JPH07282827A - Normal pressure fuel cell - Google Patents

Normal pressure fuel cell

Info

Publication number
JPH07282827A
JPH07282827A JP6073030A JP7303094A JPH07282827A JP H07282827 A JPH07282827 A JP H07282827A JP 6073030 A JP6073030 A JP 6073030A JP 7303094 A JP7303094 A JP 7303094A JP H07282827 A JPH07282827 A JP H07282827A
Authority
JP
Japan
Prior art keywords
pressure
fuel cell
reaction gas
manifold
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6073030A
Other languages
Japanese (ja)
Inventor
Kazunari Ihara
和成 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6073030A priority Critical patent/JPH07282827A/en
Publication of JPH07282827A publication Critical patent/JPH07282827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress gas leak, reduce forced ventilation inside a housing, and enhance reliability by conducting pressure control so as to equalize the pressure in a reaction gas manifold and an exhaust manifold to the atmospheric pressure. CONSTITUTION:The capacity of a blower connected to supply side reaction gas pipelines 4a, 4c is made equivalent to pressure loss produced inside a supply pipe and inside a fuel cell stack. The capacity of a blower installed in exhaust side reaction gas pipelines 4b, 4d is made equivalent to pressure loss produced inside the exhaust pipelines. Pressure control can be made so that the pressure in fuel and air manifolds 3b, 3d becomes almost equal to the atmospheric pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池積層体からの
リークガスを圧力制御によって大幅に削減する常圧型燃
料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a normal pressure fuel cell in which leak gas from a fuel cell stack is significantly reduced by pressure control.

【0002】[0002]

【従来の技術】燃料電池は、燃料のもつ化学エネルギー
を、電気化学プロセスで酸化させることにより酸化反応
にともなって放出されるエネルギーを、直接電気エネル
ギーに変換する装置である。この燃料電池発電は、比較
的小さな規模でも発電の熱効率が、40〜50%にも達
し、新鋭火力発電をはるかにしのぐとの期待がなされて
いる。また、近年大きな社会問題になっている公害要因
であるSOx,NOxの排出がきわめて少ない、発電装
置内に燃焼サイクルを含まないので大量の冷却水を必要
としない、振動が小さいなどの理由から騒音・排ガス等
の環境問題が少ない。さらに、負荷変動に対して応答性
が良い、原理的に高い変換効率が期待できると共に発電
と同時に熱も利用するコジェネシステムに向いている、
等の特徴があることから、その研究開発に期待と関心が
寄せられ、実用化は目前に迫っている。この種の燃料電
池としては、たとえば、特開昭60−93765号公報
に記載のものが知られている。即ち、この電池本体は、
図4に示すように、電解質を含浸させた電解質層を挟ん
で配置された一対の多孔質電極を有する単電池と、所定
個の単電池ごとに内部に冷媒を供給、排出して電池を冷
却する冷却板とを複数個積層して、締付手段21によっ
て固定して四角柱状の燃料電池積層体20を形成し、こ
れら燃料電池積層体20及び反応ガスマニホールド22
を円筒形タンク23内に収納したものである。燃料電池
積層体20の上下両端にはそれぞれ電力端子24が設け
られ、ブッシング25を介してタンク23外部に引き出
されている。また反応ガスマニホールド22には、空気
や燃料ガスなどの反応ガスの供給あるいは排出管26が
接続されている。
2. Description of the Related Art A fuel cell is a device for directly converting the energy released by an oxidation reaction by oxidizing the chemical energy of the fuel in an electrochemical process into electrical energy. This fuel cell power generation has a thermal efficiency of 40 to 50% even on a relatively small scale, and it is expected that it will far surpass new thermal power generation. In addition, emission of SOx and NOx, which are pollution factors that have become a big social problem in recent years, is extremely small, a large amount of cooling water is not required because a power generation device does not include a combustion cycle, and vibration is small.・ There are few environmental problems such as exhaust gas. Furthermore, it is suitable for cogeneration systems that have good responsiveness to load fluctuations, can theoretically expect high conversion efficiency, and use heat as well as power generation.
Because of such features, there is much interest and interest in the research and development, and practical application is imminent. As this type of fuel cell, for example, the one described in JP-A-60-93765 is known. That is, this battery body
As shown in FIG. 4, a unit cell having a pair of porous electrodes arranged with an electrolyte layer impregnated with the electrolyte sandwiched therebetween, and a coolant is supplied to and discharged from each of the unit cells to cool the battery. A plurality of cooling plates to be stacked are stacked and fixed by tightening means 21 to form a square columnar fuel cell stack 20, and the fuel cell stack 20 and the reaction gas manifold 22 are formed.
Is stored in the cylindrical tank 23. Electric power terminals 24 are provided at both upper and lower ends of the fuel cell stack 20, and are drawn out of the tank 23 via bushings 25. Further, the reaction gas manifold 22 is connected to a supply or discharge pipe 26 of a reaction gas such as air or fuel gas.

