JPH07283123A - Controller of quantity of light for irradiation and aligner employing it - Google Patents

Controller of quantity of light for irradiation and aligner employing it

Info

Publication number
JPH07283123A
JPH07283123A JP6090516A JP9051694A JPH07283123A JP H07283123 A JPH07283123 A JP H07283123A JP 6090516 A JP6090516 A JP 6090516A JP 9051694 A JP9051694 A JP 9051694A JP H07283123 A JPH07283123 A JP H07283123A
Authority
JP
Japan
Prior art keywords
light
etalon
transmittance
exposure
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090516A
Other languages
Japanese (ja)
Inventor
Tsutomu Asahina
努 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6090516A priority Critical patent/JPH07283123A/en
Publication of JPH07283123A publication Critical patent/JPH07283123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To control with high precision the quantity of light for irradiation onto a surface by a method wherein, when it is decided that the quantity of light for irradiation reaches a previously set value, the reflectance is a predetermined value, and by changing the distance between the two mirrors of an etalon provided in an optical path by a piezoelement, the transmittance of the etalon is controlled. CONSTITUTION:The quantity of each pulse light emitted by an excimer laser 1 is measured by monitoring means 7. An integration value and a mean value of the exposure quantity is obtained by central controlling means 4. When the central control device 4 decides that the exposure of a wafer 9 reaches the necessary integration exposure quantity with exposure energy of one pulse or less, the then insufficient quantity of light is computed. Drive controlling means 3 changes an interval of etalon so that the transmittance may be a value at which the quantity of light equivalent to the insufficient quantity of light can pass based upon a signal from the central controlling means 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照射光量制御装置及びそ
れを用いた露光装置に関し、特にパルス発光する比較的
発光時間の短いパルス光源を用いて被照射面、例えば電
子回路パターンが形成されているマスクやレチクル面等
(以下「レチクル」と総称する。)を照射する際に被照
射面の照射光量を高精度に制御した半導体素子製造装置
に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an irradiation light quantity control apparatus and an exposure apparatus using the same, and more particularly, to an irradiation surface, for example, an electronic circuit pattern, which is formed by using a pulsed light source that emits light in a pulsed manner and has a relatively short emission time. The present invention is suitable for a semiconductor device manufacturing apparatus in which the irradiation light amount of a surface to be irradiated is controlled with high accuracy when irradiating an existing mask, reticle surface, or the like (hereinafter collectively referred to as “reticle”).

【0002】[0002]

【従来の技術】最近の半導体素子製造技術には電子回路
パターンの高集積化に伴い、高密度の電子回路パターン
が形成可能のリソグラフィ技術が要求されている。
2. Description of the Related Art In recent semiconductor device manufacturing technology, a lithographic technology capable of forming a high-density electronic circuit pattern is required as the electronic circuit pattern is highly integrated.

【0003】一般にレチクル面上の電子回路パターンを
ウエハ面上に転写し、高密度の半導体素子を得るにはレ
チクル面上への照射光量、即ちウエハ面上への照射光量
を適切に制御することが重要となっている。半導体素子
製造用の露光装置においては、レチクル面の照明用光源
として高輝度性と単色性の良い点からエキシマレーザ等
のパルス発振するパルス光源が用いられている。
Generally, in order to obtain a high-density semiconductor device by transferring an electronic circuit pattern on the reticle surface to obtain a high-density semiconductor device, the irradiation light amount on the reticle surface, that is, the irradiation light amount on the wafer surface is appropriately controlled. Is important. In an exposure apparatus for manufacturing a semiconductor device, a pulsed light source such as an excimer laser that emits a pulse is used as a light source for illuminating a reticle surface because of its high brightness and good monochromaticity.

【0004】従来のパルス光源を用いた露光装置におけ
る被照射面上への照射光量(露光量)の制御は以下の方
法を用いている。まず積算露光中に各パルスの光量を測
定及び積算し、あと1パルス以下の露光量で目標とする
露光量に達する段階になると判断したときは光源の発光
を停止し、それまでに測定した露光量の積算値から不足
露光量を計算する。そして光路中に干渉フィルタを挿入
し、前記不足露光量に等価な光量が透過する角度まで干
渉フィルタを駆動手段により回転させ、その後パルス光
源から1パルスだけ発光させて、これにより目標とする
露光量を得ている。
The following method is used to control the irradiation light amount (exposure amount) on the surface to be irradiated in an exposure apparatus using a conventional pulse light source. First, the light amount of each pulse is measured and integrated during the integrated exposure, and when it is determined that the target exposure amount is reached with the exposure amount of 1 pulse or less, the light emission of the light source is stopped, and the exposure measured up to that point The underexposure amount is calculated from the integrated value of the amounts. Then, an interference filter is inserted in the optical path, the interference filter is rotated by the driving means to an angle at which a light amount equivalent to the insufficient exposure amount is transmitted, and then one pulse is emitted from the pulse light source, whereby the target exposure amount is obtained. Is getting

【0005】[0005]

