と、暖房運
転状態から冷房運転状態に移行する場合に、吹き出し風
温度の検出値が目標値よりも高くなりそれらの差の絶対
値が所定の温度T5になってから開度設定手段43によ
り車室外熱交換器38への冷媒の分配を開始し、さらに
検出値と目標値との差の絶対値が所定の温度T6(ただ
し、T6>T5)になってから送風量調節手段43によ
り車室外熱交換器38への送風を開始する制御手段43
とを備え、これにより、上記目的を達成する。請求項4
の車両用ヒートポンプ式冷暖房装置は、制御手段43に
よって、冷房運転状態から暖房運転状態に移行する場合
に、吹き出し風温度の検出値が目標値よりも低くなりそ
れらの差の絶対値が所定の温度T7になるまで送風量調
節手段43により車室外熱交換器38への送風を継続
し、さらに検出値と目標値との差の絶対値が所定の温度
T8(ただし、T8>T7)になるまで開度設定手段4
3により車室外熱交換器38への冷媒の分配を継続する
ようにしたものである。請求項5の車両用ヒートポンプ
式冷暖房装置は、車室外熱交換器38よりも放熱用車室
内熱交換器33への冷媒の分配量が多い時に、エアーミ
ックスドア開度が冷凍サイクルの安定動作を保証できる
最低開度以上になるように制御するエアーミックスドア
開度制御手段43を備える。請求項6の車両用ヒートポ
ンプ式冷暖房装置は、制御手段43によって、コンプレ
ッサー31の回転数が所定の回転数以下の時に冷媒流路
切換手段32により冷媒の分配を行うようにしたもので
ある。請求項7の車両用ヒートポンプ式冷暖房装置は、
制御手段43によって、冷媒流路切換手段32による冷
媒の分配が行われている時は第1の送風手段37の送風
量を最低風量に設定するようにしたものである。
The present invention will be described with reference to FIGS. 1 and 2 showing an embodiment. In the invention of claim 1, a compressor 31 for adding a work amount to a refrigerant, and a compressor 31 A heat exchanger 38 for radiating the heat of the discharged refrigerant to the outside air, and a heat radiating device that radiates the heat of the refrigerant discharged from the compressor 31 to the air blown by the first blowing means 37 to generate warm air The vehicle interior heat exchanger 33, the expansion means 34 connected to the refrigerant outflow side of the heat dissipation vehicle interior heat exchanger 33, the refrigerant outflow side of the expansion means 34 and the refrigerant intake side of the compressor 31,
A heat-absorbing passenger compartment heat exchanger 35 that absorbs the heat of the air blown by the first blower means 37 into the refrigerant to form cold air, and the refrigerant discharged from the compressor 31 provided on the refrigerant discharge side of the compressor 31. A heat pump type air conditioner for a vehicle equipped with a vehicle heat exchanger 38 and a heat dissipation vehicle interior heat exchanger 33, which can be distributed at an arbitrary ratio to a vehicle heat pump type air conditioner, based on thermal environment information. Blow-off air temperature calculating means 43 for calculating a target value of temperature, blow-out air temperature estimating means 43 for estimating a blow-out air temperature based on thermal environment information, and air blowing to the exterior heat exchanger 38 to increase the amount of heat radiation. Second blower means 30 for controlling the blower temperature, and the second blower means 3 according to the difference between the target value and the estimated value of the blown air temperature.
The air flow rate adjusting means 43 for adjusting the air flow rate of 0, and the refrigerant distribution ratio to the vehicle exterior heat exchanger 38 and the heat radiation vehicle interior heat exchanger 33 based on the difference between the target value and the estimated value of the blown air temperature. The opening degree setting means 43 that calculates and sets the opening degree of the refrigerant flow path switching means 32, and the estimated value of the blown-air temperature becomes higher than the target value when the heating operation state shifts to the cooling operation state. After the absolute value of the difference reaches the predetermined temperature T1, the opening degree setting means 43 starts the distribution of the refrigerant to the exterior heat exchanger 38, and the absolute value of the difference between the estimated value and the target value is the predetermined temperature. A control unit 43 is provided which starts blowing air to the vehicle exterior heat exchanger 38 by the air flow rate adjusting unit 43 after T2 (where T2> T1), thereby achieving the above object. In the vehicle heat pump type air conditioner according to claim 2, when the control unit 43 shifts from the cooling operation state to the heating operation state, the estimated value of the blown air temperature becomes lower than the target value, and the absolute value of the difference between them is smaller than the target value. Predetermined temperature T
Until the air flow rate adjusting means 43 reaches 3, the air flow to the exterior heat exchanger 38 is continued until the absolute value of the difference between the estimated value and the target value reaches a predetermined temperature T4 (where T4> T3). The opening degree setting means 43 is configured to continue the distribution of the refrigerant to the vehicle exterior heat exchanger 38. According to the invention of claim 3, a compressor 31 for adding a work amount to the refrigerant,
An exterior heat exchanger 38 for radiating the heat of the refrigerant discharged from the compressor 31 to the outside air, and a first blower 37
The heat-radiating vehicle interior heat exchanger 33 that radiates the heat of the refrigerant discharged from the compressor 31 to the air blown by to generate warm air, and is connected to the refrigerant outflow side of the heat-radiating vehicle interior heat exchanger 33. An expansion vehicle and an endothermic vehicle that is connected to the refrigerant outflow side of the expansion section 34 and the refrigerant intake side of the compressor 31, and absorbs the heat of the air blown by the first air blowing section 37 into the refrigerant to form cold air. The indoor heat exchanger 35,
A refrigerant flow path switching means 32 provided on the refrigerant discharge side of the compressor 31 and capable of distributing the refrigerant discharged from the compressor 31 to the exterior heat exchanger 38 and the heat dissipation interior heat exchanger 33 at an arbitrary ratio. A heat pump type air conditioner for a vehicle provided with the blown air temperature calculation means 43 for calculating a target value of the blown air temperature based on thermal environment information, a blown air temperature detection means for detecting the blown air temperature, and heat exchange outside the vehicle compartment. A second blower 30 for blowing air to the device 38 to increase the amount of heat radiation, and a blower for adjusting the blown amount of the second blower 30 according to the difference between the target value and the detected value of the blown air temperature. Based on the adjustment means 43 and the difference between the target value and the detected value of the blown air temperature, the refrigerant distribution ratio to the vehicle exterior heat exchanger 38 and the heat radiation vehicle interior heat exchanger 33 is calculated to perform the refrigerant flow path switching means 32. The opening of When the opening degree setting means 43 for setting the temperature is changed and the heating operation state is changed to the cooling operation state, the detected value of the blown air temperature becomes higher than the target value and the absolute value of the difference between them becomes the predetermined temperature T5. The distribution of the refrigerant to the exterior heat exchanger 38 is started by the opening degree setting means 43, and is sent after the absolute value of the difference between the detected value and the target value reaches a predetermined temperature T6 (where T6> T5). Control means 43 for starting air blowing to the exterior heat exchanger 38 by the air volume adjusting means 43
And to achieve the above object. Claim 4
In the vehicle heat pump type cooling and heating apparatus, when the control unit 43 shifts from the cooling operation state to the heating operation state, the detected value of the blown air temperature becomes lower than the target value, and the absolute value of the difference between them is a predetermined temperature. Until the temperature reaches T7, the air flow rate adjusting means 43 continues to blow air to the exterior heat exchanger 38 until the absolute value of the difference between the detected value and the target value reaches a predetermined temperature T8 (where T8> T7). Opening degree setting means 4
The distribution of the refrigerant to the vehicle exterior heat exchanger 38 is continued by the method described in No. 3. In the vehicle heat pump type air conditioner according to claim 5, when the distribution amount of the refrigerant to the heat radiating vehicle interior heat exchanger 33 is larger than that of the vehicle exterior heat exchanger 38, the air mix door opening degree provides a stable operation of the refrigeration cycle. The air-mix door opening control means 43 is provided to control the opening so that the minimum opening can be guaranteed. In the vehicle heat pump type cooling and heating apparatus according to the sixth aspect, the control means 43 causes the refrigerant flow path switching means 32 to distribute the refrigerant when the rotation speed of the compressor 31 is equal to or lower than a predetermined rotation speed. The heat pump type air conditioner for a vehicle according to claim 7,
The control unit 43 sets the air flow rate of the first air flow unit 37 to the minimum air flow rate when the refrigerant flow path switching unit 32 is distributing the refrigerant.

【0014】[0014]