【0003】このような従来の燃料電池は、反応ガスが
高圧であることから、燃料電池積層体20を収納するタ
ンク23としても高圧に耐えるものを使用している。と
ころが最近では、反応ガス圧力がほぼ大気圧の常圧型燃
料電池の実用化が提案されている。
In such a conventional fuel cell, since the reaction gas has a high pressure, the tank 23 for accommodating the fuel cell stack 20 is one that can withstand the high pressure. However, recently, the practical application of an atmospheric pressure type fuel cell in which the reaction gas pressure is almost atmospheric pressure has been proposed.

【0004】この常圧型燃料電池は、燃料電池積層体を
筐体内に収納するだけで良く、構成並びにシステムが簡
単なため、特に一般需要家のオンサイトとしての使用に
適している。図5は、このような常圧型燃料電池の一例
を示すもので、筐体30内部に保温材32で覆った燃料
電池31と反応ガス製造用の改質器33を収納したもの
である。
This normal pressure type fuel cell is particularly suitable for on-site use by general consumers because it only requires housing the fuel cell stack in a housing and has a simple structure and system. FIG. 5 shows an example of such an atmospheric pressure fuel cell, in which a housing 30 contains a fuel cell 31 covered with a heat insulating material 32 and a reformer 33 for producing a reaction gas.

【0005】[0005]

【発明が解決しようとする課題】従来高圧型は燃料電池
積層体31を密封するタンク23の中に納められ、かつ
タンク23の内圧を反応ガス圧力とほぼ同じ圧力に制御
されるため燃料ガスのリーク量は最少となるように調整
する事ができる。しかし前記のように常圧型の燃料電池
においては、燃料ガス圧力は一般に入口側よりブロア等
によって加圧して燃料電池積層体31に送り込むときの
燃料電池積層体及び前後の配管内の圧力損失を考慮した
ものであり反応ガスマニホールド22の中の圧力は雰囲
気圧力(大気圧)に比べて反応ガス排出側配管内の圧力
損失分だけ高くなる。これによってもともと反応ガスマ
ニホールド22と多数の積層部品からなる燃料電池積層
体31との間のシールは完全には行えないことから燃料
ガス(一般には水素ガス)のリークが増大し、燃料ガス
の利用率の低下をきたすばかりか筐体30内に溜まって
爆発などの危険に曝される。
Conventionally, the high-pressure type is housed in a tank 23 that seals the fuel cell stack 31, and the internal pressure of the tank 23 is controlled to be almost the same as the reaction gas pressure. The amount of leak can be adjusted to be a minimum. However, in the normal pressure type fuel cell as described above, the fuel gas pressure is generally taken into consideration in the pressure loss in the fuel cell stack and the front and rear pipes when pressurized by a blower or the like from the inlet side and sent to the fuel cell stack 31. The pressure inside the reaction gas manifold 22 is higher than the atmospheric pressure (atmospheric pressure) by the pressure loss in the reaction gas discharge side pipe. As a result, originally, the seal between the reaction gas manifold 22 and the fuel cell stack 31 including a large number of stacked parts cannot be completely performed, so that the leak of the fuel gas (generally hydrogen gas) increases and the utilization of the fuel gas is increased. Not only does the rate drop, but it accumulates in the housing 30 and is exposed to danger such as explosion.

【0006】これを防止するためには、筐体内部の空気
を換気装置などで常に換気しておく必要があるが、機器
の大型化に伴い換気装置も大型のものが必要になりこれ
が故障した場合は大きな事故に至ることが懸念される。
また、ガスのリークを検出するためのガスを検知装置な
ども付加されているが、筐体内部でのガス検知では、検
知精度も劣り、リーク位置の特定も困難である。一方、
十分な換気が必要であるため、換気に伴う放熱でプラン
ト効率が低下する。
In order to prevent this, it is necessary to constantly ventilate the air inside the housing with a ventilation device or the like, but with the increase in size of the equipment, a large ventilation device is also required and this has broken down. There is concern that it may lead to a major accident.
Moreover, although a gas detection device or the like for detecting a gas leak is also added, the gas detection inside the housing is inferior in detection accuracy and it is difficult to specify the leak position. on the other hand,
Since sufficient ventilation is required, the heat released by ventilation reduces the plant efficiency.