【発明が解決しようとする課題】従来の露光装置におい
ては、被照射面上への露光量の制御を行う場合に干渉フ
ィルタを用い、該干渉フィルタを光路中で回転させてい
た。そしてこの干渉フィルタを回転させるための動力手
段としてモータを使用していた。しかしながら、一般に
モータはその立ち上がりに時間を要するため、干渉フィ
ルタを所定の位置まで回転させるのに10msec以上
の時間がかかる。この為、パルス光源の発振周波数が高
く、総露光のパルス数が少ないほど、露光時間に対して
モータの立ち上がり時間が占める割合が大きくなり、こ
の結果スループットが低下してくるという問題点があっ
た。
In the conventional exposure apparatus, an interference filter was used to control the exposure amount on the surface to be illuminated, and the interference filter was rotated in the optical path. A motor is used as a power means for rotating the interference filter. However, generally, it takes time for the motor to rise, so it takes 10 msec or more to rotate the interference filter to a predetermined position. Therefore, the higher the oscillation frequency of the pulse light source and the smaller the total exposure pulse number, the larger the ratio of the motor start-up time to the exposure time, resulting in a decrease in throughput. .

【0006】また、一般に干渉フィルタを用いた透過率
の制御範囲は5〜90%程度であり、0〜5%,90〜
100%の範囲に光量を制御することは大変難しい。こ
の為、総露光のパルス数が少ない場合には、最後の1パ
ルスの光量制御の精度が、全体の露光量制御の精度に与
える影響が大きくなるため、露光量の精度が悪化してく
るという問題点があった。
Generally, the control range of the transmittance using an interference filter is about 5 to 90%, 0 to 5%, 90 to
It is very difficult to control the light amount within the range of 100%. Therefore, when the total exposure pulse number is small, the accuracy of the light amount control of the last one pulse has a great influence on the accuracy of the overall exposure amount control, and the accuracy of the exposure amount is deteriorated. There was a problem.

【0007】本発明はパルス発光するパルス光源からの
パルス光を用いて被照射面を照射する際、適切に設定し
た透過光量制御手段を用いることにより、被照射面上へ
の照射光量を高精度に制御することができ、半導体素子
製造用の露光装置に適用したときは高集積度の半導体素
子が容易に得られる照射光量制御装置及びそれを用いた
露光装置の提供を目的とする。
According to the present invention, when irradiating a surface to be irradiated with pulsed light from a pulsed light source that emits pulsed light, the amount of light to be irradiated onto the surface to be irradiated is highly accurate by using an appropriately set transmitted light amount control means. It is an object of the present invention to provide an irradiation light amount control device and a light exposure device using the same, which can be controlled in accordance with the present invention and can easily obtain a highly integrated semiconductor device when applied to an exposure device for manufacturing a semiconductor device.

【0008】[0008]

【課題を解決するための手段】本発明の照射光量制御装
置は、(1−1)パルス発光する光源からのパルス光で
被照射面を積算照射する際、監視手段で該被照射面に照
射される積算照射光量を検出し、該監視手段からの信号
に基づいて中央制御手段により最後の1パルスで予め設
定した照射光量に達すると判断したときは所定の反射率
フィネスを有し、光路中に設けたエタロンの間隔をピエ
ゾ素子により変化させて、該エタロンの透過率を制御す
るようにした透過光量制御手段によりその透過率を調整
して最後の1パルスの該被照射面上への照射光量を制御
していることを特徴としている。
The irradiation light quantity control device of the present invention is (1-1) irradiating the irradiation target surface by monitoring means when the irradiation target surface is cumulatively irradiated with pulsed light from a light source emitting pulsed light. The integrated irradiation light amount is detected, and when the central control means determines that the irradiation light quantity reaches a preset irradiation light quantity by the last one pulse based on the signal from the monitoring means, it has a predetermined reflectance finesse and is in the optical path. The irradiation of the last one pulse on the surface to be irradiated is adjusted by changing the interval of the etalon provided in the piezo element and adjusting the transmittance by the transmitted light amount control means for controlling the transmittance of the etalon. The feature is that the amount of light is controlled.

【0009】特に、前記ピエゾ素子への印加電圧と前記
エタロンの透過率との関係を予め求めて記憶した記憶手
段からのデータを利用して、該ピエゾ素子への印加電圧
を制御して該エタロンの透過率を変化させていること
や、前記エタロンの間隔の変化を干渉を利用して検出す
る干渉計を設けたこと、そして前記干渉計は前記光源か
らのパルス光の発振波長と異なった波長の光を放射する
レーザ光を利用していること等を特徴としている。
In particular, the voltage applied to the piezo element is controlled by utilizing the data from the storage means in which the relationship between the voltage applied to the piezo element and the transmittance of the etalon is previously obtained and stored. The transmittance of the etalon is changed, or an interferometer for detecting a change in the interval of the etalon is used by using interference, and the interferometer has a wavelength different from the oscillation wavelength of the pulsed light from the light source. It is characterized in that it uses laser light that emits the above light.

【0010】本発明の露光装置は、(1−2)パルス発
光する光源からのパルス光で第1物体面上のパターンを
積算照射し、該パターンを第2物体面に露光転写する
際、監視手段で該第1物体面に照射される積算照射光量
を検出し、該監視手段からの信号に基づいて中央制御手
段により最後の1パルスで予め設定した照射光量に達す
ると判断したときは所定の反射率フィネスを有し、光路
中に設けたエタロンの間隔をピエゾ素子により変化させ
て、該エタロンの透過率を制御するようにした透過光量
制御手段によりその透過率を調整して最後の1パルスの
該第1物体面上への照射光量を制御していることを特徴
としている。
The exposure apparatus of the present invention (1-2) monitors when the pattern on the first object surface is cumulatively irradiated with the pulsed light from the light source which emits the pulsed light, and the pattern is exposed and transferred to the second object surface. Means for detecting the integrated irradiation light amount applied to the first object surface, and based on a signal from the monitoring means, when the central control means determines that the irradiation light amount preset by the last one pulse is reached, a predetermined value is determined. The last one pulse having a reflectance finesse, the transmittance of the etalon adjusted by changing the interval of the etalon provided in the optical path by a piezo element and controlling the transmittance of the etalon. It is characterized in that the irradiation light amount on the first object surface is controlled.