【作用】請求項1の車両用ヒートポンプ式冷暖房装置で
は、暖房運転状態から冷房運転状態に移行する場合に、
吹き出し風温度の推定値が目標値よりも高くなりそれら
の差の絶対値が所定の温度T1になってから車室外熱交
換器38への冷媒の分配を開始し、吹き出し風温度の目
標値と推定値とに基づいて演算された分配割合にしたが
って車室外熱交換器38と放熱用車室内熱交換器33と
に冷媒を分配する。さらに、吹き出し風温度の推定値と
目標値との差の絶対値が所定の温度T2(ただし、T2
>T1)になってから車室外熱交換器38への送風を開
始して放熱量を増加させ、以後、吹き出し風温度の目標
値と推定値との差に応じて送風量を調節する。通常の暖
房運転時には、コンプレッサー31の吐出冷媒はすべて
冷媒流路切換手段32を介して放熱用車室内熱交換器3
3へ送られ、コンプレッサー31の入力と吸熱用車室内
熱交換器35の吸熱量との合計が放熱用車室内熱交換器
33から放熱されている。吹き出し風温度の推定値が目
標値よりも高くなりそれらの差の絶対値が所定の温度T
1になった時に、第2の送風手段30を停止したまま冷
媒流路切換手段32により車室外熱交換器38へ冷媒を
分流すると、放熱用車室内熱交換器33から放熱してい
た熱量の一部が車室外熱交換器38からも放熱されるよ
うになる。この時、第2の送風手段30は停止している
ので、通常の冷房運転のように大半の冷媒の熱が車室外
熱交換器38から放熱されることはない。また、車室外
熱交換器38へ冷媒を分流することによって冷凍サイク
ルの高圧が低下するので、コンプレッサー31の入力が
低下し、放熱用車室内熱交換器33からの放熱量が減少
する。さらに、吹き出し風温度の推定値と目標値との差
の絶対値が所定の温度T2になった時に、車室外熱交換
器38への送風を開始して放熱量を増加させると、放熱
用車室内熱交換器33からの放熱量がさらに減少する。
つまり、外気温が20℃前後の冷房運転と暖房運転の切
り換えが頻繁に必要となる環境条件下でも、暖房運転状
態のままでコンプレッサー31を停止せずに吹き出し風
温度を目標値まで低下させることができる。請求項2の
車両用ヒートポンプ式冷暖房装置では、冷房運転状態か
ら暖房運転状態に移行する場合に、吹き出し風温度の推
定値が目標値よりも低くなりそれらの差の絶対値が所定
の温度T3になるまで車室外熱交換器38への送風を継
続し、さらに、吹き出し風温度の推定値と目標値との差
が所定の温度T4(ただし、T4>T3)になるまで車
室外熱交換器38への冷媒の分配を継続する。通常の冷
房運転時には、コンプレッサー31の吐出冷媒はすべて
冷媒流路切換手段32を介して車室外熱交換器38へ送
られ、コンプレッサー31の入力と吸熱用車室内熱交換
器35の吸熱量との合計が車室外熱交換器38と放熱用
車室内熱交換器33とから放熱されている。冷房運転状
態から暖房運転状態へ移行する場合に、車室外熱交換器
38への冷媒の流れと第2の送風手段30による送風と
をいきなり停止せず、吹き出し風温度の推定値が目標値
よりも低くなりそれらの差の絶対値が所定の温度T3に
なるまで車室外熱交換器38への送風を継続し、さら
に、吹き出し風温度の推定値と目標値との差の絶対値が
所定の温度T4になるまで車室外熱交換器38への冷媒
の分配を継続する。これによって、暖房運転状態に切り
換えられた後もしばらくは車室外熱交換器38からの放
熱がつづき、通常の暖房運転状態のように冷媒の熱がす
べて放熱用車室内熱交換器33から放熱されることがな
く、放熱用車室内熱交換器33からの放熱量を徐々に増
加させることができる。つまり、外気温が20℃前後の
冷房運転と暖房運転の切り換えが頻繁に必要となる環境
条件下でも、冷房運転状態のままでコンプレッサー31
を停止せずに吹き出し風温度を目標値まで上げることが
できる。請求項3の車両用ヒートポンプ式冷暖房装置で
は、暖房運転状態から冷房運転状態に移行する場合に、
吹き出し風温度の検出値が目標値よりも高くなりそれら
の差が所定の温度T5になってから車室外熱交換器38
への冷媒の分配を開始し、吹き出し風温度の目標値と検
出値とに基づいて演算された分配割合にしたがって車室
外熱交換器38と放熱用車室内熱交換器33とに冷媒を
分配する。さらに、吹き出し風温度の検出値と目標値と
の差が所定の温度T6(ただし、T6>T5)になって
から車室外熱交換器38への送風を開始して放熱量を増
加させ、以後、吹き出し風温度の目標値と検出値との差
に応じて送風量を調節する。通常の暖房運転時には、コ
ンプレッサー31の吐出冷媒はすべて冷媒流路切換手段
32を介して放熱用車室内熱交換器33へ送られ、コン
プレッサー31の入力と吸熱用車室内熱交換器35の吸
熱量との合計が放熱用車室内熱交換器33から放熱され
ている。吹き出し風温度の検出値が目標値よりも高くな
りそれらの差の絶対値が所定の温度T5になった時に、
第2の送風手段30を停止したまま冷媒流路切換手段3
2により車室外熱交換器38へ冷媒を分流すると、放熱
用車室内熱交換器33から放熱していた熱量の一部が車
室外熱交換器38からも放熱されるようになる。この
時、第2の送風手段30は停止しているので、通常の冷
房運転のように大半の冷媒の熱が車室外熱交換器38か
ら放熱されることはない。また、車室外熱交換器38へ
冷媒を分流することによって冷凍サイクルの高圧が低下
するので、コンプレッサー31の入力が低下し、放熱用
車室内熱交換器33からの放熱量が減少する。さらに、
吹き出し風温度の検出値と目標値との差の絶対値が所定
の温度T6になった時に、車室外熱交換器38への送風
を開始して放熱量を増加させると、放熱用車室内熱交換
器33からの放熱量がさらに減少する。つまり、外気温
が20℃前後の冷房運転と暖房運転の切り換えが頻繁に
必要となる環境条件下でも、暖房運転状態のままでコン
プレッサー31を停止せずに吹き出し風温度を目標値ま
で低下させることができる。請求項4の車両用ヒートポ
ンプ式冷暖房装置では、冷房運転状態から暖房運転状態
に移行する場合に、吹き出し風温度の検出値が目標値よ
りも低くなりそれらの差が所定の温度T7になるまで車
室外熱交換器38への送風を継続し、さらに、吹き出し
風温度の検出値と目標値との差が所定の温度T8(ただ
し、T8>T7)以上になるまで車室外熱交換器38へ
の冷媒の分配を継続する。通常の冷房運転時には、コン
プレッサー31の吐出冷媒はすべて冷媒流路切換手段3
2を介して車室外熱交換器38へ送られ、コンプレッサ
ー31の入力と吸熱用車室内熱交換器35の吸熱量との
合計が車室外熱交換器38と放熱用車室内熱交換器33
とから放熱されている。冷房運転状態から暖房運転状態
へ移行する場合に、車室外熱交換器38への冷媒の流れ
と第2の送風手段30による送風とをいきなり停止せ
ず、吹き出し風温度の検出値が目標値よりも低くなりそ
れらの差の絶対値が所定の温度T7になるまで車室外熱
交換器38への送風を継続し、さらに、吹き出し風温度
の検出値と目標値との差の絶対値が所定の温度T8にな
るまで車室外熱交換器38への冷媒の分配を継続する。
これによって、暖房運転状態に切り換えられた後もしば
らくは車室外熱交換器38からの放熱がつづき、通常の
暖房運転状態のように冷媒の熱がすべて放熱用車室内熱
交換器33から放熱されることがなく、放熱用車室内熱
交換器33からの放熱量を徐々に増加させることができ
る。つまり、外気温が20℃前後の冷房運転と暖房運転
の切り換えが頻繁に必要となる環境条件下でも、冷房運
転状態のままでコンプレッサー31を停止せずに吹き出
し風温度を目標値まで上げることができる。請求項5の
車両用ヒートポンプ式冷暖房装置では、車室外熱交換器
38よりも放熱用車室内熱交換器33への冷媒の分配量
が多い時に、エアーミックスドア開度が冷凍サイクルの
安定動作を保証できる最低開度以上になるように制御す
る。車室外熱交換器38よりも放熱用車室内熱交換器3
3への冷媒の分配量が多い時に、冷房時のエアーミック
スドア制御を行ってエアーミックスドア開度を小さくす
ると、冷凍サイクルの高圧が上昇し、冷凍サイクルを保
護するためにコンプレッサー31を停止しなければなら
なくなる。そこで、このような時でもエアーミックスド
ア開度が最低開度以上になるように制御することによ
り、冷凍サイクルの安定動作を保証できる。請求項6の
車両用ヒートポンプ式冷暖房装置では、コンプレッサー
31の回転数が所定の回転数以下の時に冷媒流路切換手
段32により冷媒の分配を行う。冷房運転状態におい
て、吹き出し風温度の推定値または検出値が目標値より
も低い時は、冷房能力を下げるためにコンプレッサー3
1の回転数を下げる。また、暖房運転状態において、吹
き出し風温度の推定値または検出値が目標値よりも高い
時は暖房能力を下げるためにコンプレッサー31の回転
数を下げる。ところが、コンプレッサー31の回転数が
充分に低い所定の回転数よりもさらに低い時は、たんに
コンプレッサー31の回転数を下げただけでは吹き出し
風温度を目標値にすることが困難である。そこで、コン
プレッサー31の回転数が所定の回転数以下の時には、
車室外熱交換器38と放熱用車室内熱交換器33へ冷媒
を分配することにより、冷房運転状態で吹き出し風温度
を目標値まで上げたり、暖房運転状態で吹き出し風温度
を目標値まで下げたりすることができ、外気温が20℃
前後の冷房運転と暖房運転の切り換えが頻繁に必要とな
る環境条件下でも車室内温度を目標値に設定することが
できる。請求項7の車両用ヒートポンプ式冷暖房装置で
は、冷媒流路切換手段32による冷媒の分配が行われて
いる時は第1の送風手段37の送風量を最低にする。外
気温が20℃前後の冷房運転と暖房運転の切り換えが頻
繁に必要となる環境条件下では、冷媒流路切換手段32
により車室外熱交換器38と放熱用車室内熱交換器33
への冷媒の分配を行い、冷房運転状態で吹き出し風温度
を目標値まで上げたり、暖房運転状態で吹き出し風温度
を目標値まで下げたりして車室内温度を一定に保つよう
に制御するため、吹き出し風温度が変動する。この時、
第1の送風手段37の送風量を最低風量に設定すること
により、吹き出し風が直接、乗員の体に当たらず周囲の
空気と混ざりあってしまうので、乗員が吹き出し風温度
の変動を直接に感じるようなことがない。
In the vehicle heat pump type cooling and heating apparatus according to claim 1, when the heating operation state is changed to the cooling operation state,
After the estimated value of the blown air temperature becomes higher than the target value and the absolute value of the difference between them reaches a predetermined temperature T1, distribution of the refrigerant to the vehicle exterior heat exchanger 38 is started, and the target value of the blown air temperature becomes The refrigerant is distributed to the vehicle exterior heat exchanger 38 and the heat dissipation vehicle interior heat exchanger 33 in accordance with the distribution ratio calculated based on the estimated value. Furthermore, the absolute value of the difference between the estimated value of the blowing air temperature and the target value is the predetermined temperature T2 (however, T2
> T1), the air flow to the exterior heat exchanger 38 is started to increase the heat radiation amount, and thereafter, the air flow rate is adjusted according to the difference between the target value and the estimated value of the blowing air temperature. During normal heating operation, all the refrigerant discharged from the compressor 31 is radiated through the refrigerant flow path switching means 32 and the heat-radiating vehicle interior heat exchanger 3 is used.
3, the total of the input of the compressor 31 and the heat absorption amount of the heat absorbing vehicle interior heat exchanger 35 is radiated from the heat radiating vehicle interior heat exchanger 33. The estimated value of the blowing air temperature becomes higher than the target value, and the absolute value of the difference between them is the predetermined temperature T.
When it becomes 1, when the refrigerant is diverted to the vehicle exterior heat exchanger 38 by the refrigerant flow path switching means 32 while the second air blowing means 30 is stopped, the amount of heat radiated from the heat radiating vehicle interior heat exchanger 33 is reduced. Part of the heat is also radiated from the exterior heat exchanger 38. At this time, since the second blowing unit 30 is stopped, the heat of most of the refrigerant is not radiated from the exterior heat exchanger 38 as in the normal cooling operation. Moreover, since the high pressure of the refrigeration cycle is reduced by diverting the refrigerant to the vehicle exterior heat exchanger 38, the input of the compressor 31 is reduced and the heat radiation amount from the heat radiation vehicle interior heat exchanger 33 is reduced. Further, when the absolute value of the difference between the estimated value of the blown-air temperature and the target value reaches the predetermined temperature T2, if air is blown to the exterior heat exchanger 38 to increase the amount of heat radiation, the heat radiation vehicle The amount of heat released from the indoor heat exchanger 33 is further reduced.
That is, even under environmental conditions where the outside air temperature is around 20 ° C. and frequent switching between cooling operation and heating operation is required, the blowing air temperature can be reduced to the target value without stopping the compressor 31 in the heating operation state. You can In the vehicle heat pump type heating and cooling apparatus according to claim 2, when the cooling operation state is changed to the heating operation state, the estimated value of the blown air temperature becomes lower than the target value, and the absolute value of the difference between them reaches a predetermined temperature T3. Until the difference between the estimated value of the blown air temperature and the target value reaches a predetermined temperature T4 (where T4> T3), the heat exchanger 38 outside the vehicle interior continues. Continue to distribute refrigerant to. During the normal cooling operation, all the refrigerant discharged from the compressor 31 is sent to the vehicle exterior heat exchanger 38 via the refrigerant flow path switching means 32, and the input of the compressor 31 and the heat absorption amount of the heat absorbing vehicle interior heat exchanger 35 are exchanged. The total heat is radiated from the vehicle exterior heat exchanger 38 and the heat radiation vehicle interior heat exchanger 33. When the cooling operation state is changed to the heating operation state, the flow of the refrigerant to the vehicle exterior heat exchanger 38 and the air blown by the second air blower 30 are not suddenly stopped, and the estimated value of the blown air temperature is higher than the target value. Continues to be blown to the exterior heat exchanger 38 until the absolute value of the difference becomes a predetermined temperature T3, and the absolute value of the difference between the estimated value of the blown air temperature and the target value is a predetermined value. The distribution of the refrigerant to the exterior heat exchanger 38 is continued until the temperature reaches T4. As a result, heat is continuously radiated from the vehicle exterior heat exchanger 38 for a while after switching to the heating operation state, and all the heat of the refrigerant is radiated from the heat radiation vehicle interior heat exchanger 33 as in the normal heating operation state. Therefore, the amount of heat released from the heat-radiating vehicle interior heat exchanger 33 can be gradually increased. In other words, even under environmental conditions where the outside air temperature is around 20 ° C. and frequent switching between cooling operation and heating operation is required, the compressor 31 remains in the cooling operation state.
It is possible to raise the temperature of blown air to the target value without stopping. In the vehicle heat pump type cooling and heating apparatus according to claim 3, when the heating operation state is changed to the cooling operation state,
After the detected value of the blown-air temperature becomes higher than the target value and the difference between them reaches the predetermined temperature T5, the heat exchanger 38 outside the vehicle interior
Of the refrigerant to the outside heat exchanger 38 and the heat radiation passenger compartment heat exchanger 33 according to the distribution ratio calculated based on the target value and the detected value of the blown air temperature. . Further, after the difference between the detected value of the blown air temperature and the target value reaches a predetermined temperature T6 (where T6> T5), air blowing to the exterior heat exchanger 38 is started to increase the heat radiation amount, and thereafter. , The blow rate is adjusted according to the difference between the target value and the detected value of the blown air temperature. During normal heating operation, all the refrigerant discharged from the compressor 31 is sent to the heat radiation vehicle interior heat exchanger 33 via the refrigerant flow path switching means 32, and the heat input to the compressor 31 and the heat absorption quantity of the heat absorbing vehicle interior heat exchanger 35. Is radiated from the heat radiating vehicle interior heat exchanger 33. When the detected value of the blowing air temperature becomes higher than the target value and the absolute value of the difference between them reaches a predetermined temperature T5,
Refrigerant flow path switching means 3 with the second blowing means 30 stopped
When the refrigerant is diverted to the vehicle exterior heat exchanger 38 by 2, the part of the amount of heat radiated from the heat dissipation vehicle interior heat exchanger 33 is also radiated from the vehicle exterior heat exchanger 38. At this time, since the second blowing unit 30 is stopped, the heat of most of the refrigerant is not radiated from the exterior heat exchanger 38 as in the normal cooling operation. Moreover, since the high pressure of the refrigeration cycle is reduced by diverting the refrigerant to the vehicle exterior heat exchanger 38, the input of the compressor 31 is reduced and the heat radiation amount from the heat radiation vehicle interior heat exchanger 33 is reduced. further,
When the absolute value of the difference between the detected value of the blown-air temperature and the target value reaches a predetermined temperature T6, if air is blown to the heat exchanger 38 outside the vehicle to increase the amount of heat radiation, the heat inside the vehicle for heat radiation is released. The heat radiation amount from the exchanger 33 is further reduced. That is, even under environmental conditions where the outside air temperature is around 20 ° C. and frequent switching between cooling operation and heating operation is required, the blowing air temperature can be reduced to the target value without stopping the compressor 31 in the heating operation state. You can In the vehicle heat pump type cooling and heating apparatus according to claim 4, when the cooling operation state shifts to the heating operation state, the detected value of the blown air temperature becomes lower than the target value and the difference between them reaches a predetermined temperature T7. The ventilation to the outdoor heat exchanger 38 is continued, and further, until the difference between the detected value of the blown air temperature and the target value becomes equal to or higher than a predetermined temperature T8 (however, T8> T7), the outdoor heat exchanger 38 is supplied. Continue distribution of refrigerant. During normal cooling operation, all the refrigerant discharged from the compressor 31 is the refrigerant flow path switching means 3
2 is sent to the vehicle exterior heat exchanger 38, and the sum of the input of the compressor 31 and the heat absorption amount of the heat absorption vehicle interior heat exchanger 35 is the sum of the vehicle exterior heat exchanger 38 and the heat radiation vehicle interior heat exchanger 33.
Heat is radiated from. When shifting from the cooling operation state to the heating operation state, the flow of the refrigerant to the exterior heat exchanger 38 and the air blown by the second air blower 30 are not suddenly stopped, and the detected value of the blown air temperature is higher than the target value. Continues to be blown to the exterior heat exchanger 38 until the absolute value of the difference between them becomes a predetermined temperature T7, and the absolute value of the difference between the detected value of the blown air temperature and the target value is a predetermined value. The distribution of the refrigerant to the exterior heat exchanger 38 is continued until the temperature reaches T8.
As a result, heat is continuously radiated from the vehicle exterior heat exchanger 38 for a while after switching to the heating operation state, and all the heat of the refrigerant is radiated from the heat radiation vehicle interior heat exchanger 33 as in the normal heating operation state. Therefore, the amount of heat released from the heat-radiating vehicle interior heat exchanger 33 can be gradually increased. That is, even under an environmental condition where the outside air temperature is around 20 ° C. and it is frequently necessary to switch between the cooling operation and the heating operation, the blowing air temperature can be raised to the target value without stopping the compressor 31 in the cooling operation state. it can. In the vehicle heat pump type air conditioner according to claim 5, when the distribution amount of the refrigerant to the heat radiating vehicle interior heat exchanger 33 is larger than that of the vehicle exterior heat exchanger 38, the air mix door opening degree provides a stable operation of the refrigeration cycle. Control so that the minimum opening can be guaranteed. The heat exchanger 3 for radiating heat from the vehicle exterior heat exchanger 38
When the amount of refrigerant distributed to 3 is large and the air mix door control during cooling is performed to reduce the air mix door opening, the high pressure of the refrigeration cycle rises, and the compressor 31 is stopped to protect the refrigeration cycle. Will have to. Therefore, even in such a case, stable operation of the refrigerating cycle can be guaranteed by controlling the air mix door opening to be equal to or more than the minimum opening. In the vehicle heat pump type cooling and heating apparatus according to the sixth aspect, the refrigerant flow path switching means 32 distributes the refrigerant when the rotation speed of the compressor 31 is equal to or lower than a predetermined rotation speed. In the cooling operation state, when the estimated value or the detected value of the blowing air temperature is lower than the target value, the compressor 3 is used to reduce the cooling capacity.
Decrease the rotation speed of 1. Further, in the heating operation state, when the estimated value or the detected value of the blown air temperature is higher than the target value, the rotation speed of the compressor 31 is lowered in order to lower the heating capacity. However, when the rotation speed of the compressor 31 is lower than a predetermined rotation speed that is sufficiently low, it is difficult to set the temperature of the blown air to the target value simply by lowering the rotation speed of the compressor 31. Therefore, when the rotation speed of the compressor 31 is equal to or lower than the predetermined rotation speed,
By distributing the refrigerant to the vehicle exterior heat exchanger 38 and the heat dissipation vehicle interior heat exchanger 33, the temperature of the blown air can be raised to the target value in the cooling operation state, or can be lowered to the target value in the heating operation state. The outside temperature can be 20 ℃
It is possible to set the vehicle interior temperature to the target value even under environmental conditions in which switching between the front and rear cooling operation and the heating operation is frequently required. In the vehicle heat pump type cooling and heating apparatus according to the seventh aspect, the amount of air blown by the first air blower 37 is minimized when the refrigerant flow switching unit 32 is distributing the refrigerant. Under environmental conditions where the outside air temperature is around 20 ° C. and the switching between the cooling operation and the heating operation is frequently required, the refrigerant flow path switching means 32.
The vehicle exterior heat exchanger 38 and the heat radiation vehicle interior heat exchanger 33
In order to keep the vehicle interior temperature constant by distributing the refrigerant to the air conditioner, raising the blown air temperature to the target value in the cooling operation state, or lowering the blown air temperature to the target value in the heating operation state. The blowing air temperature fluctuates. At this time,
By setting the air flow rate of the first air blower 37 to the minimum air flow rate, the blown air does not directly hit the body of the occupant and is mixed with the surrounding air, so that the occupant directly feels the fluctuation of the blown air temperature. There is no such thing.