【0007】更には高圧型に比べて常圧型は圧力の関係
で反応ガス流速が増える傾向となるので配管サイズは大
きくなり筐体全体は大型化する。本発明の目的は、反応
ガスマニホールドと積層体のシール部からのリークガス
を排出用マニホールド内圧力を大気圧と同圧になるよう
に圧力制御する事によって大幅にリークガスを抑制させ
て、通常の筐体内部に燃料電池積層体を収納したとき、
筐体内部の強制換気が少なくて済み、安全で信頼性に優
れ、かつコンパクトな常圧型燃料電池を提供することに
ある。
Further, as compared with the high-pressure type, the atmospheric pressure type tends to increase the reaction gas flow rate due to the pressure, so that the pipe size becomes large and the entire housing becomes large. An object of the present invention is to significantly suppress the leak gas by controlling the pressure of the leak gas from the seal portion of the reaction gas manifold and the laminated body so that the pressure in the exhaust manifold is the same as the atmospheric pressure, and to suppress the leak gas to a normal casing. When the fuel cell stack is stored inside the body,
It is to provide a compact, normal-pressure fuel cell that is safe, highly reliable, and compact because it requires less forced ventilation inside the housing.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、電解質を含浸させた電解質層を挟んで
配置された一対の多孔質電極を有する単電池と、所定個
の単電池ごとに内部に冷媒を供給、排出して電池を冷却
する冷却板とを複数個積層して四角柱状の燃料電池積層
体を形成し、この積層体の側面には、供給用反応ガスマ
ニホールドと反応ガス排出用マニホールドとを夫々配置
し、これらのガスマニホールドの内、排出用マニホール
ド内圧力を大気圧と同圧になるように反応ガスマニホー
ルドに連通する供給管及び排出管にブロアなどを配設し
て圧力制御したことを特徴とする。
To achieve the above object, the present invention provides a unit cell having a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, and a predetermined number of unit cells. A plurality of cooling plates for supplying and discharging a refrigerant to cool the cells are stacked inside each cell to form a square columnar fuel cell stack, and the side surface of the stack has a supply reaction gas manifold and Reactor gas exhaust manifolds are arranged respectively, and blower and the like are installed in the supply pipe and exhaust pipe that communicate with the reaction gas manifold so that the exhaust manifold internal pressure becomes the same as the atmospheric pressure. It is characterized in that the pressure is controlled.

【0009】[0009]

【作用】上記のような構成を有する本発明においては、
ガスリークの可能性の高い、反応ガスマニホールドと燃
料電池積層体とのシール部分の圧力を最小限に抑える事
ができる。すなわち供給側反応ガス配管に配設したブロ
アは前記供給管内と燃料電池積層体内で生じる圧力損失
分に相当する容量とし、一方排出側反応ガス配管に配設
したブロアによって前記排出管内圧力損失分を受け持つ
容量とすることによって可能となる。
In the present invention having the above structure,
It is possible to minimize the pressure at the sealing portion between the reaction gas manifold and the fuel cell stack, which has a high possibility of gas leakage. That is, the blower arranged in the supply side reaction gas pipe has a capacity corresponding to the pressure loss generated inside the supply pipe and the fuel cell stack, while the blower arranged in the discharge side reaction gas pipe reduces the pressure loss inside the discharge pipe. It will be possible by setting the capacity.