【0011】特に、前記ピエゾ素子への印加電圧と前記
エタロンの透過率との関係を予め求めて記憶した記憶手
段からのデータを利用して、該ピエゾ素子への印加電圧
を制御して該エタロンの透過率を変化させていること
や、前記エタロンの間隔の変化を干渉を利用して検出す
る干渉計を設けたこと、そして前記干渉計は前記光源か
らのパルス光の発振波長と異なった波長の光を放射する
レーザ光を利用していること等を特徴としている。
Particularly, the voltage applied to the piezo element is controlled by utilizing the data from the storage means in which the relationship between the voltage applied to the piezo element and the transmittance of the etalon is obtained and stored in advance. The transmittance of the etalon is changed, or an interferometer for detecting a change in the interval of the etalon is used by using interference, and the interferometer has a wavelength different from the oscillation wavelength of the pulsed light from the light source. It is characterized in that it uses laser light that emits the above light.

【0012】[0012]

【実施例】図1は本発明を半導体製造用の縮小投影型の
露光装置に適用したときの実施例1の要部ブロック図で
ある。
1 is a block diagram of essential parts of a first embodiment when the present invention is applied to a reduction projection type exposure apparatus for semiconductor manufacturing.

【0013】同図において、1は指向性の良いパルス発
光するパルス光源で、例えばエキシマレーザ等から成っ
ている。2は透過光量制御手段であり、後述する図2に
示す構成より成っており、パルス光源1からの光束の透
過光量を制御している。3は駆動制御手段であり、後述
する中央演算手段4からの信号に基づいて透過光量制御
手段2の透過率を制御している。4は中央制御手段であ
り、パルス光源1と駆動制御手段3の駆動を制御してい
る。
In FIG. 1, reference numeral 1 denotes a pulse light source which emits a pulsed light having a good directivity, and is composed of, for example, an excimer laser. Reference numeral 2 denotes a transmitted light amount control means, which has a configuration shown in FIG. 2 described later and controls the transmitted light amount of the light flux from the pulse light source 1. A drive control unit 3 controls the transmittance of the transmitted light amount control unit 2 based on a signal from a central processing unit 4 described later. Reference numeral 4 denotes a central control means, which controls driving of the pulse light source 1 and the drive control means 3.

【0014】5は照明光学系であり、コヒーレント光を
インコヒーレント化する手段を有しており、透過光量制
御手段2からの光束をインコヒーレント光にして一部に
半透過面または透過面を設けたミラー6を介して、レチ
クル等の第1物体面としての被照射面8を照射してい
る。7は監視手段であり、ミラー6の一部を透過してき
た透過光量を測定し被照射面8上への照射光量を求めて
いる。10は投影光学系であり、被照射面8上の電子回
路パターンを第2物体面としてのウエハ9面上に縮小投
影している。
An illumination optical system 5 has means for making coherent light into incoherent light. The light flux from the transmitted light amount control means 2 is made into incoherent light and a semi-transmissive surface or a transmissive surface is provided in part. The illuminated surface 8 as the first object plane such as a reticle is illuminated through the mirror 6. Reference numeral 7 denotes a monitoring means, which measures the amount of transmitted light that has passed through a part of the mirror 6 to obtain the amount of irradiation light on the surface 8 to be irradiated. A projection optical system 10 reduces and projects the electronic circuit pattern on the illuminated surface 8 onto the wafer 9 surface as the second object surface.

【0015】尚、本実施例においてコンタクト方式やプ
ロキシミティ方式の半導体製造用の露光装置の場合は投
影光学系10は不要で被照射面8であるマスクとウエハ
9は密着もしくは僅かの空間を隔てて配置している。1
1はパルス光源1から出射したパルス光の被照射面8に
至る光路の光軸である。
In the present embodiment, in the case of a contact type or proximity type semiconductor manufacturing exposure apparatus, the projection optical system 10 is not necessary, and the mask, which is the surface 8 to be irradiated, and the wafer 9 are in close contact with each other or a slight space is left therebetween. Are arranged. 1
Reference numeral 1 is an optical axis of an optical path of the pulsed light emitted from the pulsed light source 1 to the irradiation surface 8.

【0016】次に本実施例の透過光量制御手段2の構成
を図2を用いて説明する。
Next, the structure of the transmitted light amount control means 2 of this embodiment will be described with reference to FIG.