【0015】なお、本発明の構成を説明する上記課題を
解決するための手段および作用の項では、本発明を分り
やすくするために実施例の図を用いたが、これにより本
発明が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of the embodiments are used in order to make the present invention easy to understand. It is not limited to.

【0016】[0016]

【実施例】図1および図2は一実施例の構成を示す。こ
の実施例の冷凍サイクルは、コンプレッサー31、三方
弁32、室外熱交換器(室外機)38、逆止弁70、放
熱用室内熱交換器(放熱器)33、液タンク36、膨張
弁34および吸熱用室内熱交換器(吸熱器)35を備え
る。コンプレッサー31は外部からの信号により仕事量
を制御できる電動式や油圧駆動式などのコンプレッサー
であり、車室外の例えばエンジンルームに設ける。コン
プレッサー31の冷媒吐出側には三方弁32を設け、こ
の三方弁32によってコンプレッサー31から吐出され
た冷媒を室外機38へ導くか、または室外機38を迂回
して放熱器33へ導くかを切り換える。
1 and 2 show the structure of an embodiment. The refrigeration cycle of this embodiment includes a compressor 31, a three-way valve 32, an outdoor heat exchanger (outdoor unit) 38, a check valve 70, a heat radiation indoor heat exchanger (radiator) 33, a liquid tank 36, an expansion valve 34, and An indoor heat exchanger for heat absorption (heat absorber) 35 is provided. The compressor 31 is an electric or hydraulic drive type compressor whose work can be controlled by a signal from the outside, and is provided outside the vehicle, for example, in the engine room. A three-way valve 32 is provided on the refrigerant discharge side of the compressor 31, and the three-way valve 32 switches whether the refrigerant discharged from the compressor 31 is guided to the outdoor unit 38 or bypasses the outdoor unit 38 and is guided to the radiator 33. .

【0017】なお以下では、冷凍サイクルにおける室外
機38を通る前者の冷媒流路、すなわちコンプレッサー
31→三方弁32→室外機38→逆止弁70→放熱器3
3→液タンク36→膨張弁34→吸熱器35→コンプレ
ッサー31の流路を第1流路と呼び、冷凍サイクルにお
ける室外機38を迂回する後者の冷媒流路、すなわちコ
ンプレッサー31→三方弁32→放熱器33→液タンク
36→膨張弁34→吸熱器35→コンプレッサー31の
流路を第2流路と呼ぶ。この実施例では、三方弁32を
制御して通常の冷房運転時には第1流路に切り換え、通
常の暖房運転時には第2流路に切り換える。
In the following, the former refrigerant flow path through the outdoor unit 38 in the refrigeration cycle, that is, the compressor 31, the three-way valve 32, the outdoor unit 38, the check valve 70, and the radiator 3 will be described.
3-> liquid tank 36-> expansion valve 34-> heat absorber 35-> the flow path of the compressor 31 is called the first flow path, and the latter refrigerant flow path that bypasses the outdoor unit 38 in the refrigeration cycle, that is, the compressor 31-> three-way valve 32-> The flow path of the radiator 33 → the liquid tank 36 → the expansion valve 34 → the heat absorber 35 → the compressor 31 is called a second flow path. In this embodiment, the three-way valve 32 is controlled to switch to the first flow path during normal cooling operation, and to switch to the second flow path during normal heating operation.

【0018】室外機38はコンプレッサー31から吐出
された高温の冷媒の熱を外気に放熱する。冷却ファン3
0は室外機38に送風して放熱量を増加するもので、後
述する制御装置43により回転速度を制御する。逆止弁
70は第2流路による暖房運転時に冷媒が室外機38へ
流入しないように冷媒の逆流を阻止する。また、放熱器
33と吸熱器35をインストルメントパネルの裏側のよ
うな車室内前部に配置された空調用のダクト39内に設
け、放熱器33によってコンプレッサー31から吐出さ
れた高温の冷媒の熱をブロアファン37により送風され
た空気に放熱し、吸熱器35によってブロアファン37
により送風された空気の熱を冷媒に吸熱する。さらに、
これらの放熱器33と吸熱器35との間に液タンク36
と膨張弁34を設置し、液タンク36によって冷媒の気
液の分離を行うとともに、膨張弁34によってコンプレ
ッサー31により圧縮されて液化した冷媒を断熱膨張さ
せて気化する。したがって、膨張弁34の上流、すなわ
ち放熱器33側がこの冷凍サイクルにおける高圧側であ
り、膨張弁34の下流、すなわち吸熱器35側が低圧側
である。
The outdoor unit 38 radiates the heat of the high temperature refrigerant discharged from the compressor 31 to the outside air. Cooling fan 3
0 is for blowing air to the outdoor unit 38 to increase the amount of heat radiation, and the rotation speed is controlled by the control device 43 described later. The check valve 70 blocks the reverse flow of the refrigerant so that the refrigerant does not flow into the outdoor unit 38 during the heating operation by the second flow path. Further, the radiator 33 and the heat absorber 35 are provided in an air conditioning duct 39 arranged in the front part of the vehicle compartment such as the back side of the instrument panel, and the heat of the high-temperature refrigerant discharged from the compressor 31 by the radiator 33 is provided. Radiates heat to the air blown by the blower fan 37, and the heat absorber 35 causes the blower fan 37
The heat of the air blown by is absorbed by the refrigerant. further,
A liquid tank 36 is provided between the radiator 33 and the heat absorber 35.
An expansion valve 34 is installed, and a liquid tank 36 separates the gas and liquid of the refrigerant, and the expansion valve 34 adiabatically expands and liquefies the refrigerant that is compressed and liquefied by the compressor 31 to be vaporized. Therefore, the upstream side of the expansion valve 34, that is, the radiator 33 side is the high pressure side in this refrigeration cycle, and the downstream side of the expansion valve 34, that is, the heat absorber 35 side is the low pressure side.

【0019】ダクト39の上流側に車室内の空気を導入
する内気導入口40と走行風圧を受けて外気を導入する
外気導入口41とを設け、これらの導入口40、41の
分岐部に不図示のアクチュエータにより駆動されるイン
テークドア42を設け、内気導入口40と外気導入口4
1とを任意の比率で開閉する。ダクト39の上流部に設
置されるブロアファン37はブロアモーター44により
駆動され、インテークドア42の開閉比率に応じて内気
導入口40および外気導入口41から空気を導入し、ダ
クト39の下流に配置される吸熱器35および放熱器3
3へ送風する。
On the upstream side of the duct 39, there are provided an inside air introduction port 40 for introducing air in the vehicle interior and an outside air introduction port 41 for introducing outside air in response to traveling wind pressure. An intake door 42 driven by the illustrated actuator is provided, and the inside air inlet 40 and the outside air inlet 4 are provided.
Open and close 1 with any ratio. The blower fan 37 installed upstream of the duct 39 is driven by a blower motor 44, introduces air from the inside air inlet 40 and the outside air inlet 41 according to the opening / closing ratio of the intake door 42, and is arranged downstream of the duct 39. Heat absorber 35 and radiator 3
Blow to 3.

【0020】放熱器33の上流側にエアーミックスドア
46を設ける。このエアーミックスドア46を不図示の
アクチュエータにより開閉し、放熱器33を通過する空
気と放熱器33を迂回する空気との割合を調整する。吸
熱器35により吸熱されて冷えた空気は、エアーミック
スドア46の開度に応じてその一部は放熱器33を通過
して暖められ、残りは放熱器33を迂回して冷風のまま
吹き出される。つまり、エアーミックスドア46の開度
に応じて冷風と温風との割合が調節される。エアーミッ
クスドア46の開度Xdscはエアーミックスドア46
が一点鎖線位置にある場合を0%(全閉、Xdsc=
0)とし、このとき冷風と温風との風量配分は冷風10
0%になる。一方、エアーミックスドア46が図示位置
にある場合の開度Xdscを100%(全開、Xdsc
=100)とし、このとき冷風と温風との風量配分は温
風100%になる。
An air mix door 46 is provided on the upstream side of the radiator 33. The air mix door 46 is opened and closed by an actuator (not shown) to adjust the ratio of the air passing through the radiator 33 and the air bypassing the radiator 33. The air absorbed by the heat absorber 35 and cooled is partly passed through the radiator 33 to be warmed according to the opening degree of the air mix door 46, and the rest bypasses the radiator 33 and is blown out as cold air. It That is, the ratio of cold air to warm air is adjusted according to the opening degree of the air mix door 46. The opening Xdsc of the air mix door 46 is the air mix door 46.
Is 0% (fully closed, Xdsc =
0), and at this time, the air volume distribution between cold air and warm air is 10
It will be 0%. On the other hand, the opening Xdsc when the air mix door 46 is at the position shown is 100% (fully open, Xdsc
= 100), and at this time, the air volume distribution between the cold air and the warm air is 100%.

【0021】ダクト39のエアーミックスドア46の下
流にエアーミックスチャンバー47を設け、ここで冷風
と温風とを混合して温度調節された空調風を作る。エア
ーミックスチャンバー47の下流に、乗員の上半身に向
けて空調風を吹き出すベンチレータ吹き出し口51と、
乗員の足元に向けて空調風を吹き出すフット吹き出し口
52と、ウインドシールドに向けて空調風を吹き出すデ
フロスタ吹き出し口53とを設置するとともに、各吹き
出し口51〜53にはそれぞれベンチレータドア55、
フットドア56およびデフロスタドア57と、各ドアを
駆動する不図示のアクチュエータとを設ける。なお、ベ
ンチレータ吹き出し口51には車両のインストルメント
の中央にセンターベント吹き出し口51b、51cと、
インストルメントの両側にサイドベント吹き出し口51
a、51dを設ける。
An air mix chamber 47 is provided downstream of the air mix door 46 of the duct 39, where cold air and warm air are mixed to produce temperature-controlled conditioned air. Downstream of the air mix chamber 47, a ventilator outlet 51 that blows conditioned air toward the upper body of the occupant,
A foot outlet 52 that blows out the conditioned air toward the feet of the occupant and a defroster outlet 53 that blows out the conditioned air toward the windshield are installed, and the ventilator doors 55 and 53 are provided at the respective outlets 51 to 53.
A foot door 56 and a defroster door 57, and an actuator (not shown) that drives each door are provided. The ventilator outlet 51 has center vent outlets 51b and 51c at the center of the vehicle instrument.
Side vent outlets 51 on both sides of the instrument
a and 51d are provided.

【0022】また、ダクト39にエアーミックスチャン
バー47から内気導入口40へ空気を再循環させる再循
環ダクト71を設ける。エアーミックスチャンバー47
側の空気取入れ口72には再循環ドア74を設け、不図
示のアクチュエータにより駆動して空気取入れ口72の
開閉を行なう。すなわち、この再循環ドア74の開度に
応じて再循環される空気量を調節する。また、内気導入
口40側には切換ドア75を設け、不図示のアクチュエ
ータにより駆動して空調用ダクト39に導入される再循
環空気と内気との割合を調節する。
Further, the duct 39 is provided with a recirculation duct 71 for recirculating air from the air mix chamber 47 to the inside air inlet 40. Air mix chamber 47
A recirculation door 74 is provided at the side air intake port 72, and the air intake port 72 is opened and closed by being driven by an actuator (not shown). That is, the amount of recirculated air is adjusted according to the opening degree of the recirculation door 74. Further, a switching door 75 is provided on the side of the inside air introduction port 40, and is driven by an actuator (not shown) to adjust the ratio between the recirculated air introduced into the air conditioning duct 39 and the inside air.

【0023】ここで、この明細書で用いられる種々の物
理量を定義する。 Tsuc ; 吸熱器35の入口空気温度(吸熱器入口
温度センサー58により検出する) Tout ;吸熱器35の出口空気温度(吸熱器出口温
度センサー59により検出する) Tvsc ; 放熱器33の出口空気温度(放熱器出口
温度センサー60により検出する) Tv ; ベンチレータ吹き出し口51の吹き出し
風温度 Tamb ; 車室外の空気温度(外気温)(外気温セ
ンサー62により検出する) Tic ; 車室内の空気温度(内気温)(室温セン
サー63により検出する) Tptc ; 車室内温度の設定値(以下、設定室温と
呼ぶ)(室温設定器64により設定する) Tof ; 冷暖房装置の目標吹き出し風温度 Td ; コンプレッサ31の吐出冷媒温度(不図
示の冷媒熱検出センサーにより検出する) Qsun ; 日射量(日射量センサー61により検出
する) Xdsc ; エアーミックスドア46の開度 Xint ; インテークドア42の開度 Hz ; コンプレッサー31の周波数(回転速度
に比例する値) Vfan ; ブロアモーター44に印加される電圧
Various physical quantities used in this specification will now be defined. Tsuc; inlet air temperature of heat absorber 35 (detected by heat absorber inlet temperature sensor 58) Tout; outlet air temperature of heat absorber 35 (detected by heat absorber outlet temperature sensor 59) Tvsc; outlet air temperature of radiator 33 ( Temperature detected by radiator outlet temperature sensor 60) Tv; Temperature of blown air from ventilator outlet 51 Tamb; Air temperature outside the vehicle compartment (outside air temperature) (Detected by outside air temperature sensor 62) Tic; Air temperature inside vehicle (inside air temperature) ) (Detected by the room temperature sensor 63) Tptc; Set value of vehicle interior temperature (hereinafter referred to as set room temperature) (set by the room temperature setting device 64) Tof; Target blown air temperature Td of cooling and heating device; Refrigerant discharged from the compressor 31 Temperature (detected by a refrigerant heat detection sensor (not shown)) Qsun; (Detected by the sensor 61) Xdsc; Opening degree of air mix door 46 Xint; Opening degree of intake door 42 Hz; Frequency of compressor 31 (value proportional to rotation speed) Vfan; Voltage applied to blower motor 44

【0024】制御装置43は、マイクロコンピュータ
ー、メモリ、A/D変換器、アクチュエータ駆動回路、
インタフェース回路などから構成され、上述したセンサ
ー58〜60、室温設定器64、吹き出し口を切り換え
るための吹き出し口モードスイッチ65、ブロアファン
スイッチ66、ブロアモーター44、冷却ファン30、
各ドアアクチュエータ、コンプレッサー31、三方弁3
2などが接続される。制御装置43は後述する制御プロ
グラムを実行して車室内の空調制御を行う。すなわち、
センサーおよび設定器からのTsuc,Tout,Tv
sc,Tv,Qsun,Tamb,Tic,Tptcな
どの熱環境情報に基づいてXdsc,Wcomp,To
fなどの目標冷暖房条件を演算し、車室内が目標冷暖房
条件になるようにコンプレッサー31、ブロアモーター
44、冷却ファン30、各ドアのアクチュエータなどを
制御する。特に、冷房運転と暖房運転が頻繁に切り換わ
る外気温20℃前後の中間気温の状態では、三方弁32
により冷媒流路を制御するとともに冷却ファン30によ
り室外機38の放熱量を調節して、冷暖房運転の切り換
わりに応じて乗員の体感温度が変化しないように空調制
御を行う。
The control device 43 includes a microcomputer, a memory, an A / D converter, an actuator drive circuit,
The sensor 58 to 60, the room temperature setting device 64, the blowout port mode switch 65 for switching the blowout port, the blower fan switch 66, the blower motor 44, the cooling fan 30, which includes an interface circuit and the like.
Each door actuator, compressor 31, three-way valve 3
2 etc. are connected. The control device 43 executes a control program described later to control the air conditioning in the vehicle compartment. That is,
Tsuc, Tout, Tv from sensor and setting device
Xdsc, Wcomp, To based on thermal environment information such as sc, Tv, Qsun, Tamb, Tic, Tptc
The target cooling / heating conditions such as f are calculated, and the compressor 31, the blower motor 44, the cooling fan 30, the actuators of the respective doors, etc. are controlled so that the vehicle interior has the target cooling / heating conditions. In particular, in a state where the outside air temperature is around 20 ° C. where the cooling operation and the heating operation are frequently switched, the three-way valve 32
The cooling fan 30 controls the refrigerant flow path, and the cooling fan 30 adjusts the heat radiation amount of the outdoor unit 38 to perform air conditioning control so that the sensible temperature of the occupant does not change according to the switching of the air conditioning operation.