【0010】また排出側燃料ガス(水素)マニホールド
内圧力をほぼ大気圧とし、排出側空気マニホールド内圧
力を大気圧以下とするように各圧力を設定し、燃料ガス
(水素)中への反応空気のリークを防ぐことで電池積層
体内部の損傷を防止できる。
Further, the pressure inside the discharge side fuel gas (hydrogen) manifold is set to about atmospheric pressure, and each pressure is set so that the pressure inside the discharge side air manifold is equal to or lower than atmospheric pressure. It is possible to prevent damage to the inside of the battery stack by preventing the leakage of the.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。図1及び
図2は本発明の実施例を示すものであって、図1は燃料
電池積層体の正面図である。図2は、図1の平面図であ
る。本実施例において、積層体1の上下面には締付板2
を配置している。また積層体1の燃料ガス(水素)供給
排出マニホールド3a、燃料ガス排出マニホールド3
b、空気供給マニホールド3c、空気排出マニホールド
3dを配置し、それぞれのマニホールドには反応ガス管
4a,4b,4c,4dを接続している。また反応ガス
管4a,4b,4c,4dにはブロア5a,5b,5
c,5dを連接配置している。さらに前記構成の電池積
層体、反応ガス管4、ブロア5等、全体を筐体6に収納
し、換気装置7によって筐体内部の空気を常に換気する
構成としたものである。
EXAMPLES Examples of the present invention will be described below. 1 and 2 show an embodiment of the present invention, and FIG. 1 is a front view of a fuel cell stack. FIG. 2 is a plan view of FIG. In this embodiment, the fastening plate 2 is provided on the upper and lower surfaces of the laminated body 1.
Are arranged. Further, the fuel gas (hydrogen) supply / exhaust manifold 3a, the fuel gas exhaust manifold 3 of the laminated body 1
b, an air supply manifold 3c and an air discharge manifold 3d are arranged, and reaction gas pipes 4a, 4b, 4c and 4d are connected to the respective manifolds. In addition, the reaction gas pipes 4a, 4b, 4c, 4d are provided with blowers 5a, 5b, 5
c and 5d are arranged in series. Further, the battery stack, the reaction gas tube 4, the blower 5 and the like having the above-described configuration are entirely housed in a casing 6, and the ventilation device 7 constantly ventilates the air inside the casing.

【0012】前記のような構成を有する実施例におい
て、各部の圧力の関係を図3に示す。図3は横軸に反応
ガス系統の位置関係を、縦軸に圧力レベルを示す。A点
は供給側最上流地点、B点は供給側マニホールド位置、
C点は排出側マニホールド位置、D点は排出側最下流位
置を示す。線Fは燃料ガス圧力変化を示し、線Aは空気
圧力変化を示す。供給側反応ガス配管4a,4cに連接
したブロアは前記供給管内と燃料電池積層体内で生じる
圧力損失分に相当する容量とし、一方排出側反応ガス配
管4b,4dに配設したブロアによって前記排出管内圧
力損失分を受け持つ容量とすることによって燃料・空気
各排出マニホールド3b,3dの位置すなわちC点で大
気圧とほぼ同等となるように圧力制御することが可能と
なる。ここで燃料ガス中への反応空気のリークを防ぐた
めにすくなくともB点からC点の範囲では燃料ガス圧力
を高くする。よってP5を大気圧(雰囲気圧力)とする
ことが出来る。この場合C点空気側マニホールド圧力P
6は大気圧以下となるが雰囲気は空気であることから問
題にならない。このような圧力制御とするなら、通常従
来方式でブロアをA点〜B点の間に連設するならP7が
大気圧となり1000kW級の大型ともなると系統配管が長く
なりP5は約300mmAq 、P3は約500mmAq 程度となり、
雰囲気との差圧は平均約400mmAq 程度となる。本発明の
構成で前記圧力制御とするならP5は0mmAq、P3は約
200mmAq 程度となり、雰囲気との差圧は平均約100mmAq
程度となる。よってマニホールドからのリーク量はほぼ
半減する。これにより筐体6に配設した換気装置7によ
る排気量も半減する。
FIG. 3 shows the relationship of the pressures of the respective parts in the embodiment having the above-mentioned structure. In FIG. 3, the horizontal axis shows the positional relationship of the reaction gas system, and the vertical axis shows the pressure level. Point A is the most upstream point on the supply side, point B is the manifold position on the supply side,
Point C shows the discharge side manifold position, and point D shows the discharge side most downstream position. Line F shows the fuel gas pressure change and line A shows the air pressure change. The blower connected to the supply side reaction gas pipes 4a, 4c has a capacity corresponding to the pressure loss generated in the supply pipe and the fuel cell stack, while the blower arranged in the discharge side reaction gas pipes 4b, 4d is used for the inside of the discharge pipe. By making the capacity to cover the pressure loss, it becomes possible to control the pressure so that it becomes substantially equal to the atmospheric pressure at the position of each of the fuel / air discharge manifolds 3b, 3d, that is, at the point C. Here, in order to prevent the leakage of the reaction air into the fuel gas, the fuel gas pressure is increased at least in the range from point B to point C. Therefore, P5 can be set to atmospheric pressure (atmospheric pressure). In this case, point C air side manifold pressure P
No. 6 is below atmospheric pressure, but since the atmosphere is air, there is no problem. With such pressure control, if a conventional blower is installed between points A and B, P7 will be atmospheric pressure, and if it is large in 1000 kW class, the system piping will become long and P5 will be about 300 mmAq and P3 will be It will be about 500 mmAq,
The average pressure difference with the atmosphere is about 400 mmAq. In the configuration of the present invention, if the pressure control is performed, P5 is 0 mmAq and P3 is about
The pressure difference with the atmosphere is about 100 mmAq.
It will be about. Therefore, the amount of leak from the manifold is almost halved. As a result, the exhaust volume of the ventilation device 7 arranged in the housing 6 is also halved.