【0017】図2において、平面基板21a,21bは
エタロン21を構成し、その内側の面には反射率が80
%の半透膜が施してあり、外側の面には反射防止膜が施
してある。22はピエゾ素子であり、平面基板21aと
21bとの間隔を変化させている。23は支持棒であ
り、ピエゾ素子21をカバーに固定している。24は板
バネであり、ピエゾ素子21が伸縮方向に垂直な方向に
動かないようにしている。25はカバーである。
In FIG. 2, the flat substrates 21a and 21b constitute an etalon 21, and the inner surface thereof has a reflectance of 80.
% Semipermeable membrane, and the outer surface is coated with an antireflection coating. Reference numeral 22 denotes a piezo element, which changes the distance between the flat substrates 21a and 21b. Reference numeral 23 is a support rod that fixes the piezo element 21 to the cover. A leaf spring 24 prevents the piezo element 21 from moving in a direction perpendicular to the expansion / contraction direction. 25 is a cover.

【0018】図3は図2のエタロン21の内側面に施し
てある半透膜の反射率を80%とした場合に、ピエゾ素
子21への印加電圧Vとエタロンの透過率Tとの関係を
示した説明図である。本実施例の透過光量制御手段2
は、図3に示すようにピエゾ素子21への平面基板によ
り平面基板21aとエタロン21bとの間隔を変えて、
これによりエタロン21の透過率を種々と制御してい
る。
FIG. 3 shows the relationship between the voltage V applied to the piezo element 21 and the transmittance T of the etalon when the reflectance of the semi-permeable film formed on the inner surface of the etalon 21 of FIG. 2 is 80%. It is the explanatory view shown. Transmitted light amount control means 2 of this embodiment
Changes the distance between the flat substrate 21a and the etalon 21b by the flat substrate to the piezo element 21 as shown in FIG.
Thereby, the transmittance of the etalon 21 is controlled variously.

【0019】次に図1の動作について説明する。エキシ
マレーザから成るパルス光源1から発振されたコヒーレ
ントのパスル光は、光量制御手段2で通過光量を制御し
ている。光量制御手段2は駆動制御手段3からの駆動指
令信号により駆動され、図2に示す平面基板21aと平
面基板21bの間隔を変化させ、エタロン21の透過率
を制御している。
Next, the operation of FIG. 1 will be described. The coherent pulsed light oscillated from the pulse light source 1 composed of an excimer laser is controlled by the light amount control means 2 in the amount of passing light. The light amount control means 2 is driven by a drive command signal from the drive control means 3 to change the distance between the flat substrate 21a and the flat substrate 21b shown in FIG. 2 to control the transmittance of the etalon 21.

【0020】そして光量制御手段2を通過した光を、照
明光学系5でインコヒーレント光にして反射鏡6を介
し、被照射面としてのレチクル8の回路パターンを照射
している。そして、レチクル8上の回路パターンを投影
光学系10でウエハ9面上に縮小投影露光している。そ
して、パターンの転写されたウエハ9を公知の現像処理
工程を介して、これより半導体素子を製造している。
Then, the light passing through the light quantity control means 2 is made into incoherent light by the illumination optical system 5, and the circuit pattern of the reticle 8 as the surface to be irradiated is irradiated through the reflecting mirror 6. Then, the circuit pattern on the reticle 8 is reduced and projected onto the surface of the wafer 9 by the projection optical system 10. Then, the semiconductor element is manufactured from the wafer 9 on which the pattern is transferred, through a known developing process.

【0021】本実施例においては次のようにして、被露
光面9に対し所定の露光量で露光を行っている。まず監
視手段7によってミラー6の一部を介したパルス光を検
出して、エキシマレーザ1で発光された各々のパルス光
の光量(ウエハ9への実際の露光量に対応する量)の測
定を行っている。そして中央演算手段4で監視手段7か
らの信号より露光量の積算値及び平均値を求めている。
In this embodiment, the exposed surface 9 is exposed with a predetermined exposure amount as follows. First, the monitoring means 7 detects the pulsed light that has passed through a part of the mirror 6, and measures the amount of each pulsed light emitted by the excimer laser 1 (the amount corresponding to the actual exposure amount on the wafer 9). Is going. Then, the central processing unit 4 obtains the integrated value and the average value of the exposure amount from the signal from the monitoring unit 7.

【0022】そしてウエハ9への露光中あと1パルス以
下の露光エネルギーで必要な積算露光量に達すると、中
央制御装置4が判断したときは、その時の不足光量を計
算する。そして中央演算手段4はその結果を駆動制御手
段3に入力している駆動制御手段3は、中央演算手段4
からの信号に基づいて不足光量に等価の光量が通過する
透過率になるよう、図2に示したピエゾ素子を駆動し、
エタロンの間隔を変化させている。
When the central controller 4 judges that the required integrated exposure amount is reached with the exposure energy of one pulse or less during the exposure of the wafer 9, the insufficient light amount at that time is calculated. Then, the central processing means 4 inputs the result to the drive control means 3.
The piezo element shown in FIG. 2 is driven so that the light amount equivalent to the insufficient light amount passes through based on the signal from
The etalon spacing is changing.

【0023】ここでエタロンの動作時間は1msec以
下であるから、発振周波数が1kHz程度のパルス光源
であれば発光を停止させる必要はなく、エタロンの間隔
の調整が完了した後、エキシマレーザ1がパスル発光し
て、これにより露光を完了させている。
Since the operating time of the etalon is 1 msec or less, it is not necessary to stop the light emission if the pulse light source has an oscillation frequency of about 1 kHz. After the adjustment of the etalon interval is completed, the excimer laser 1 is pulsed. It emits light to complete the exposure.