【0025】外気温が20℃位の中間気温の状態では、
車両の熱環境条件に応じて、吸熱器35が吸い込んだ空
気を±5℃程度の温度差をつけて車室内に吹き出す。上
述したように、外気温が20℃位の中間気温の状態では
冷凍サイクルの運転効率がほぼ最高に達するので、単純
に冷房運転と暖房運転を交互に行うと吹き出し風温度が
大きくハンチングして乗員に不快感を与えてしまう。そ
こで、暖房時には車室内への放熱量を減少させ、冷房時
には車室内への放熱量を増加させるような温調方法が必
要となる。
When the outside air temperature is about 20 ° C.
The air sucked by the heat absorber 35 is blown out into the passenger compartment with a temperature difference of about ± 5 ° C. according to the thermal environment conditions of the vehicle. As described above, the operating efficiency of the refrigeration cycle reaches almost the maximum when the outside air temperature is about 20 ° C., and therefore, if the cooling operation and the heating operation are simply performed alternately, the blown air temperature is greatly hunted and the occupant occupies. Makes you feel uncomfortable. Therefore, there is a need for a temperature control method that reduces the amount of heat released into the vehicle interior during heating and increases the amount of heat released into the vehicle interior during cooling.

【0026】この実施例の車両用ヒートポンプ式冷暖房
装置では、冷房運転時および暖房運転時に次式が成立す
る。
In the heat pump type air conditioner for a vehicle of this embodiment, the following equation is established during the cooling operation and the heating operation.

【数1】 Qcond+Qsc=Qeva+Wcomp ここで、Qcond;室外熱交換器(室外機)38の放
熱量 Qsc;放熱用室内熱交換器(放熱器)33の放熱量 Qeva;吸熱用室内熱交換器(吸熱器)35の吸熱量 Wcomp;コンプレッサー31の入力 定常運転時の吸熱器35に流入する空気の熱負荷(温度
や湿度)の変動は小さいので、数式1の右辺(Qeva
+Wcomp)はほぼ一定と見なせる。
## EQU00001 ## Qcond + Qsc = Qeva + Wcomp where Qcond: heat dissipation amount of the outdoor heat exchanger (outdoor unit) 38 Qsc; heat dissipation amount of the heat dissipation indoor heat exchanger (radiator) 33 Qeva; heat absorption indoor heat exchanger (heat absorption) Heat absorption amount of the air conditioner) Wcomp; Input of the compressor 31 Since the fluctuation of the heat load (temperature and humidity) of the air flowing into the heat absorber 35 during the steady operation is small, the right side of Expression 1 (Qeva
+ Wcomp) can be regarded as almost constant.

【0027】図3は、定速走行時で且つエアーミックス
ドア開度Xdscが100%の場合の、三方弁の開度に
対する車室外熱交換器の放熱量Qcondと放熱用車室
内熱交換器の放熱量Qscの割合を示す図である。ここ
で、三方弁32の開度はコンプレッサー31の吐出冷媒
のすべてが室外機38に流れる場合を0%(冷房側)と
し、逆に、吐出冷媒のすべてが放熱器33に流れる場合
を100%(暖房側)とする。三方弁32の開度が10
0%の場合には、(Qeva+Wcomp)のすべての
熱量が放熱器33から放熱され、三方弁32の開度が小
さくなるにしたがって放熱器33からの放熱量Qscが
減少するとともに、室外機38からの放熱量Qcond
が増加する。ここではエアーミックスドア開度Xdsc
が100%の場合を想定しているので、空調風は吸熱器
35で冷却された後に放熱器33で暖められ、三方弁3
2の開度が0%になっても放熱器33からの放熱量Qs
cは0にならない。
FIG. 3 shows the heat dissipation amount Qcond of the exterior heat exchanger and the heat dissipation interior heat exchanger of the three-way valve when the air mix door opening Xdsc is 100% during constant speed running. It is a figure which shows the ratio of the heat radiation amount Qsc. Here, the opening of the three-way valve 32 is 0% when all of the refrigerant discharged from the compressor 31 flows into the outdoor unit 38 (on the cooling side), and conversely, 100% when all the refrigerant discharged flows into the radiator 33. (Heating side) The opening degree of the three-way valve 32 is 10
In the case of 0%, all the heat quantity of (Qeva + Wcomp) is radiated from the radiator 33, and as the opening degree of the three-way valve 32 becomes smaller, the heat radiation quantity Qsc from the radiator 33 decreases and from the outdoor unit 38. Heat dissipation Qcond
Will increase. Here, the air mix door opening Xdsc
Is assumed to be 100%, the conditioned air is cooled by the heat absorber 35 and then warmed by the radiator 33, so that the three-way valve 3
Even if the opening degree of 2 becomes 0%, the heat radiation amount Qs from the radiator 33
c does not become 0.

【0028】また、ベンチレーター51の吹き出し風温
度Tvは次式により算出できる。
The blown air temperature Tv of the ventilator 51 can be calculated by the following equation.

【数2】Tv=Tsuc+Qsc/(ρair・Vai
r・Cpair) ここで、Tsuc;吸熱用車室内熱交換器35の吸い込
み空気温度 Qsc;放熱用車室内熱交換器33の放熱量 ρair;空気密度 Vair;風量 Cpair;空気比熱
(2) Tv = Tsuc + Qsc / (ρair · Vai
r · Cpair) where, Tsuc: intake air temperature of the heat-absorbing passenger compartment heat exchanger 35 Qsc; heat radiation amount of the heat-dissipating passenger compartment heat exchanger 33 ρair; air density Vair; air volume Cpair; air specific heat

【0029】図4は、三方弁の開度に対する放熱用車室
内熱交換器の放熱量が図3に示すような値になる場合
の、数式2により算出される三方弁の開度に対する車室
内吹き出し風温度を示す。図中には、冷却ファン30が
ON時とOFF時の吹き出し風温度を示す。冷却ファン
30を運転すると、室外機38からの放熱量Qcond
が増加する一方、放熱器33からの放熱量Qscが減少
するので、吹き出し風温度Tvが低下する。このよう
に、三方弁32の開度と冷却ファン30の運転、停止を
制御することによって、広い範囲で吹き出し風温度Tv
を変化させながら車室内の温調を行うことが可能とな
る。
FIG. 4 shows the interior of the vehicle with respect to the opening of the three-way valve calculated by Equation 2 when the amount of heat released from the heat-radiating vehicle interior heat exchanger with respect to the opening of the three-way valve has a value as shown in FIG. Indicates the temperature of the blown air. In the figure, the blowing air temperature when the cooling fan 30 is ON and when it is OFF is shown. When the cooling fan 30 is operated, the heat radiation amount Qcond from the outdoor unit 38
While the amount Qsc of heat released from the radiator 33 decreases, the temperature Tv of the blown air decreases. In this way, by controlling the opening degree of the three-way valve 32 and the operation and stop of the cooling fan 30, the blowing air temperature Tv can be controlled in a wide range.
It becomes possible to adjust the temperature inside the vehicle while changing the temperature.

【0030】通常の暖房運転時には、コンプレッサー3
1の入力と吸熱器35の吸熱量との合計が放熱器33か
ら放熱される。ここで、室外機38の冷却ファン30を
停止した状態で三方弁32を切り換えて室外機38へ冷
媒を流すと、放熱器33から放熱していた熱量の一部が
室外機38からも放熱されるようになる。この時、冷却
ファン30は停止しているので、通常の冷房運転のよう
に大半の熱が室外機38から放熱されることはない。ま
た、室外機38に冷媒を流すことによって冷凍サイクル
の高圧が低下するので、コンプレッサー31の入力は低
下し、放熱器33からの放熱量が減少する。さらに、冷
媒の流れを通常の冷房運転時の第1流路とした状態で、
室外機38の冷却ファン30を停止から低速へ、さらに
高速へ切り換えると、徐々に室外機38からの放熱量が
増加して放熱器33からの放熱量が減少し、通常の冷房
運転に向う。
During normal heating operation, the compressor 3
The total of the input of 1 and the amount of heat absorbed by the heat absorber 35 is radiated from the radiator 33. Here, if the three-way valve 32 is switched and the refrigerant is made to flow to the outdoor unit 38 while the cooling fan 30 of the outdoor unit 38 is stopped, a part of the amount of heat radiated from the radiator 33 is also radiated from the outdoor unit 38. Become so. At this time, since the cooling fan 30 is stopped, most of the heat is not radiated from the outdoor unit 38 as in the normal cooling operation. Further, since the high pressure of the refrigeration cycle is lowered by flowing the refrigerant into the outdoor unit 38, the input of the compressor 31 is lowered and the amount of heat radiated from the radiator 33 is reduced. Furthermore, in the state where the flow of the refrigerant is the first flow path during the normal cooling operation,
When the cooling fan 30 of the outdoor unit 38 is switched from stop to low speed and further to high speed, the amount of heat radiation from the outdoor unit 38 gradually increases and the amount of heat radiation from the radiator 33 decreases, and the normal cooling operation is started.

【0031】一方、通常の冷房運転時には、コンプレッ
サー31の入力と吸熱器35の吸熱量との合計が室外機
38と放熱器33から放熱される。冷房時に放熱器33
からの放熱量を増やして吹き出し風温度を上げるために
は、エアーミックスドア46の開度Xdscを大きくす
ればよい。さらに、室外機38の冷却ファン30を高速
から低速へ、さらに停止へと切り換えるにしたがって室
外機38からの放熱量が減少し、逆に放熱器33からの
放熱量が増加する。冷却ファン30が停止している状態
で三方弁32を切り換えて第2流路で冷媒を流すように
すると、通常の暖房運転となる。このように、三方弁3
2により冷媒流路を切り換えるとともに、室外機38の
冷却ファン30の運転速度を切り換えることにより、外
気温20℃前後の中間気温の状態でもコンプレッサー3
1を停止せずに空調運転を継続でき、暖房時に吹き出し
風温度を目標温度まで低下させたり、冷房時に吹き出し
風温度を目標温度まで上昇させることが容易に行える。
On the other hand, during the normal cooling operation, the total of the input of the compressor 31 and the heat absorption of the heat absorber 35 is radiated from the outdoor unit 38 and the radiator 33. Radiator 33 during cooling
In order to increase the amount of heat released from the air mix door and raise the temperature of the blown air, the opening Xdsc of the air mix door 46 may be increased. Further, as the cooling fan 30 of the outdoor unit 38 is switched from high speed to low speed and then stopped, the amount of heat radiation from the outdoor unit 38 decreases, and conversely the amount of heat radiation from the radiator 33 increases. When the cooling fan 30 is stopped and the three-way valve 32 is switched to allow the refrigerant to flow through the second flow path, normal heating operation is performed. In this way, the three-way valve 3
The refrigerant flow path is switched by 2 and the operation speed of the cooling fan 30 of the outdoor unit 38 is switched, so that the compressor 3 can operate even in an intermediate temperature state of about 20 ° C.
It is possible to continue the air-conditioning operation without stopping No. 1 and easily lower the blown-air temperature to the target temperature during heating, or easily raise the blown-air temperature to the target temperature during cooling.

【0032】図5〜図10は制御装置43の温調制御を
示すフローチャートである。これらのフローチャートに
より、実施例の動作を説明する。冷暖房装置の不図示の
メインスイッチが投入されると、制御装置43は温度調
節制御を開始する。ステップS1において、上述したセ
ンサーと操作部材により設定室温Tptc、内気温Ti
c、外気温Tamb、吸熱器出口空気温度Tout、吸
熱器入口空気温度Tsuc、吹き出し風温度Tv、ブロ
ア電圧Vfan、日射量Qsun、コンプレッサー吐出
冷媒温度Td、コンプレッサー周波数Hz、エアーミッ
クスドア開度Xdscなどを検出する。ステップS2
で、検出したセンサー値に基づいて目標吹き出し風温度
Tofを算出してステップS3へ進み、目標吹き出し風
温度Tofに応じて吹き出し口モードを設定する。ここ
で、VENTはベンチレーター吹き出し口51から空調
風を吹き出すモードであり、FOOTはフット吹き出し
口52から空調風を吹き出すモードである。さらに、B
/Lはベンチレーター吹き出し口51とフット吹き出し
口52の両方から空調風を吹き出すモードである。
5 to 10 are flow charts showing the temperature control of the control unit 43. The operation of the embodiment will be described with reference to these flowcharts. When a main switch (not shown) of the cooling and heating device is turned on, the control device 43 starts the temperature adjustment control. In step S1, the room temperature Tptc and the inside air temperature Ti set by the above-mentioned sensor and operation member are set.
c, outside air temperature Tamb, heat absorber outlet air temperature Tout, heat absorber inlet air temperature Tsuc, blowing air temperature Tv, blower voltage Vfan, solar radiation amount Qsun, compressor discharge refrigerant temperature Td, compressor frequency Hz, air mix door opening Xdsc, etc. To detect. Step S2
Then, the target blowing air temperature Tof is calculated based on the detected sensor value, and the process proceeds to step S3 to set the blowing port mode according to the target blowing air temperature Tof. Here, VENT is a mode for blowing out the conditioned air from the ventilator outlet 51, and FOOT is a mode for blowing out the conditioned air from the foot outlet 52. Furthermore, B
/ L is a mode in which conditioned air is blown out from both the ventilator outlet 51 and the foot outlet 52.

【0033】次に、ステップS4において、目標吹き出
し風温度Tofに応じて冷房運転または暖房運転を選択
する。なお、この実施例では目標吹き出し風温度Tof
に応じて冷房運転または暖房運転を選択するようにした
が、吸熱器35の吸い込み空気温度Tsucと目標吹き
出し風温度Tofとの温度差に基づいて冷房運転または
暖房運転を選択するようにしてもよい。あるいはまた、
目標吹き出し風温度Tofとウインドウパネルの窓曇り
に関する温度との温度差に基づいて冷房運転または暖房
運転を選択するようにしてもよい。ステップS5では、
目標吹き出し風温度Tofに応じてインテークドア42
の開度を演算する。冷房時に目標吹き出し風温度Tof
が低い場合や、暖房時に目標吹き出し風温度Tofが高
い場合には、インテークドア開度を小さくして外気の取
り入れ量を少なくし、外気温Tambの影響を少なくし
て吹き出し風温度Tvを目標吹き出し風温度Tofに近
づける。逆に、目標吹き出し風温度Tofが20℃位の
中間気温の状態では、冷凍サイクルの運転効率が高くな
るので多くの外気を取り込んでも充分な空調能力があ
り、インテークドア42の開度を大きくして新鮮な外気
の取り込み量を多くする。
Next, in step S4, the cooling operation or the heating operation is selected according to the target blown air temperature Tof. In this embodiment, the target blown air temperature Tof
Although the cooling operation or the heating operation is selected in accordance with the above, the cooling operation or the heating operation may be selected based on the temperature difference between the intake air temperature Tsuc of the heat absorber 35 and the target blowout air temperature Tof. . Alternatively,
The cooling operation or the heating operation may be selected based on the temperature difference between the target blown air temperature Tof and the temperature related to the fogging of the window panel. In step S5,
The intake door 42 according to the target blowing air temperature Tof
Calculate the opening degree of. Target airflow temperature Tof during cooling
When the target air temperature Tof is high or when the target air temperature Tof is high during heating, the intake door opening is reduced to reduce the amount of outside air taken in and the influence of the outside air temperature Tamb is reduced to achieve the target air temperature Tv. The wind temperature is brought close to Tof. On the contrary, in the state where the target blowing air temperature Tof is about 20 ° C. in the intermediate temperature state, the operation efficiency of the refrigeration cycle is high, so that even if a large amount of outside air is taken in, there is sufficient air conditioning capacity, and the opening degree of the intake door 42 is increased. Increase the intake of fresh air.