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば反応
ガスマニホールドと積層体のシール部からのリークガス
を排出用マニホールド内圧力を大気圧と同圧になるよう
に圧力制御する事によって大幅にリークガスを抑制させ
て、通常の筐体内部に燃料電池積層体を収納したとき、
筐体内部の強制換気が少なくて済み、安全で信頼性に優
れた常圧型燃料電池を提供することができる。
As described above, according to the present invention, the leak gas from the seal portion of the reaction gas manifold and the laminated body can be greatly controlled by controlling the pressure in the exhaust manifold to be the same as the atmospheric pressure. When the fuel cell stack is stored inside a normal case by suppressing the leak gas to
It is possible to provide a safe and highly reliable normal-pressure fuel cell that requires less forced ventilation inside the housing.

【0014】また供給側だけのにブロア設置では、反応
ガス配管サイズを小さくしてコンパクト化しようとすれ
ば、B,C地点での圧力が高くなってリーク量が大幅に
増大するので大型の筐体となっていたが、本発明では、
反応ガス配管サイズを小さくしてもリーク量は増加する
ことはないので、全体的なコンパクトな常圧型燃料電池
を提供することができる。
In the case where the blower is installed only on the supply side, if an attempt is made to reduce the size of the reaction gas piping to make it compact, the pressure at points B and C will increase and the amount of leakage will greatly increase. Although it was a body, in the present invention,
Since the leak amount does not increase even if the reaction gas piping size is reduced, it is possible to provide an overall compact normal pressure fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の常圧型燃料電池の実施例を示す正面図FIG. 1 is a front view showing an embodiment of an atmospheric pressure fuel cell of the present invention.

【図2】本発明の常圧型燃料電池の実施例を示す平面図FIG. 2 is a plan view showing an embodiment of an atmospheric pressure fuel cell of the present invention.

【図3】本発明の常圧型燃料電池の各部の圧力を示す圧
力線図
FIG. 3 is a pressure diagram showing the pressure of each part of the atmospheric fuel cell of the present invention.

【図4】従来の高圧型燃料電池の一例を示す縦断面図FIG. 4 is a vertical sectional view showing an example of a conventional high-pressure fuel cell.

【図5】一般的な常圧型燃料電池の構造を示す部分切り
欠き斜視図
FIG. 5 is a partially cutaway perspective view showing the structure of a general atmospheric pressure fuel cell.

【符号の説明】[Explanation of symbols]