【0024】図4は本実施例においてウエハ9面上に適
正露光量を与えるときのフローチャートである。
FIG. 4 is a flowchart for giving an appropriate exposure amount on the surface of the wafer 9 in this embodiment.

【0025】図4のフローチャートにおいて、ステップ
101では、レチクル8のパターンを被投影面上のウエ
ハ9に焼きつけるために必要な適正露光量(適正照射光
量)Aと、エキシマレーザ1で発光される1パルスによ
るウエハ9上への露光量Cを決定し、中央演算手段4に
入力する。ステップ102では、エキシマレーザ1が1
パルス発光し、ウエハ9への露光を始める。
In the flow chart of FIG. 4, in step 101, an appropriate exposure amount (appropriate irradiation light amount) A necessary for printing the pattern of the reticle 8 on the wafer 9 on the projection surface, and the excimer laser 1 emits light 1. The exposure amount C on the wafer 9 by the pulse is determined and input to the central processing means 4. In step 102, the excimer laser 1 is set to 1
Pulse light emission is performed, and exposure of the wafer 9 is started.

【0026】ステップ103では、監視手段7において
1パルスの光量を測定し、中央制御手段4で測定値の積
算値Bと1パルスあたりの実露光平均値Cave を計算す
る。ステップ104では、中央制御手段4において適正
露光量Aと積算値Bの差が実露光平均値Cave 以上であ
る場合は、ステップ102に戻りパルス発光を続ける。
又、下まわった場合は、ステップ105にいく判断を行
う。
In step 103, the light quantity of one pulse is measured by the monitoring means 7, and the central control means 4 calculates the integrated value B of the measured values and the actual exposure average value C ave per pulse. In step 104, when the difference between the proper exposure amount A and the integrated value B is equal to or larger than the actual exposure average value C ave in the central control means 4, the process returns to step 102 to continue pulse emission.
If it goes down, a judgment is made to go to step 105.

【0027】ステップ105では、図3におけるピエゾ
素子22への印加電圧Vとエタロン21の透過率Tの関
係から、エタロン21の透過率が(A−B)/Cave ×
100(%) となるピエゾ素子22への印加電圧を中央制
御手段4で計算し、駆動制御手段3にピエゾ素子22の
駆動命令信号を送る。駆動制御手段3は中央制御手段4
からの信号に基づいてピエゾ素子22を駆動させて、エ
タロン21の間隔を変化させている。
In step 105, the transmittance of the etalon 21 is (A−B) / C ave × from the relationship between the voltage V applied to the piezo element 22 and the transmittance T of the etalon 21 in FIG.
The central control means 4 calculates the applied voltage to the piezo element 22 which becomes 100 (%), and sends a drive command signal for the piezo element 22 to the drive control means 3. The drive control means 3 is the central control means 4
The piezo element 22 is driven on the basis of the signal from to change the interval of the etalon 21.

【0028】ステップ106では、エキシマレーザ1が
1パルス発光する。ステップ107では、監視手段7に
おいて1パルスの光量を測定し、測定値の積算値Bfin
を中央制御手段4が保存する。ステップ108でウエハ
9面上への適正露光を終了する。
In step 106, the excimer laser 1 emits one pulse. In step 107, the light quantity of one pulse is measured by the monitoring means 7, and the integrated value B fin of the measured values is measured.
Is stored by the central control means 4. At step 108, proper exposure on the surface of the wafer 9 is completed.

【0029】以上のように本実施例では、光路中にエタ
ロンを挿入しておき、ピエゾ素子でエタロンの間隔を変
化させて光量を制御する場合、ピエゾの動作時間はモー
タの立ち上がり時間に比べて1/10以下である1ms
ec以下で動作が完了する。又、エタロンの内側反射面
の反射率を80%とし、エタロンの間隔を1/4波長分
変化させることにより透過率を1〜100%まで制御可
能としている。
As described above, in this embodiment, when the etalon is inserted in the optical path and the amount of light is controlled by changing the interval of the etalon with the piezo element, the operation time of the piezo is longer than the rising time of the motor. 1 ms, which is 1/10 or less
The operation is completed when ec or less. The reflectance of the inner reflection surface of the etalon is set to 80%, and the transmittance can be controlled to 1 to 100% by changing the interval of the etalon by 1/4 wavelength.

【0030】このように本実施例では、反射率フィネス
を適切に設定したエタロンと、そしてピエゾ素子を利用
することにより、従来に比べて短時間で露光量制御を行
うことを可能として、かつ最後の1パルスの光量制御を
1〜100%まで調整可能としている。
As described above, in this embodiment, by using the etalon whose reflectance finesse is appropriately set and the piezo element, it is possible to perform the exposure amount control in a shorter time than the conventional one, and at the end. It is possible to adjust the light amount control of one pulse of 1 to 100%.

【0031】図5,図6は各々本発明の実施例2,3に
おける透過光量制御手段の要部概略図である。尚、実施
例2,3における装置の基本構成は図1と同様である。
FIGS. 5 and 6 are schematic views of the essential portions of the transmitted light amount control means in the second and third embodiments of the present invention. The basic configuration of the apparatus in Examples 2 and 3 is the same as that in FIG.