【0034】ステップS6では、目標吹き出し風温度T
ofに応じてブロア電圧Vfanを設定する。暖房時に
目標吹き出し風温度Tofが高い場合や、冷房時に目標
吹き出し風温度Tofが低い場合には、ブロア電圧Vf
anを高くして暖房能力や冷房能力を高める。一方、2
0℃位の中間気温の状態ではほぼ最低風量となるように
ブロア電圧Vfanを設定する。この20℃位の中間気
温の状態では、上述したように三方弁32による冷媒流
路の切り換えや、室外機38の冷却ファン30の運転、
停止を頻繁に行うので、車室内への吹き出し風温度Tv
の変動が大きくなるおそれがある。しかし、ブロア電圧
Vfanをほぼ最低にすることにより吹き出し風が直
接、乗員の体に当たらず周囲の空気と混ざりあってしま
うので、乗員が吹き出し風温度Tvの変動を直接に感じ
るようなことはない。ステップS7で、エアーミックス
ドア開度Xdsc、吸熱器出口空気温度Toutおよび
放熱器出口空気温度Tvscに基づいて推定吹き出し風
温度Tmixを演算する。なお、エアーミックスチャン
バー47の下流や吹き出し口51〜53に温度検出セン
サーを設けて吹き出し風温度を直接検出するようにして
もよい。ステップS8で、目標吹き出し風温度Tofと
推定吹き出し風温度Tmixとの差Δθを算出してステ
ップS9へ進み、上記ステップで選択した運転モードを
判別する。冷房運転を選択した場合はステップS10へ
進み、暖房運転を選択した場合はステップS20へ進
む。
At step S6, the target blowing air temperature T
The blower voltage Vfan is set according to of. The blower voltage Vf is set when the target blowing air temperature Tof is high during heating or when the target blowing air temperature Tof is low during cooling.
Increase an to improve heating and cooling capabilities. On the other hand, 2
The blower voltage Vfan is set so that the amount of air flow is almost the minimum in the state of the intermediate temperature of about 0 ° C. In the state of the intermediate temperature of about 20 ° C., as described above, the switching of the refrigerant flow path by the three-way valve 32, the operation of the cooling fan 30 of the outdoor unit 38,
Since it is frequently stopped, the temperature Tv of the air blown into the passenger compartment
Fluctuation may increase. However, by making the blower voltage Vfan almost minimum, the blown air does not directly hit the body of the occupant and is mixed with the surrounding air, so that the occupant does not directly feel the fluctuation of the blown air temperature Tv. . In step S7, the estimated blown air temperature Tmix is calculated based on the air mix door opening Xdsc, the heat absorber outlet air temperature Tout, and the radiator outlet air temperature Tvsc. A temperature detection sensor may be provided downstream of the air mix chamber 47 or in the air outlets 51 to 53 to directly detect the temperature of the air blown. In step S8, the difference Δθ between the target blowing air temperature Tof and the estimated blowing air temperature Tmix is calculated, and the process proceeds to step S9 to determine the operation mode selected in the above step. When the cooling operation is selected, the process proceeds to step S10, and when the heating operation is selected, the process proceeds to step S20.

【0035】−冷房運転− 冷房運転が選択されている場合は、ステップS10で目
標吹き出し風温度Tofと推定吹き出し風温度Tmix
との差Δθを所定値+Sおよび−Sと比較し、差Δθが
所定値−Sより小さい場合はステップS11へ進んでコ
ンプレッサー31の周波数HzをΔHzだけ増加し、差
Δθが所定値+Sより大きい場合はステップS13へ進
んでコンプレッサー31の周波数HzをΔHzだけ減少
する。また、差Δθが−S〜+Sの範囲にある場合はコ
ンプレッサー31を現在の周波数で運転する。つまり、
吹き出し風温度の推定値Tmixが目標値Tofよりも
低い場合はコンプレッサー31の運転速度を下げて冷房
能力を低下させ、推定値Tmixが目標値Tofよりも
高い場合はコンプレッサー31の運転速度を上げて冷房
能力を増加させる。推定値Tmixが目標値Tofにほ
ぼ等しい場合はコンプレッサー31の運転速度を変えな
い。
-Cooling operation-When the cooling operation is selected, the target blown air temperature Tof and the estimated blown air temperature Tmix are selected in step S10.
And the difference Δθ with respect to the predetermined values + S and −S. If the difference Δθ is smaller than the predetermined value −S, the process proceeds to step S11 to increase the frequency Hz of the compressor 31 by ΔHz, and the difference Δθ is larger than the predetermined value + S. In this case, the process proceeds to step S13 and the frequency Hz of the compressor 31 is decreased by ΔHz. When the difference Δθ is in the range of −S to + S, the compressor 31 is operated at the current frequency. That is,
When the estimated value Tmix of the blown air temperature is lower than the target value Tof, the operating speed of the compressor 31 is reduced to reduce the cooling capacity, and when the estimated value Tmix is higher than the target value Tof, the operating speed of the compressor 31 is increased. Increase cooling capacity. When the estimated value Tmix is substantially equal to the target value Tof, the operating speed of the compressor 31 is not changed.

【0036】ステップS14では、コンプレッサー31
の周波数Hzが予め設定した周波数Hzsetよりも低
いか否かを判別する。上述したように、吹き出し風温度
の推定値Tmixが目標値Tofよりも低い場合は、冷
房能力を低下させるためにコンプレッサー31の運転周
波数を下げる。この時、現在のコンプレッサー周波数H
zが設定周波数Hzset以上の場合は、たんにコンプ
レッサー31の周波数Hzを下げることによって吹き出
し風温度の推定値Tmixを目標値Tofに近づけるこ
とができる。ところが、現在のコンプレッサー周波数H
zが設定周波数Hzsetよりも低い場合は、たんにコ
ンプレッサー周波数Hzを下げるだけでは吹き出し風温
度を目標値Tofにすることが困難であるから、上述し
たように三方弁32により冷媒流路を切り換えるととも
に、冷却ファン30の運転速度を制御して吹き出し風温
度を目標値Tofに近づける。
In step S14, the compressor 31
It is determined whether the frequency Hz is lower than the preset frequency Hzset. As described above, when the estimated value Tmix of the blown air temperature is lower than the target value Tof, the operating frequency of the compressor 31 is lowered in order to reduce the cooling capacity. At this time, the current compressor frequency H
When z is equal to or higher than the set frequency Hzset, the estimated value Tmix of the blown air temperature can be brought close to the target value Tof by simply lowering the frequency Hz of the compressor 31. However, the current compressor frequency H
When z is lower than the set frequency Hzset, it is difficult to bring the temperature of the blown air to the target value Tof by merely lowering the compressor frequency Hz. Therefore, as described above, the refrigerant flow path is switched by the three-way valve 32. The operating speed of the cooling fan 30 is controlled to bring the temperature of the blown air close to the target value Tof.

【0037】コンプレッサー周波数Hzが設定周波数H
zsetよりも低い場合には、ステップS15〜S17
において、吹き出し風温の目標値Tofと推定値Tmi
xとの差Δθが大きい時は、冷房運転時であっても暖房
時のエアーミックスドア46の開度制御を行うととも
に、三方弁32を暖房用の第2流路に切り換え、さらに
冷却ファン30を停止することによって吹き出し風温度
を目標温度まで上げる。また、差Δθが小さい時は、冷
却ファン30を運転するとともに、冷房用の第1流路に
切り換えて冷房時のエアーミックスドア制御を行い、通
常の冷房運転を行う。ステップS15で、吹き出し風温
の目標値Tofと推定値Tmixとの差Δθに基づいて
冷房時のエアーミックスドア制御を行うか、または暖房
時のエアーミックスドア制御を行うかを選択する。な
お、エアーミックスドア46の制御切り換えにはヒステ
リシス特性を設ける。三方弁32が冷房用の第1流路に
切り換えられている時に暖房時のエアーミックスドア制
御を行ってもなんら問題はないが、暖房用の第2流路に
切り換えられている時に冷房時のエアーミックスドア制
御を行うと、エアーミックスドア開度が小さくなって冷
凍サイクルの高圧が上昇し、冷凍サイクルを保護するた
めにコンプレッサー31を停止しなければならなくなる
おそれがある。そこで、この実施例ではエアーミックス
ドア制御と三方弁32の制御とを連動させる。すなわ
ち、ステップS16において、吹き出し風温度の目標値
Tofと推定値Tmixとの差Δθに基づいて暖房時の
エアーミックスドア制御が選択された時は三方弁32を
暖房用の第2流路に切り換え、冷房時のエアーミックス
ドア制御が選択された時は三方弁32を冷房用の第1流
路に切り換える。これにより、エアーミックスドア開度
が冷凍サイクルの安定運転を保証できる最低開度以下に
なることを防止できる。
The compressor frequency Hz is the set frequency H
If lower than zset, steps S15 to S17
At, the target value Tof of the blowing air temperature and the estimated value Tmi
When the difference Δθ from x is large, the opening control of the air mix door 46 during heating is performed even during the cooling operation, the three-way valve 32 is switched to the second flow path for heating, and the cooling fan 30 is further used. The temperature of the blown air is raised to the target temperature by stopping. When the difference Δθ is small, the cooling fan 30 is operated, the air-mix door control during cooling is performed by switching to the first flow path for cooling, and normal cooling operation is performed. In step S15, it is selected whether the air mix door control during cooling or the air mix door control during heating is performed based on the difference Δθ between the target value Tof of the blown air temperature and the estimated value Tmix. A hysteresis characteristic is provided for control switching of the air mix door 46. There is no problem if the air mix door control during heating is performed when the three-way valve 32 is switched to the first flow path for cooling, but when the air-mixing door control is switched to the second flow path for heating, When the air mix door control is performed, the opening degree of the air mix door becomes small, the high pressure of the refrigeration cycle rises, and the compressor 31 may have to be stopped in order to protect the refrigeration cycle. Therefore, in this embodiment, the air mix door control and the control of the three-way valve 32 are linked. That is, in step S16, when the air mix door control during heating is selected based on the difference Δθ between the target value Tof of the blowing air temperature and the estimated value Tmix, the three-way valve 32 is switched to the second flow path for heating. When the air mix door control during cooling is selected, the three-way valve 32 is switched to the first flow path for cooling. As a result, it is possible to prevent the opening of the air mix door from falling below the minimum opening that can guarantee stable operation of the refrigeration cycle.

【0038】ステップS17で、吹き出し風温の目標値
Tofと推定値Tmixとの差Δθに基づいて冷却ファ
ン30の運転、停止を切り換える。すなわち、差Δθが
大きい時は冷却ファン30を停止し、差Δθが小さい時
は冷却ファン30を低速Loで運転する。なお、冷却フ
ァン30の運転、停止の切り換え制御にはヒステリシス
特性を設ける。このヒステリシス特性の切り換え点b
1、b2は、上述したエアーミックスドア46および三
方弁32の制御のヒステリシス特性の切り換え点a1、
a2よりも小さい値とする。このように、冷房運転時に
吹き出し風温度の推定値Tmixが目標値Tofよりも
高くなりその差Δθ(=Tof−Tmix)が大きくな
るにしたがって冷却ファン30の運転速度を高速Hiか
ら低速Lo、さらに停止へと切り換えるとともに、冷房
用の第1流路から暖房用の第2流路へ冷媒流路を切り換
えて、徐々に吹き出し風温度を目標値Tofに近づける
ことができる。
In step S17, the cooling fan 30 is switched on or off based on the difference Δθ between the target value Tof of the blown air temperature and the estimated value Tmix. That is, when the difference Δθ is large, the cooling fan 30 is stopped, and when the difference Δθ is small, the cooling fan 30 is operated at the low speed Lo. A hysteresis characteristic is provided for the switching control of the operation and stop of the cooling fan 30. Switching point b of this hysteresis characteristic
1 and b2 are switching points a1 of the hysteresis characteristics of the control of the air mix door 46 and the three-way valve 32 described above.
The value is smaller than a2. Thus, as the estimated value Tmix of the blowing air temperature becomes higher than the target value Tof during the cooling operation and the difference Δθ (= Tof−Tmix) increases, the operating speed of the cooling fan 30 changes from high speed Hi to low speed Lo, and further While switching to the stop, the refrigerant flow path is switched from the cooling first flow path to the heating second flow path, whereby the blown-air temperature can be gradually brought close to the target value Tof.

【0039】コンプレッサー周波数が設定周波数Hzs
et以上の場合は、ステップS31〜S33において通
常の冷房運転制御を行う。まずステップS31におい
て、ミックスドア46によって冷風と温風の割合を調節
し、吹き出し風温度が目標値Tofとなるように制御す
る。続くステップS32で三方弁32を冷房用の第1流
路に切り換え、ステップS33で冷却ファン30を運転
する。
The compressor frequency is the set frequency Hzs
If it is equal to or greater than et, normal cooling operation control is performed in steps S31 to S33. First, in step S31, the mix door 46 adjusts the ratio of cold air and warm air to control the temperature of blown air to the target value Tof. In the following step S32, the three-way valve 32 is switched to the first flow path for cooling, and the cooling fan 30 is operated in step S33.

【0040】−暖房運転− 暖房運転が選択されている場合は、ステップS20で目
標吹き出し風温Tofと推定吹き出し風温Tmixとの
差Δθを所定値+Sおよび−Sと比較し、差Δθが所定
値−Sより小さい場合はステップS21へ進んでコンプ
レッサー31の周波数HzをΔHzだけ減少し、差Δθ
が所定値+Sより大きい場合はステップS23へ進んで
コンプレッサー31の周波数HzをΔHzだけ増加す
る。また、差Δθが−S〜+Sの範囲にある場合はコン
プレッサー31を現在の周波数で運転する。つまり、吹
き出し風温度の推定値Tmixが目標値Tofよりも低
い場合はコンプレッサー31の運転速度を上げて暖房能
力を増加させ、推定値Tmixが目標値Tofよりも高
い場合はコンプレッサー31の運転速度を下げて暖房能
力を低下させる。推定値Tmixが目標値Tofにほぼ
等しい場合はコンプレッサー31の運転速度を変えな
い。
-Heating operation-When the heating operation is selected, the difference Δθ between the target blown air temperature Tof and the estimated blown air temperature Tmix is compared with predetermined values + S and -S in step S20, and the difference Δθ is predetermined. If it is smaller than the value −S, the process proceeds to step S21, the frequency Hz of the compressor 31 is decreased by ΔHz, and the difference Δθ is obtained.
Is larger than the predetermined value + S, the process proceeds to step S23, and the frequency Hz of the compressor 31 is increased by ΔHz. When the difference Δθ is in the range of −S to + S, the compressor 31 is operated at the current frequency. That is, when the estimated value Tmix of the blowing air temperature is lower than the target value Tof, the operating speed of the compressor 31 is increased to increase the heating capacity, and when the estimated value Tmix is higher than the target value Tof, the operating speed of the compressor 31 is increased. Lower to reduce heating capacity. When the estimated value Tmix is substantially equal to the target value Tof, the operating speed of the compressor 31 is not changed.