1…積層体 2…締付板 3a…燃料ガス供給マニホールド 4a…燃料ガス供給管 3b…燃料ガス排出マニホールド 4b…燃料ガス排出管 3c…空気ガス供給マニホールド 4c…空気ガス供給管 3d…空気ガス排出マニホールド 4d…空気ガス排出管 5a…燃料ガス供給ブロア 5b…燃料ガス排出ブロア 5c…空気ガス供給ブロア 5d…空気ガス排出ブロア 6…筐体 7…換気装置 20…積層体 21…締付手段 22…反応ガスマニホールド 23…タンク 24…電力端子 25…ブッシング 26…反応ガスの供給あるいは排出管 30…筐体 31…燃料電池積層体 32…保温材 33…改質器 DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Tightening plate 3a ... Fuel gas supply manifold 4a ... Fuel gas supply pipe 3b ... Fuel gas discharge manifold 4b ... Fuel gas discharge pipe 3c ... Air gas supply manifold 4c ... Air gas supply pipe 3d ... Air gas discharge Manifold 4d ... Air gas exhaust pipe 5a ... Fuel gas supply blower 5b ... Fuel gas exhaust blower 5c ... Air gas supply blower 5d ... Air gas exhaust blower 6 ... Enclosure 7 ... Ventilator 20 ... Laminate 21 ... Tightening means 22 ... Reaction gas manifold 23 ... Tank 24 ... Power terminal 25 ... Bushing 26 ... Reaction gas supply or discharge pipe 30 ... Housing 31 ... Fuel cell stack 32 ... Heat insulation material 33 ... Reformer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質を含浸させた電解質層を挟んで配
置された一対の多孔質電極を有する単電池と、所定個の
単電池ごとに内部に冷媒を供給、排出して電池を冷却す
る冷却板とを複数個積層して四角柱状の燃料電池積層体
を形成し、この積層体の側面には、積層体のコーナー部
分が露出するように供給用反応ガスマニホールドと反応
ガス排出用マニホールドとを夫々配置し、これらのガス
マニホールドの内、燃料ガス排出用マニホールド内圧力
を大気圧と同圧になるように圧力制御するようにしたこ
とを特徴とする常圧型燃料電池。
1. A unit cell having a pair of porous electrodes arranged with an electrolyte layer impregnated with an electrolyte sandwiched between the unit cell and a cooling unit for supplying and discharging a refrigerant to cool the battery. A plurality of plates are stacked to form a rectangular columnar fuel cell stack, and a supply reaction gas manifold and a reaction gas discharge manifold are provided on the side surfaces of the stack so that the corner portions of the stack are exposed. A normal pressure type fuel cell, characterized in that each of these gas manifolds is arranged so that the pressure inside the fuel gas discharge manifold is controlled to be the same as the atmospheric pressure.
【請求項2】 前記燃料電池積層体の供給用反応ガスマ
ニホールドと反応ガス排出用マニホールド夫々に連通す
る接続管に介挿したブロア等で吸引又は圧縮に依って反
応ガス供給及び排出するようにしたことを特徴とする常
圧型燃料電池。
2. The reaction gas is supplied and discharged by suction or compression with a blower or the like inserted in a connecting pipe communicating with the reaction gas manifold for supply and the reaction gas discharge manifold of the fuel cell stack. A normal pressure fuel cell characterized by the above.
JP6073030A 1994-04-12 1994-04-12 Normal pressure fuel cell Pending JPH07282827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6073030A JPH07282827A (en) 1994-04-12 1994-04-12 Normal pressure fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6073030A JPH07282827A (en) 1994-04-12 1994-04-12 Normal pressure fuel cell

Publications (1)

Publication Number Publication Date
JPH07282827A true JPH07282827A (en) 1995-10-27

Family

ID=13506551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6073030A Pending JPH07282827A (en) 1994-04-12 1994-04-12 Normal pressure fuel cell

Country Status (1)

Country Link
JP (1) JPH07282827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073478A (en) * 2016-10-24 2018-05-10 株式会社デンソー Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073478A (en) * 2016-10-24 2018-05-10 株式会社デンソー Fuel cell system

Similar Documents

Publication Publication Date Title
US8492044B2 (en) Systems and methods for starting and operating fuel cell systems in subfreezing temperatures
US7045233B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
CN101567461B (en) Hydrogen-immersed fuel cell stack and related operation
US7141323B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
JP4599461B2 (en) Fuel cell system
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
JP2008021636A (en) Fuel cell
CN100468076C (en) Fuel cell test system with self-supporting and electric power output function
JP2007066625A (en) Fuel cell stack
US20230015026A1 (en) Systems and methods for hydrogen recovery
JP2000208158A (en) Solid polymer electrolyte type fuel cell power generating device
JP3258378B2 (en) Fuel cell
JPH07282827A (en) Normal pressure fuel cell
JPH09259909A (en) Fuel battery power system
CN111628189A (en) Structure of high-temperature fuel cell stack for hydrogen production by methanol reforming
US10381658B2 (en) Fuel cell stack
JPH06275307A (en) Fuel cell
JPH07192750A (en) Normal pressure type fuel cell
JP2020136228A (en) Fuel cell module and power generating system
Susai et al. Development of a 1 kW PEM fuel cell power source
US20230335990A1 (en) Frequency droop to coordinate hydrogen production
CN212517257U (en) Structure of high-temperature fuel cell stack for hydrogen production by methanol reforming
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell
JPS6345768A (en) Fuel cell system