【0032】図5の実施例2は図2の実施例1に比べ
て、平面基板21aと21bとの間隔を検出するために
干渉計26を加えて平面基板21a,21bとの間隔の
変化を検出している点が異なっており、この他の構成は
同じである。即ち、本実施例では平面基板21aと21
bとの間隔Lとエタロンの透過率Tの関係を用いてエタ
ロンを透過する光量の制御を行うことにより、実施例1
と同様の効果を得ている。
The second embodiment of FIG. 5 is different from the first embodiment of FIG. 2 in that an interferometer 26 is added to detect the distance between the flat substrates 21a and 21b, so that the distance between the flat substrates 21a and 21b is changed. The difference is that it is detected, and other configurations are the same. That is, in this embodiment, the flat substrates 21a and 21a
Example 1 is performed by controlling the amount of light transmitted through the etalon using the relationship between the distance L from b and the transmittance T of the etalon.
Has the same effect as.

【0033】図7に本実施例において透過率100%に
なるときのエタロン間隔をL0、透過率が1%になると
きのエタロン間隔をL1としたときの、エタロンの間隔
Lとエタロンの透過率Tの関係を示す。尚、間隔L1と
間隔L0の差は1/4波長分である。
FIG. 7 shows the etalon interval L and the etalon transmittance, where L0 is the etalon interval when the transmittance is 100% and L1 is the etalon interval when the transmittance is 1% in this embodiment. The relationship of T is shown. The difference between the distance L1 and the distance L0 is ¼ wavelength.

【0034】図6の実施例3は図1の実施例1に比べ
て、パルス光源1と異なった波長をもつレーザ27とレ
ーザ受光部28を加えた点が異なっており、その他の構
成は同じである。レーザ27からのレーザ光はエタロン
21を透過し、レーザ受光部28で受光している。そし
てレーザ27からの光束の波長に対する透過率を測定し
ている。これによってレーザ27からの光束の波長に対
するエタロン21の透過率Trとパルス光源1のパルス
光の波長に対するエタロン21の透過率Tの関係を用い
て、エタロン21を透過する光量の制御を行うことによ
り、実施例1と同様の効果を得ている。
The third embodiment of FIG. 6 is different from the first embodiment of FIG. 1 in that a laser 27 having a wavelength different from that of the pulse light source 1 and a laser light receiving portion 28 are added, and the other configurations are the same. Is. The laser light from the laser 27 passes through the etalon 21 and is received by the laser light receiver 28. Then, the transmittance of the light flux from the laser 27 with respect to the wavelength is measured. By this, by using the relationship between the transmittance Tr of the etalon 21 with respect to the wavelength of the light flux from the laser 27 and the transmittance T of the etalon 21 with respect to the wavelength of the pulsed light of the pulse light source 1, the amount of light transmitted through the etalon 21 is controlled. The same effect as in Example 1 is obtained.

【0035】本実施例では、例えばパルス光源にKrF
エキシマレーザ(波長λ1 =248.4nm)、レーザ
27にHe−Neレーザ(波長λ2 =632.8nm)
をそれぞれ用いている。そしてλ1 /2のm倍とλ2
2のn倍(m,nは整数)がエタロンの間隔と一致する
という条件を満たすとき、図8に示すようにレーザ27
からの光の波長に対する透過率Trからパルス光源1か
らのパルス光の波長に対する透過率Tが一義的に決ま
り、本実施例ではこれを利用してエタロンの透過率の制
御を行っている。
In this embodiment, for example, KrF is used as the pulse light source.
Excimer laser (wavelength λ 1 = 248.4 nm), laser 27 is a He-Ne laser (wavelength λ 2 = 632.8 nm)
Are used respectively. And of λ 1/2 m double and λ 2 /
When the condition that n times 2 (m and n are integers) coincide with the etalon interval is satisfied, the laser 27 as shown in FIG.
The transmittance T with respect to the wavelength of the pulsed light from the pulse light source 1 is uniquely determined from the transmittance Tr with respect to the wavelength of the light emitted from the etalon, and this embodiment is used to control the transmittance of the etalon.

【0036】[0036]

【発明の効果】本発明によれば以上のように、パルス発
光するパルス光源からのパルス光を用いて被照射面を照
射する際、適切に設定した透過光量制御手段を用いるこ
とにより、被照射面上への照射光量を高精度に制御する
ことができ、半導体素子製造用の露光装置に適用したと
きは高集積度の半導体素子が容易に得られる照射光量制
御装置及びそれを用いた露光装置を達成することができ
る。
As described above, according to the present invention, when the irradiation surface is irradiated with the pulsed light from the pulsed light source that emits the pulsed light, the irradiation light is controlled by using the appropriately set transmitted light amount control means. Irradiation light amount control device capable of controlling the irradiation light amount onto a surface with high precision and easily obtaining a highly integrated semiconductor device when applied to an exposure device for manufacturing a semiconductor device, and an exposure device using the same Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を半導体素子製造用の縮小投影型の露
光装置に適用したときの実施例1の要部概略図
FIG. 1 is a schematic view of a main part of a first embodiment when the present invention is applied to a reduction projection type exposure apparatus for manufacturing a semiconductor device.

【図2】 図1の透過光量制御手段の概略図FIG. 2 is a schematic diagram of a transmitted light amount control means of FIG.

【図3】 図2のピエゾ素子への印加電圧Vとエタロン
の透過率Tの関係を示す説明図
3 is an explanatory diagram showing the relationship between the applied voltage V to the piezo element of FIG. 2 and the transmittance T of the etalon.