【0041】ステップS24では、コンプレッサー31
の周波数Hzが予め設定した周波数Hzsetよりも低
いか否かを判別する。上述したように、吹き出し風温度
の推定値Tmixが目標値Tofよりも高い場合は、暖
房能力を低下させるためにコンプレッサー31の運転周
波数Hzを下げる。したがって、現在のコンプレッサー
周波数Hzが設定周波数Hzset以上の場合は、たん
にコンプレッサー31の周波数を下げることによって吹
き出し風温度の推定値Tmixを目標値Tofに近づけ
ることができる。ところが、現在のコンプレッサー周波
数Hzが設定周波数Hzsetよりも低い場合は、たん
にコンプレッサー周波数Hzを下げるだけでは吹き出し
風温度を目標値Tofにすることが困難であるから、上
述したように三方弁32により冷媒流路を切り換えると
ともに、冷却ファン30を運転速度を制御して吹き出し
風温度を目標値Tofに近づける。
In step S24, the compressor 31
It is determined whether the frequency Hz is lower than the preset frequency Hzset. As described above, when the estimated value Tmix of the blown air temperature is higher than the target value Tof, the operating frequency Hz of the compressor 31 is lowered to reduce the heating capacity. Therefore, when the current compressor frequency Hz is equal to or higher than the set frequency Hzset, the estimated value Tmix of the blown air temperature can be brought close to the target value Tof by simply lowering the frequency of the compressor 31. However, when the current compressor frequency Hz is lower than the set frequency Hzset, it is difficult to set the blowing air temperature to the target value Tof by merely lowering the compressor frequency Hz. While switching the refrigerant flow paths, the operating speed of the cooling fan 30 is controlled to bring the temperature of the blown air close to the target value Tof.

【0042】コンプレッサー周波数Hzが基準周波数H
zsetよりも低い場合は、ステップS25〜S27に
おいて、吹き出し風温度の目標値Tofと推定値Tmi
xとの差Δθが小さい時は、暖房運転時であっても冷房
時のエアーミックスドア46の開度制御を行うととも
に、三方弁32を冷房用の第1流路に切り換え、さらに
冷却ファン30を運転することによって吹き出し風温度
を下げる。また、差Δθが大きい時は、冷却ファン30
を停止するとともに、暖房時の第2流路に切り換えて暖
房時のエアーミックスドア制御を行い、通常の暖房運転
を行う。ステップS25で、吹き出し風温度の目標値T
ofと推定値Tmixとの差Δθに基づいて暖房時のエ
アーミックスドア制御を行うか、または冷房時のエアー
ミックスドア制御を行うかを選択する。なお、エアーミ
ックスドア46の制御切り換えにはヒステリシス特性を
設ける。三方弁32が冷房用の第1流路に切り換えられ
ている時に暖房時のエアーミックスドア制御を行っても
なんら問題はないが、暖房用の第2流路に切り換えられ
ている時に冷房時のエアーミックスドア制御を行うと、
エアーミックスドア開度が小さくなって冷凍サイクルの
高圧が上昇し、冷凍サイクルを保護するためにコンプレ
ッサー31を停止しなければならなくなるおそれがあ
る。そこで、この実施例ではエアーミックスドア制御と
三方弁32の制御とを連動させる。すなわち、ステップ
S26において、吹き出し風温の目標値Tofと推定値
Tmixとの差Δθに基づいて冷房時のエアーミックス
ドア制御が選択された時は三方弁32を冷房用の第1流
路に切り換え、暖房時のエアーミックスドア制御が選択
された時は三方弁32を暖房用の第2流路に切り換え
る。これにより、ミックスドア開度が冷凍サイクルの安
定運転を保証できる最低開度以下になることを防止でき
る。
The compressor frequency Hz is the reference frequency H
If it is lower than zset, in steps S25 to S27, the target value Tof and the estimated value Tmi of the blowing air temperature are set.
When the difference Δθ from x is small, the opening degree of the air mix door 46 is controlled during cooling even during heating operation, the three-way valve 32 is switched to the first flow path for cooling, and the cooling fan 30 is further used. To lower the temperature of the blown air. When the difference Δθ is large, the cooling fan 30
Is stopped and the second flow path during heating is switched to perform air mix door control during heating to perform normal heating operation. In step S25, the target value T of the blowing air temperature
The air mix door control during heating or the air mix door control during cooling is selected based on the difference Δθ between the of and the estimated value Tmix. A hysteresis characteristic is provided for control switching of the air mix door 46. There is no problem if the air mix door control during heating is performed when the three-way valve 32 is switched to the first flow path for cooling, but when the air-mixing door control is switched to the second flow path for heating, If you do air mix door control,
There is a possibility that the opening degree of the air mix door becomes small and the high pressure of the refrigeration cycle rises, and the compressor 31 must be stopped in order to protect the refrigeration cycle. Therefore, in this embodiment, the air mix door control and the control of the three-way valve 32 are linked. That is, in step S26, when the air mix door control during cooling is selected based on the difference Δθ between the target value Tof of the blown air temperature and the estimated value Tmix, the three-way valve 32 is switched to the first flow path for cooling. When the air mix door control during heating is selected, the three-way valve 32 is switched to the second flow path for heating. As a result, the opening of the mix door can be prevented from becoming equal to or lower than the minimum opening that can guarantee stable operation of the refrigeration cycle.

【0043】ステップS27で、吹き出し風温度の目標
値Tofと推定値Tmixとの差Δθに基づいて冷却フ
ァン30の運転、停止を切り換える。すなわち、差Δθ
が大きい時は冷却ファン30を停止し、差Δθが小さい
時は冷却ファン30を低速Loで運転する。なお、冷却
ファン30の運転、停止の切り換え制御にはヒステリシ
ス特性を設ける。このヒステリシス特性の切り換え点d
1、d2は、上述したエアーミックスドア46および三
方弁32の制御のヒステリシス特性の切り換え点c1、
c2よりも小さい値とする。このように、暖房運転時に
吹き出し風温度の推定値Tmixが目標値Tofよりも
低くなりその差Δθ(=Tof−Tmix)が小さくな
るにしたがって冷却ファン30の運転速度を停止から低
速Loへ、さらに高速Hiへと切り換えるとともに、暖
房用の第2流路から冷房用の第1流路へ冷媒流路を切り
換えて、徐々に吹き出し風温度を目標値Tofに近づけ
ることができる。
In step S27, the operation of the cooling fan 30 is switched on and off based on the difference Δθ between the target value Tof and the estimated value Tmix of the blowing air temperature. That is, the difference Δθ
When is large, the cooling fan 30 is stopped, and when the difference Δθ is small, the cooling fan 30 is operated at low speed Lo. A hysteresis characteristic is provided for the switching control of the operation and stop of the cooling fan 30. Switching point d of this hysteresis characteristic
1, d2 are switching points c1 of the hysteresis characteristics of the control of the air mix door 46 and the three-way valve 32 described above,
The value is smaller than c2. Thus, as the estimated value Tmix of the blowing air temperature becomes lower than the target value Tof during the heating operation and the difference Δθ (= Tof−Tmix) becomes smaller, the operating speed of the cooling fan 30 is changed from the stop to the low speed Lo. It is possible to switch to the high speed Hi and also to switch the refrigerant channel from the second channel for heating to the first channel for cooling to gradually bring the blown-air temperature closer to the target value Tof.

【0044】コンプレッサー周波数が設定周波数Hzs
et以上の場合は、ステップS34〜S36において通
常の暖房運転制御を行う。まずステップS34におい
て、ミックスドア46によって冷風と温風の割合を調節
し、吹き出し風温度が目標値Tofとなるように制御す
る。続くステップS35で三方弁32を暖房用の第2流
路に切り換え、ステップS36で冷却ファン30を停止
する。
The compressor frequency is the set frequency Hzs
If it is equal to or greater than et, normal heating operation control is performed in steps S34 to S36. First, in step S34, the mix door 46 adjusts the ratio of cold air and warm air, and controls the blown air temperature to be the target value Tof. In the following step S35, the three-way valve 32 is switched to the second flow path for heating, and in step S36, the cooling fan 30 is stopped.

【0045】図11は外気温20℃における実施例の温
調制御結果を示す図である。この実験は、2000cc
クラスのセダン車に実施例の車両用ヒートポンプ式冷暖
房装置を搭載して行った。ただし、この実験では三方弁
の代りに電磁弁を2個使用して冷房用の第1流路と暖房
用の第2流路の切り換えを行った。図中のPdはコンプ
レッサー31の吐出圧力、Psはコンプレッサー31の
吸入圧力、Tfootはフット吹き出し風温度、Tve
ntはベント吹き出し風温度、Ticは内気温である。
環境条件は外気温が20℃一定で、スタートから25分
までは日射なしとし、25〜60分までは日射を加え
た。車両の走行条件はスタートから10分までは停止、
10〜38分の間は40km/hの定速走行、38〜4
8分の間は60km/hの定速走行、48〜60分の間
は停止とした。また、設定室温Tptcは25℃とし
た。冷暖房装置の運転開始直後は車室内が20℃で日射
なしの条件であったから、通常の暖房運転から車室内の
温調が開始されたが、約4分時点で冷却ファン30を停
止した状態で三方弁をON/OFFする暖房運転状態で
の中間気温に対する温調制御が始っている。その後、車
両が40km/hの定速走行に移ると、冷却ファン30
を停止した状態であっても走行風の影響を受けて室外機
38からの放熱量が増加するので、三方弁をON/OF
Fする頻度が増加している。25分経過時に日射なしの
状態から日射を加えると、それまで続けていた暖房運転
状態において冷房用の第1流路で冷却ファン30を運転
する中間気温に対する温調制御を行った後に、車室内吹
き出し風温度を目標値まで下げることができなくなり、
約30分の時点で暖房運転状態から冷房運転状態へ切り
換わり、冷房運転状態での中間気温に対する温調制御に
移行している。暖房運転状態にある時には、バイレベル
吹き出しモードで吹き出し風温度は設定室温Tptcよ
りも高かったが、冷房運転状態に移行した後はベント吹
き出しモードで吹き出し風温度は設定室温Tptcより
も低くなっている。48分経過時に車両を停止させる
と、車両の熱負荷が増加するために、数回中間気温に対
する温調制御を行った後に通常の冷房運転を開始してい
る。日射量や車速を変化させて60分間実験を行った
が、車室内はほぼ乗員が設定した室温25℃に維持され
た。このように、外気温が20℃前後では、暖房運転時
および冷房運転時に拘わらず三方弁32を開度0%と1
00%に交互に調節して車室内の温調を行うので、フッ
ト吹き出し風温度Tfootやベント吹き出し風温度T
ventの変動が大きいが、ブロア電圧Vfanがほぼ
最低電圧に設定されているので、車室内に吹き出された
空調風が乗員に到達するまでに周囲の空気と混ざりあっ
てしまい、これによって、内気温Ticがほぼ一定とな
り、乗員が吹き出し風温度の変化を感じることなく、車
室内を快適な状態に維持することができる。
FIG. 11 is a diagram showing the temperature control result of the embodiment at an outside air temperature of 20 ° C. This experiment is 2000cc
A heat pump type air conditioner for a vehicle of the embodiment was mounted on a class sedan vehicle. However, in this experiment, two electromagnetic valves were used instead of the three-way valve to switch between the first flow path for cooling and the second flow path for heating. In the figure, Pd is the discharge pressure of the compressor 31, Ps is the suction pressure of the compressor 31, Tfoot is the foot blowing air temperature, Tve.
nt is the vent blowing air temperature, and Tic is the inside air temperature.
As for environmental conditions, the outside air temperature was constant at 20 ° C, no solar radiation was applied for 25 minutes from the start, and solar radiation was applied for 25-60 minutes. The driving condition of the vehicle is from start to stop for 10 minutes,
40 km / h constant speed running for 10 to 38 minutes, 38 to 4
The vehicle was driven at a constant speed of 60 km / h for 8 minutes and stopped for 48 to 60 minutes. The set room temperature Tptc was set to 25 ° C. Immediately after the start of the operation of the cooling and heating device, the inside of the vehicle was in a condition of 20 ° C. and no sunlight, so the temperature control of the inside of the vehicle was started from the normal heating operation, but the cooling fan 30 was stopped at about 4 minutes. Temperature control for the intermediate temperature in the heating operation state in which the three-way valve is turned on / off has started. After that, when the vehicle shifts to the constant speed running of 40 km / h, the cooling fan 30
Even when the air conditioner is stopped, the amount of heat released from the outdoor unit 38 increases due to the influence of traveling wind, so the three-way valve is turned on / of.
The frequency of F is increasing. When solar radiation is applied from the state without solar radiation after 25 minutes have elapsed, temperature control is performed for the intermediate temperature for operating the cooling fan 30 in the first cooling air passage in the heating operation state that has been continued until then, and then the vehicle interior It will not be possible to reduce the temperature of the blown air to the target value,
At about 30 minutes, the heating operation state is switched to the cooling operation state, and the temperature control control for the intermediate temperature in the cooling operation state is performed. When in the heating operation state, the blowing air temperature was higher than the set room temperature Tptc in the bi-level blowing mode, but after shifting to the cooling operation state, the blowing air temperature was lower than the set room temperature Tptc in the vent blowing mode. . When the vehicle is stopped after 48 minutes have elapsed, the heat load on the vehicle increases. Therefore, the normal cooling operation is started after performing temperature control for the intermediate temperature several times. The experiment was conducted for 60 minutes by changing the amount of solar radiation and the vehicle speed, but the passenger compartment was maintained at a room temperature of 25 ° C set by the passengers. Thus, when the outside air temperature is around 20 ° C., the three-way valve 32 is opened at 0% and 1 degree regardless of the heating operation and the cooling operation.
Since the temperature of the passenger compartment is adjusted by alternately adjusting the temperature to 00%, the foot blowing air temperature Tfoot and the vent blowing air temperature T
Although the fluctuation of the vent is large, since the blower voltage Vfan is set to almost the minimum voltage, the conditioned air blown into the passenger compartment is mixed with the surrounding air before it reaches the passengers. The Tic becomes almost constant, and the passenger can maintain a comfortable state in the passenger compartment without feeling a change in the blown air temperature.

【0046】なお、上記実施例では三方弁32により冷
媒流路を第1流路と第2流路のいずれかに切り換えてい
るが、三方弁32の代わりに第1流路と第2流路への冷
媒の流量配分を連続的にまたは多段階に調節可能な調節
バルブまたは電磁弁を用いてもよい。
In the above embodiment, the three-way valve 32 switches the refrigerant flow path to either the first flow path or the second flow path, but instead of the three-way valve 32, the first flow path and the second flow path. A control valve or a solenoid valve that can adjust the flow rate distribution of the refrigerant to the continuous or multi-step may be used.

【0047】以上の実施例の構成において、コンプレッ
サー31がコンプレッサーを、室外熱交換器38が車室
外熱交換器を、ブロアファン37が第1の送風手段を、
放熱用室内熱交換器33が放熱用車室内熱交換器を、膨
張弁34が膨張手段を、吸熱用室内熱交換器35が吸熱
用車室内熱交換器を、三方弁32が冷媒流路切換手段
を、制御装置43が吹き出し風温度演算手段、吹き出し
風温度推定手段、送風量調節手段、開度設定手段、制御
手段およびエアーミックスドア開度制御手段を、冷却フ
ァン30が第2の送風手段をそれぞれ構成する。
In the structure of the above embodiment, the compressor 31 is a compressor, the outdoor heat exchanger 38 is a vehicle exterior heat exchanger, and the blower fan 37 is a first blower.
The heat radiation indoor heat exchanger 33 is a heat radiation vehicle interior heat exchanger, the expansion valve 34 is an expansion means, the heat absorption indoor heat exchanger 35 is a heat absorption vehicle interior heat exchanger, and the three-way valve 32 is a refrigerant flow path switching. The control device 43 controls the blowing air temperature calculating means, the blowing air temperature estimating means, the blowing air amount adjusting means, the opening setting means, the control means and the air mix door opening control means, and the cooling fan 30 controls the second blowing means. Respectively.

【0048】[0048]

【発明の効果】以上説明したように請求項1の発明によ
れば、暖房運転状態から冷房運転状態に移行する場合
に、吹き出し風温度の推定値が目標値よりも高くなりそ
れらの差の絶対値が所定の温度T1になってから車室外
熱交換器への冷媒の分配を開始し、さらに、吹き出し風
温度の推定値と目標値との差の絶対値が所定の温度T2
(ただし、T2>T1)になってから車室外熱交換器へ
の送風を開始するようにしたので、外気温が20℃前後
の冷房運転と暖房運転の切り換えが頻繁に必要となる環
境条件下でも、暖房運転状態のままでコンプレッサーを
停止せずに吹き出し風温度を目標値まで低下させること
ができる。請求項2の発明によれば、冷房運転状態から
暖房運転状態に移行する場合に、吹き出し風温度の推定
値が目標値よりも低くなりそれらの差の絶対値が所定の
温度T3になるまで車室外熱交換器への送風を継続し、
さらに、吹き出し風温度の推定値と目標値との差が所定
の温度T4(ただし、T4>T3)になるまで車室外熱
交換器への冷媒の分配を継続するようにしたので、外気
温が20℃前後の冷房運転と暖房運転の切り換えが頻繁
に必要となる環境条件下でも、冷房運転状態のままでコ
ンプレッサーを停止せずに吹き出し風温度を目標値まで
上げることができる。請求項3の発明によれば、暖房運
転状態から冷房運転状態に移行する場合に、吹き出し風
温度の検出値が目標値よりも高くなりそれらの差が所定
の温度T5になってから車室外熱交換器への冷媒の分配
を開始し、さらに、吹き出し風温度の検出値と目標値と
の差が所定の温度T6(ただし、T6>T5)になって
から車室外熱交換器への送風を開始するようにしたの
で、外気温が20℃前後の冷房運転と暖房運転の切り換
えが頻繁に必要となる環境条件下でも、暖房運転状態の
ままでコンプレッサーを停止せずに吹き出し風温度を目
標値まで低下させることができる。請求項4の発明によ
れば、冷房運転状態から暖房運転状態に移行する場合
に、吹き出し風温度の検出値が目標値よりも低くなりそ
れらの差が所定の温度T7になるまで車室外熱交換器へ
の送風を継続し、さらに、吹き出し風温度の検出値と目
標値との差が所定の温度T8(ただし、T8>T7)以
上になるまで車室外熱交換器への冷媒の分配を継続する
ようにしたので、外気温が20℃前後の冷房運転と暖房
運転の切り換えが頻繁に必要となる環境条件下でも、冷
房運転状態のままでコンプレッサーを停止せずに吹き出
し風温度を目標値まで上げることができる。請求項5の
発明によれば、車室外熱交換器よりも放熱用車室内熱交
換器への冷媒の分配量が多い時に、エアーミックスドア
開度が冷凍サイクルの安定動作を保証できる最低開度以
上になるように制御するようにしたので、外気温が20
℃前後の冷房運転と暖房運転の切り換えが頻繁に必要と
なる環境条件下でも冷凍サイクルの安定動作を保証でき
る。請求項6の発明によれば、コンプレッサーの回転数
が所定の回転数以下の時に冷媒流路切換手段により冷媒
の分配を行うようにしたので、冷房運転状態で吹き出し
風温度を目標値まで上げたり、暖房運転状態で吹き出し
風温度を目標値まで下げたりすることができ、外気温が
20℃前後の冷房運転と暖房運転の切り換えが頻繁に必
要となる環境条件下でも車室内温度を目標値に設定する
ことができる。請求項7の発明によれば、冷媒流路切換
手段による冷媒の分配が行われている時は第1の送風手
段の送風量を最低にするようにしたので、外気温が20
℃前後の中間気温の状態で冷房運転と暖房運転の切り換
えを頻繁に行っても、吹き出し風が直接、乗員の体に当
たらず周囲の空気と混ざりあってしまうので、乗員が吹
き出し風温度の変動を直接に感じるようなことがない。
As described above, according to the invention of claim 1, when the heating operation state is changed to the cooling operation state, the estimated value of the blown air temperature becomes higher than the target value, and the absolute value of the difference therebetween is obtained. After the value reaches the predetermined temperature T1, the distribution of the refrigerant to the exterior heat exchanger is started, and the absolute value of the difference between the estimated value of the blown air temperature and the target value is the predetermined temperature T2.
Since the air blow to the exterior heat exchanger is started after (T2> T1), it is necessary to frequently switch between cooling operation and heating operation when the outside temperature is around 20 ° C. However, the blowing air temperature can be reduced to the target value without stopping the compressor in the heating operation state. According to the invention of claim 2, when the cooling operation state is changed to the heating operation state, the estimated value of the blown air temperature becomes lower than the target value and the absolute value of the difference between them reaches the predetermined temperature T3. Continue to blow air to the outdoor heat exchanger,
Further, since the distribution of the refrigerant to the exterior heat exchanger is continued until the difference between the estimated value of the blowing air temperature and the target value reaches the predetermined temperature T4 (where T4> T3), the outside air temperature is Even under the environmental conditions where it is necessary to frequently switch between the cooling operation and the heating operation at around 20 ° C., the blowing air temperature can be raised to the target value without stopping the compressor in the cooling operation state. According to the invention of claim 3, when the heating operation state is changed to the cooling operation state, the detected value of the blowing air temperature becomes higher than the target value and the difference between them becomes a predetermined temperature T5, and then the outside heat of the vehicle compartment is reached. The distribution of the refrigerant to the exchanger is started, and further, when the difference between the detected value of the blown air temperature and the target value reaches a predetermined temperature T6 (where T6> T5), the air is blown to the heat exchanger outside the vehicle compartment. Since it was started, even under environmental conditions where the outside air temperature is around 20 ° C and it is often necessary to switch between cooling operation and heating operation, the blowing air temperature can be set to the target value without stopping the compressor in the heating operation state. Can be lowered to. According to the invention of claim 4, when the cooling operation state is changed to the heating operation state, the heat exchange outside the vehicle is performed until the detected value of the blowing air temperature becomes lower than the target value and the difference between them reaches a predetermined temperature T7. Continues to blow air to the air conditioner, and continues to distribute refrigerant to the heat exchanger outside the vehicle until the difference between the detected value of the blown air temperature and the target value becomes equal to or higher than the predetermined temperature T8 (T8> T7). Therefore, even under environmental conditions where the outside air temperature is around 20 ° C and frequent switching between cooling operation and heating operation is required, the blowing air temperature can reach the target value without stopping the compressor in the cooling operation state. Can be raised. According to the invention of claim 5, when the distribution amount of the refrigerant to the heat radiating passenger compartment heat exchanger is larger than that to the passenger compartment heat exchanger, the air mix door opening degree is the minimum opening degree that can guarantee stable operation of the refrigeration cycle. Since the control is performed as described above, the outside temperature is 20
It is possible to guarantee stable operation of the refrigeration cycle even under environmental conditions in which switching between cooling operation and heating operation around ℃ is frequently required. According to the invention of claim 6, when the number of rotations of the compressor is equal to or lower than a predetermined number of rotations, the refrigerant flow passage switching means distributes the refrigerant, so that the temperature of the blown air can be raised to the target value in the cooling operation state. The temperature of the blown air can be lowered to the target value in the heating operation state, and the vehicle interior temperature can be set to the target value even under the environmental conditions where the outside air temperature is around 20 ° C and switching between the cooling operation and the heating operation is frequently required. Can be set. According to the invention of claim 7, the amount of air blown by the first air blower is minimized while the refrigerant is being distributed by the refrigerant flow path switching means.
Even if the air-conditioning operation and the heating operation are frequently switched at an intermediate temperature of around ℃, the blowing air directly mixes with the surrounding air without directly hitting the occupant's body. You don't feel it directly.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment.

【図2】図1に続く、一実施例の構成を示すブロック
図。
FIG. 2 is a block diagram showing the configuration of one embodiment following FIG.

【図3】定速走行時で且つエアーミックスドア開度Xd
scが100%の場合の、三方弁の開度に対する車室外
熱交換器の放熱量Qcondと放熱用車室内熱交換器の
放熱量Qscの割合を示す図。
[Fig. 3] Constant speed running and air mixing door opening Xd
The figure which shows the ratio of the heat radiation amount Qcond of the vehicle exterior heat exchanger and the heat radiation amount Qsc of the heat radiation vehicle interior heat exchanger with respect to the opening degree of a three-way valve when sc is 100%.

【図4】三方弁の開度に対する放熱用車室内熱交換器の
放熱量が図3に示すような値になる場合の、数式2によ
り算出される三方弁の開度に対する車室内吹き出し風温
度を示す図。
FIG. 4 is a temperature of the air blown into the passenger compartment with respect to the opening of the three-way valve, which is calculated by Equation 2 when the amount of heat released from the heat-radiating passenger compartment heat exchanger with respect to the opening of the three-way valve has a value as shown in FIG. FIG.

【図5】温調制御を示すフローチャート。FIG. 5 is a flowchart showing temperature control.

【図6】図5に続く、温調制御を示すフローチャート。FIG. 6 is a flowchart showing temperature control control continued from FIG. 5;

【図7】図6に続く、温調制御を示すフローチャート。FIG. 7 is a flowchart showing temperature control control continued from FIG. 6;

【図8】図7に続く、温調制御を示すフローチャート。FIG. 8 is a flowchart showing temperature control control continued from FIG. 7.

【図9】図8に続く、温調制御を示すフローチャート。9 is a flowchart showing temperature control control continued from FIG. 8;

【図10】図9に続く、温調制御を示すフローチャー
ト。
FIG. 10 is a flowchart showing temperature control control continued from FIG. 9;

【図11】外気温20℃における実施例の温調結果を示
す図。
FIG. 11 is a diagram showing a temperature control result of the example at an outside air temperature of 20 ° C.

【図12】従来の車両用ヒートポンプ式冷暖房装置の構
成を示すブロック図。
FIG. 12 is a block diagram showing a configuration of a conventional vehicle heat pump type air conditioner.

【図13】他の従来の車両用ヒートポンプ式冷暖房装置
の構成を示すブロック図。
FIG. 13 is a block diagram showing the configuration of another conventional vehicle heat pump type air conditioner.

【符号の説明】[Explanation of symbols]

30 冷却ファン 31 コンプレッサー 32 三方弁 33 放熱用室内熱交換器(放熱器) 34 膨張弁 35 吸熱用室内熱交換器(吸熱器) 36 液タンク 37 ブロアファン 38 室外熱交換器(室外機) 39 ダクト 40 内気導入口 41 外気導入口 42 インテークドア 43 制御装置 44 ブロアモーター 46 エアーミックスドア 47 エアーミックスチャンバー 51 ベンチレーター吹き出し口 52 フット吹き出し口 53 デフロスタ吹き出し口 55 ベンチレータードア 56 フットドア 57 デフロスタドア 58 吸熱器入口温度センサー 59 吸熱器出口温度センサー 60 放熱器出口温度センサー 61 日射センサー 62 外気温センサー 63 室温センサー 64 室温設定器 65 吹き出し口モードスイッチ 66 ブロアファンスイッチ 70 逆止弁 71 再循環ダクト 72 空気取入れ口 74 再循環ドア 75 切換ドア 30 Cooling fan 31 Compressor 32 Three-way valve 33 Radiating indoor heat exchanger (radiator) 34 Expansion valve 35 Endothermic indoor heat exchanger (heat absorber) 36 Liquid tank 37 Blower fan 38 Outdoor heat exchanger (outdoor unit) 39 Duct 40 Inside Air Inlet 41 Outside Air Inlet 42 Intake Door 43 Control Device 44 Blower Motor 46 Air Mix Door 47 Air Mix Chamber 51 Ventilator Outlet 52 Foot Outlet 53 Defroster Outlet 55 Ventilator Door 56 Foot Door 57 Defroster Door 58 Heat Sink Inlet Temperature Sensor 59 Heat absorber outlet temperature sensor 60 Radiator outlet temperature sensor 61 Solar radiation sensor 62 Outside air temperature sensor 63 Room temperature sensor 64 Room temperature setting device 65 Outlet mode switch 66 Blower fan switch 70 check valve 71 re-circulation duct 72 air intake 74 recirculation door 75 switching door