【図4】 実施例1の動作のフローチャートFIG. 4 is a flowchart of the operation of the first embodiment.

【図5】 本発明の実施例2に係る透過光量制御手段の
概略図
FIG. 5 is a schematic diagram of transmitted light amount control means according to a second embodiment of the present invention.

【図6】 本発明の実施例3に係る透過光量制御手段の
概略図
FIG. 6 is a schematic diagram of transmitted light amount control means according to a third embodiment of the present invention.

【図7】 本発明の実施例2に係る透過光量制御手段に
おけるエタロンの間隔Lとエタロンの透過率Tの関係を
示す説明図
FIG. 7 is an explanatory diagram showing the relationship between the etalon interval L and the etalon transmittance T in the transmitted light amount control means according to the second embodiment of the present invention.

【図8】 本発明の実施例2に係る透過光量制御手段に
おけるパルス光源と波長の異なるレーザ光に対するエタ
ロンと透過率Trとパルス光源のレーザ光に対するエタ
ロンの透過率Tの関係を示す説明図
FIG. 8 is an explanatory diagram showing a relationship between an etalon and a transmittance Tr for a laser light having a different wavelength from a pulse light source and a transmittance Tr of the etalon for a laser light of the pulse light source in the transmitted light amount control means according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 パルス光源 2 透過光量制御手段 3 駆動制御手段 4 中央制御手段 5 照明光学系 6 ミラー 7 監視手段 8 被照射面 9 ウエハ 10 投影光学系 1 Pulsed Light Source 2 Transmitted Light Amount Control Means 3 Drive Control Means 4 Central Control Means 5 Illumination Optical System 6 Mirror 7 Monitoring Means 8 Irradiated Surface 9 Wafer 10 Projection Optical System

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 パルス発光する光源からのパルス光で被
照射面を積算照射する際、監視手段で該被照射面に照射
される積算照射光量を検出し、該監視手段からの信号に
基づいて中央制御手段により最後の1パルスで予め設定
した照射光量に達すると判断したときは所定の反射率フ
ィネスを有し、光路中に設けたエタロンの間隔をピエゾ
素子により変化させて、該エタロンの透過率を制御する
ようにした透過光量制御手段によりその透過率を調整し
て最後の1パルスの該被照射面上への照射光量を制御し
ていることを特徴とする照射光量制御装置。
1. When cumulatively irradiating a surface to be illuminated with pulsed light from a light source that emits pulsed light, monitoring means detects the cumulative amount of irradiation light that is irradiated onto the surface to be illuminated, and based on a signal from the monitoring means. When it is judged by the central control means that the irradiation light amount set in advance by the last one pulse is reached, it has a predetermined reflectance finesse, and the interval of the etalon provided in the optical path is changed by the piezo element to transmit the etalon. An irradiation light quantity control device, characterized in that the transmittance is adjusted by a transmitted light quantity control means for controlling the rate to control the irradiation light quantity of the last one pulse onto the surface to be irradiated.
【請求項2】 前記ピエゾ素子への印加電圧と前記エタ
ロンの透過率との関係を予め求めて記憶した記憶手段か
らのデータを利用して、該ピエゾ素子への印加電圧を制
御して該エタロンの透過率を変化させていることを特徴
とする請求項1の照射光量制御装置。
2. The voltage applied to the piezo element is controlled by utilizing the data from the storage means in which the relationship between the voltage applied to the piezo element and the transmittance of the etalon is obtained and stored in advance. 2. The irradiation light amount control device according to claim 1, wherein the transmittance of is changed.
【請求項3】 前記エタロンの間隔の変化を干渉を利用
して検出する干渉計を設けたことを特徴とする請求項2
の照射光量制御装置。
3. An interferometer for detecting a change in the distance between the etalons by using interference.
Irradiation light amount control device.
【請求項4】 前記干渉計は前記光源からのパルス光の
発振波長と異なった波長の光を放射するレーザ光を利用
していることを特徴とする請求項3の照射光量制御装
置。
4. The irradiation light amount control device according to claim 3, wherein the interferometer uses laser light that emits light having a wavelength different from the oscillation wavelength of the pulsed light from the light source.
【請求項5】 パルス発光する光源からのパルス光で第
1物体面上のパターンを積算照射し、該パターンを第2
物体面に露光転写する際、監視手段で該第1物体面に照
射される積算照射光量を検出し、該監視手段からの信号
に基づいて中央制御手段により最後の1パルスで予め設
定した照射光量に達すると判断したときは所定の反射率
フィネスを有し、光路中に設けたエタロンの間隔をピエ
ゾ素子により変化させて、該エタロンの透過率を制御す
るようにした透過光量制御手段によりその透過率を調整
して最後の1パルスの該第1物体面上への照射光量を制
御していることを特徴とする露光装置。
5. A pattern on the first object surface is cumulatively irradiated with pulsed light from a light source that emits pulsed light, and the pattern is secondarily irradiated.
When the exposure transfer is performed on the object surface, the monitoring means detects the integrated irradiation light amount irradiated to the first object surface, and the central control means based on the signal from the monitoring means, the irradiation light amount preset in the last one pulse. When it is determined that the etalon is reached, it has a predetermined finesse of the reflectance, the interval of the etalon provided in the optical path is changed by the piezo element, and the transmitted light amount control means for controlling the transmittance of the etalon is transmitted. An exposure apparatus, wherein the exposure light amount of the last one pulse on the first object surface is controlled by adjusting the rate.
【請求項6】 前記ピエゾ素子への印加電圧と前記エタ
ロンの透過率との関係を予め求めて記憶した記憶手段か
らのデータを利用して、該ピエゾ素子への印加電圧を制
御して該エタロンの透過率を変化させていることを特徴
とする請求項5の露光装置。
6. The voltage applied to the piezo element is controlled by utilizing the data from the storage means in which the relationship between the voltage applied to the piezo element and the transmittance of the etalon is obtained and stored in advance. 6. The exposure apparatus according to claim 5, wherein the transmittance of the exposure device is changed.
【請求項7】 前記エタロンの間隔の変化を干渉を利用
して検出する干渉計を設けたことを特徴とする請求項6
の露光装置。
7. An interferometer for detecting a change in the interval of the etalon using interference is provided.
Exposure equipment.
【請求項8】 前記干渉計は前記光源からのパルス光の
発振波長と異なった波長の光を放射するレーザ光を利用
していることを特徴とする請求項7の露光装置。
8. The exposure apparatus according to claim 7, wherein the interferometer uses laser light that emits light having a wavelength different from the oscillation wavelength of the pulsed light from the light source.
JP6090516A 1994-04-05 1994-04-05 Controller of quantity of light for irradiation and aligner employing it Pending JPH07283123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090516A JPH07283123A (en) 1994-04-05 1994-04-05 Controller of quantity of light for irradiation and aligner employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090516A JPH07283123A (en) 1994-04-05 1994-04-05 Controller of quantity of light for irradiation and aligner employing it

Publications (1)

Publication Number Publication Date
JPH07283123A true JPH07283123A (en) 1995-10-27

Family

ID=14000628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090516A Pending JPH07283123A (en) 1994-04-05 1994-04-05 Controller of quantity of light for irradiation and aligner employing it

Country Status (1)

Country Link
JP (1) JPH07283123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109132A (en) * 2006-10-17 2008-05-08 Asml Netherlands Bv Using of interferometer as high speed variable attenuator
WO2020141050A1 (en) * 2018-12-31 2020-07-09 Asml Netherlands B.V. Position metrology apparatus and associated optical elements
EP3715951A1 (en) * 2019-03-28 2020-09-30 ASML Netherlands B.V. Position metrology apparatus and associated optical elements

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109132A (en) * 2006-10-17 2008-05-08 Asml Netherlands Bv Using of interferometer as high speed variable attenuator
US7898646B2 (en) 2006-10-17 2011-03-01 Asml Netherlands B.V. Using an interferometer as a high speed variable attenuator
JP2012084919A (en) * 2006-10-17 2012-04-26 Asml Netherlands Bv Using of interferometer as high speed variable attenuator
TWI424274B (en) * 2006-10-17 2014-01-21 Asml Netherlands Bv Using an interferometer as a high speed variable attenuator
TWI471599B (en) * 2006-10-17 2015-02-01 Asml Netherlands Bv Using an interferometer as a high speed variable attenuator
WO2020141050A1 (en) * 2018-12-31 2020-07-09 Asml Netherlands B.V. Position metrology apparatus and associated optical elements
US11428925B2 (en) 2018-12-31 2022-08-30 Asml Netherlands B.V. Position metrology apparatus and associated optical elements
EP3715951A1 (en) * 2019-03-28 2020-09-30 ASML Netherlands B.V. Position metrology apparatus and associated optical elements

Similar Documents

Publication Publication Date Title
US6252650B1 (en) Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
EP1589792B1 (en) Light source apparatus and exposure apparatus having the same
US5119390A (en) Energy amount controlling device
WO1998059364A1 (en) Projection aligner, method of manufacturing the aligner, method of exposure using the aligner, and method of manufacturing circuit devices by using the aligner
WO2002103766A1 (en) Scanning exposure method and scanning exposure system, and device production method
JPH09148216A (en) Method of exposure control
JP2001345245A (en) Method and device for exposure and method of manufacturing device
JP3378271B2 (en) Exposure method and apparatus, and device manufacturing method using the method
US20080315126A1 (en) Laser light source apparatus, exposure method, and exposure apparatus
JPH1038513A (en) Surface height measuring instrument, and exposing device using the same
JPH07283123A (en) Controller of quantity of light for irradiation and aligner employing it
JP2001326159A (en) Laser, aligner, and device manufacturing method using the same aligner
US6744492B2 (en) Exposure apparatus
JP4100038B2 (en) Exposure method and exposure apparatus
JP2011109014A (en) Scanning exposure apparatus
JP3600883B2 (en) Exposure method
US20100165315A1 (en) Exposure apparatus and device manufacturing method
JPH01309323A (en) Optical projecting apparatus
JP2853711B2 (en) Exposure method and semiconductor element manufacturing method
JPH01239923A (en) Aligner
JP2001023888A (en) Laser device, control method therefor, aligner and exposure method
JP4027205B2 (en) Exposure equipment
JP2925268B2 (en) Energy amount control device and method
JPH05343287A (en) Exposing method
JP2915078B2 (en) Energy control method and semiconductor device manufacturing method using the same