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 冷媒に仕事量を加えるコンプレッサー
と、 このコンプレッサーから吐出された冷媒の熱を外気に放
熱する車室外熱交換器と、 第1の送風手段により送風された空気に前記コンプレッ
サーから吐出された冷媒の熱を放熱して温風を作る放熱
用車室内熱交換器と、 この放熱用車室内熱交換器の冷媒流出側に接続された膨
張手段と、 この膨張手段の冷媒流出側と前記コンプレッサーの冷媒
吸入側とに接続され、前記第1の送風手段により送風さ
れた空気の熱を冷媒に吸熱して冷風を作る吸熱用車室内
熱交換器と、 前記コンプレッサーの冷媒吐出側に設けられ、前記コン
プレッサーから吐出される冷媒を前記車室外熱交換器と
前記放熱用車室内熱交換器とに任意の割合で分配可能な
冷媒流路切換手段とを備えた車両用ヒートポンプ式冷暖
房装置であって、 熱環境情報に基づいて吹き出し風温度の目標値を演算す
る吹き出し風温度演算手段と、 熱環境情報に基づいて吹き出し風温度を推定する吹き出
し風温度推定手段と、 前記車室外熱交換器に送風して放熱量を増加させるため
の第2の送風手段と、 吹き出し風温度の前記目標値と前記推定値との差に応じ
て前記第2の送風手段の送風量を調節する送風量調節手
段と、 吹き出し風温度の前記目標値と前記推定値との差に基づ
いて前記車室外熱交換器と前記放熱用車室内熱交換器へ
の冷媒分配割合を演算して前記冷媒流路切換手段の開度
を設定する開度設定手段と、 暖房運転状態から冷房運転状態に移行する場合に、吹き
出し風温度の前記推定値が前記目標値よりも高くなりそ
れらの差の絶対値が所定の温度T1になってから前記開
度設定手段により前記車室外熱交換器への冷媒の分配を
開始し、さらに前記推定値と前記目標値との差の絶対値
が所定の温度T2(ただし、T2>T1)になってから
前記送風量調節手段により前記車室外熱交換器への送風
を開始する制御手段とを備えることを特徴とする車両用
ヒートポンプ式冷暖房装置。
1. A compressor for adding work to a refrigerant, an exterior heat exchanger for radiating heat of the refrigerant discharged from the compressor to the outside air, and a compressor for discharging air blown by a first blowing means from the compressor. A heat radiation vehicle interior heat exchanger that radiates the heat of the generated refrigerant to generate warm air, an expansion means connected to the refrigerant outflow side of the heat radiation vehicle interior heat exchanger, and a refrigerant outflow side of the expansion means. An endothermic passenger compartment heat exchanger that is connected to the refrigerant suction side of the compressor and that absorbs the heat of the air blown by the first blower into the refrigerant to form cold air, and is provided on the refrigerant discharge side of the compressor. A heat pump type for a vehicle provided with a refrigerant flow path switching means capable of distributing the refrigerant discharged from the compressor to the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger at an arbitrary ratio. A heating device, which includes a blowing air temperature calculating unit that calculates a target value of blowing air temperature based on thermal environment information, an blowing air temperature estimating unit that estimates a blowing air temperature based on thermal environment information, and the outside of the vehicle compartment. Second blowing means for blowing air to the heat exchanger to increase the amount of heat radiation, and adjusting the blowing quantity of the second blowing means according to the difference between the target value and the estimated value of the blowing air temperature. The air flow rate adjusting means, and calculates the refrigerant distribution ratio to the exterior heat exchanger and the heat dissipation vehicle interior heat exchanger based on the difference between the target value and the estimated value of the blown air temperature to calculate the refrigerant flow. The opening degree setting means for setting the opening degree of the path switching means and the estimated value of the blowing air temperature becomes higher than the target value when the heating operation state is changed to the cooling operation state, and the absolute value of the difference therebetween is Has it reached the predetermined temperature T1? Distribution of the refrigerant to the vehicle exterior heat exchanger is started by the opening degree setting means, and the absolute value of the difference between the estimated value and the target value reaches a predetermined temperature T2 (where T2> T1). To a control means for starting the air flow to the exterior heat exchanger from the vehicle by the air flow rate adjusting means from the heat pump type air conditioner for a vehicle.
【請求項2】 請求項1に記載の車両用ヒートポンプ式
冷暖房装置において、 前記制御手段は、冷房運転状態から暖房運転状態に移行
する場合に、吹き出し風温度の前記推定値が前記目標値
よりも低くなりそれらの差の絶対値が所定の温度T3に
なるまで前記送風量調節手段により前記車室外熱交換器
への送風を継続し、さらに前記推定値と前記目標値との
差の絶対値が所定の温度T4(ただし、T4>T3)に
なるまで前記開度設定手段により前記車室外熱交換器へ
の冷媒の分配を継続することを特徴とする車両用ヒート
ポンプ式冷暖房装置。
2. The vehicle heat pump type cooling and heating apparatus according to claim 1, wherein the control unit causes the estimated value of the blown air temperature to be higher than the target value when the cooling operation state is changed to the heating operation state. Until the absolute value of the difference becomes a predetermined temperature T3, the air flow rate adjusting means continues to blow air to the exterior heat exchanger, and the absolute value of the difference between the estimated value and the target value is further increased. A heat pump type air conditioner for a vehicle, characterized in that the opening degree setting means continues to distribute the refrigerant to the outside heat exchanger until a predetermined temperature T4 (where T4> T3) is reached.
【請求項3】 冷媒に仕事量を加えるコンプレッサー
と、 このコンプレッサーから吐出された冷媒の熱を外気に放
熱する車室外熱交換器と、 第1の送風手段により送風された空気に前記コンプレッ
サーから吐出された冷媒の熱を放熱して温風を作る放熱
用車室内熱交換器と、 この放熱用車室内熱交換器の冷媒流出側に接続された膨
張手段と、 この膨張手段の冷媒流出側と前記コンプレッサーの冷媒
吸入側とに接続され、前記第1の送風手段により送風さ
れた空気の熱を冷媒に吸熱して冷風を作る吸熱用車室内
熱交換器と、 前記コンプレッサーの冷媒吐出側に設けられ、前記コン
プレッサーから吐出される冷媒を前記車室外熱交換器と
前記放熱用車室内熱交換器とに任意の割合で分配可能な
冷媒流路切換手段とを備えた車両用ヒートポンプ式冷暖
房装置であって、 熱環境情報に基づいて吹き出し風温度の目標値を演算す
る吹き出し風温度演算手段と、 吹き出し風温度を検出する吹き出し風温度検出手段と、 前記車室外熱交換器に送風して放熱量を増加させるため
の第2の送風手段と、 吹き出し風温度の前記目標値と前記検出値との差に応じ
て前記第2の送風手段の送風量を調節する送風量調節手
段と、 吹き出し風温度の前記目標値と前記検出値との差に基づ
いて前記車室外熱交換器と前記放熱用車室内熱交換器へ
の冷媒分配割合を演算して前記冷媒流路切換手段の開度
を設定する開度設定手段と、 暖房運転状態から冷房運転状態に移行する場合に、吹き
出し風温度の前記検出値が前記目標値よりも高くなりそ
れらの差の絶対値が所定の温度T5になってから前記開
度設定手段により前記車室外熱交換器への冷媒の分配を
開始し、さらに前記検出値と前記目標値との差の絶対値
が所定の温度T6(ただし、T6>T5)になってから
前記送風量調節手段により前記車室外熱交換器への送風
を開始する制御手段とを備えることを特徴とする車両用
ヒートポンプ式冷暖房装置。
3. A compressor for adding work to the refrigerant, an exterior heat exchanger for radiating the heat of the refrigerant discharged from the compressor to the outside air, and a compressor for discharging the air blown by the first blowing means from the compressor. A heat radiation vehicle interior heat exchanger that radiates the heat of the generated refrigerant to generate warm air, an expansion means connected to the refrigerant outflow side of the heat radiation vehicle interior heat exchanger, and a refrigerant outflow side of the expansion means. An endothermic passenger compartment heat exchanger that is connected to the refrigerant suction side of the compressor and that absorbs the heat of the air blown by the first blower into the refrigerant to form cold air, and is provided on the refrigerant discharge side of the compressor. A heat pump type for a vehicle provided with a refrigerant flow path switching means capable of distributing the refrigerant discharged from the compressor to the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger at an arbitrary ratio. A heating device, including a blowing air temperature calculating means for calculating a target value of the blowing air temperature based on thermal environment information, a blowing air temperature detecting means for detecting a blowing air temperature, and blowing air to the vehicle exterior heat exchanger. Second air blowing means for increasing the amount of heat radiation, and air blowing amount adjusting means for adjusting the air blowing amount of the second air blowing means according to the difference between the target value and the detected value of the air blowing air temperature, The opening of the refrigerant flow path switching means by calculating the refrigerant distribution ratio to the exterior heat exchanger and the heat dissipation interior heat exchanger based on the difference between the target value and the detected value of the blown air temperature. When the air-conditioning operation state is changed from the heating operation state to the cooling operation state, the detected value of the blowing air temperature becomes higher than the target value, and the absolute value of the difference between them becomes a predetermined temperature T5. The opening setting means The distribution of the refrigerant to the exterior heat exchanger is started, and the air flow rate adjustment is performed after the absolute value of the difference between the detected value and the target value reaches a predetermined temperature T6 (where T6> T5). A heat pump type cooling and heating apparatus for a vehicle, comprising: a control unit that starts blowing air to the vehicle exterior heat exchanger.
【請求項4】 請求項3に記載の車両用ヒートポンプ式
冷暖房装置において、 前記制御手段は、冷房運転状態から暖房運転状態に移行
する場合に、吹き出し風温度の前記検出値が前記目標値
よりも低くなりそれらの差の絶対値が所定の温度T7に
なるまで前記送風量調節手段により前記車室外熱交換器
への送風を継続し、さらに前記検出値と前記目標値との
差の絶対値が所定の温度T8(ただし、T8>T7)に
なるまで、前記開度設定手段により前記車室外熱交換器
への冷媒の分配を継続することを特徴とする車両用ヒー
トポンプ式冷暖房装置。
4. The vehicle heat pump type cooling and heating apparatus according to claim 3, wherein the control unit causes the detected value of the blowing air temperature to be higher than the target value when the cooling operation state shifts to the heating operation state. Until the absolute value of the difference becomes a predetermined temperature T7, the air flow rate adjusting means continues to blow air to the exterior heat exchanger, and the absolute value of the difference between the detected value and the target value is A heat pump type cooling and heating apparatus for a vehicle, wherein the opening degree setting means continues to distribute the refrigerant to the outside heat exchanger until a predetermined temperature T8 (where T8> T7) is reached.
【請求項5】 請求項1〜4のいずれかの項に記載の車
両用ヒートポンプ式冷暖房装置において、 前記車室外熱交換器よりも前記放熱用車室内熱交換器へ
の冷媒の分配量が多い時に、エアーミックスドア開度が
冷凍サイクルの安定動作を保証できる最低開度以上にな
るように制御するエアーミックスドア開度制御手段を備
えることを特徴とする車両用ヒートポンプ式冷暖房装
置。
5. The heat pump type air conditioner for a vehicle according to claim 1, wherein a distribution amount of the refrigerant to the heat radiating passenger compartment heat exchanger is larger than that of the vehicle exterior heat exchanger. At the same time, the heat pump type air conditioner for a vehicle is provided with an air mix door opening control means for controlling the air mix door opening so as to be equal to or more than the minimum opening that can guarantee stable operation of the refrigeration cycle.
【請求項6】 請求項1〜5のいずれかの項に記載の車
両用ヒートポンプ式冷暖房装置において、 前記制御手段は、前記コンプレッサーの回転数が所定の
回転数以下の時に前記冷媒流路切換手段により冷媒の分
配を行うことを特徴とする車両用ヒートポンプ式冷暖房
装置。
6. The vehicle heat pump type cooling and heating apparatus according to claim 1, wherein the control unit controls the refrigerant flow path switching unit when the rotation speed of the compressor is equal to or lower than a predetermined rotation speed. A heat pump type air conditioner for a vehicle, characterized in that the refrigerant is distributed by means of.
【請求項7】 請求項1〜6のいずれかの項に記載の車
両用ヒートポンプ式冷暖房装置において、 前記制御手段は、前記冷媒流路切換手段による冷媒の分
配が行われている時は前記第1の送風手段の送風量を最
低風量に設定することを特徴とする車両用ヒートポンプ
式冷暖房装置。
7. The heat pump type cooling and heating apparatus for a vehicle according to claim 1, wherein the control unit is configured to perform the refrigerant flow distribution by the refrigerant flow path switching unit. A heat pump type air conditioner for a vehicle, characterized in that the amount of air blown by the air blower No. 1 is set to a minimum amount of air flow.
JP08177694A 1994-04-20 1994-04-20 Heat pump type air conditioner for vehicles Expired - Fee Related JP3301209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08177694A JP3301209B2 (en) 1994-04-20 1994-04-20 Heat pump type air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08177694A JP3301209B2 (en) 1994-04-20 1994-04-20 Heat pump type air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JPH07285326A true JPH07285326A (en) 1995-10-31
JP3301209B2 JP3301209B2 (en) 2002-07-15

Family

ID=13755890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08177694A Expired - Fee Related JP3301209B2 (en) 1994-04-20 1994-04-20 Heat pump type air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP3301209B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173896A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
WO2020050038A1 (en) * 2018-09-06 2020-03-12 株式会社デンソー Refrigeration cycle device
CN111271847A (en) * 2019-07-17 2020-06-12 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111754U (en) * 1975-03-06 1976-09-09
JPS56133565A (en) * 1980-03-24 1981-10-19 Mitsubishi Motors Corp Cooler for cooler condenser
JPS5826946A (en) * 1981-08-07 1983-02-17 Matsushita Electric Ind Co Ltd Temperature control system for air conditioner
JPS63103727A (en) * 1986-10-21 1988-05-09 Diesel Kiki Co Ltd Air conditioner for vehicle
JPH05319077A (en) * 1991-04-26 1993-12-03 Nippondenso Co Ltd Air conditioner for automobile
JPH0640235A (en) * 1992-05-25 1994-02-15 Nissan Motor Co Ltd Heat pump type air conditioner for vehicle
JPH06227245A (en) * 1993-02-04 1994-08-16 Nissan Motor Co Ltd Car cabin cooling/warming device of heat pump type

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111754U (en) * 1975-03-06 1976-09-09
JPS56133565A (en) * 1980-03-24 1981-10-19 Mitsubishi Motors Corp Cooler for cooler condenser
JPS5826946A (en) * 1981-08-07 1983-02-17 Matsushita Electric Ind Co Ltd Temperature control system for air conditioner
JPS63103727A (en) * 1986-10-21 1988-05-09 Diesel Kiki Co Ltd Air conditioner for vehicle
JPH05319077A (en) * 1991-04-26 1993-12-03 Nippondenso Co Ltd Air conditioner for automobile
JPH0640235A (en) * 1992-05-25 1994-02-15 Nissan Motor Co Ltd Heat pump type air conditioner for vehicle
JPH06227245A (en) * 1993-02-04 1994-08-16 Nissan Motor Co Ltd Car cabin cooling/warming device of heat pump type

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173896A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
GB2540906A (en) * 2014-05-13 2017-02-01 Mitsubishi Electric Corp Air conditioning system
US10317120B2 (en) 2014-05-13 2019-06-11 Mitsubishi Electric Corporation Air conditioning system with indoor and ventilation circuits
GB2540906B (en) * 2014-05-13 2020-03-04 Mitsubishi Electric Corp Air conditioning system
WO2020050038A1 (en) * 2018-09-06 2020-03-12 株式会社デンソー Refrigeration cycle device
JP2020040429A (en) * 2018-09-06 2020-03-19 株式会社デンソー Refrigeration cycle device
CN111271847A (en) * 2019-07-17 2020-06-12 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity
CN111271847B (en) * 2019-07-17 2021-07-13 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity

Also Published As

Publication number Publication date
JP3301209B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JP3463303B2 (en) Heat pump type air conditioner for vehicles
JP2745997B2 (en) Heat pump type air conditioner for vehicles
EP1086837B1 (en) Air conditioner for vehicle
JP2882184B2 (en) Heat pump type air conditioner for vehicles
US6898946B2 (en) Vehicle air-conditioning system
CN109715422B (en) Air conditioner for vehicle
US5375427A (en) Air conditioner for vehicle
JP6019776B2 (en) Air conditioner for vehicles
CN111032386A (en) Air conditioner for vehicle
JP2010030435A (en) Air conditioner for vehicle
CN110062708B (en) Air conditioner for vehicle
CN113165472A (en) Air conditioner for vehicle
JPH08313123A (en) Heat pump type cooler and heater for vehicle
JP3301209B2 (en) Heat pump type air conditioner for vehicles
JPH05201243A (en) Heat pump type cooling and heating device for vehicle
JP3232183B2 (en) Vehicle air conditioner
JP3718935B2 (en) Air conditioner for vehicles
JP2746013B2 (en) Heat pump type air conditioner for vehicles
JP3460422B2 (en) Vehicle air conditioner
JP3331652B2 (en) Heat pump type air conditioner for vehicles
JPH07285318A (en) Heat pump type cooling/heating device for vehicle
JP3049940B2 (en) Heat pump type air conditioner for vehicles
JPH0867134A (en) Air conditioner for vehicle
JP3301139B2 (en) Heat pump type air conditioner for vehicles
JP2000158931A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees