JPH07281509A - Electrophotographic method - Google Patents

Electrophotographic method

Info

Publication number
JPH07281509A
JPH07281509A JP7475894A JP7475894A JPH07281509A JP H07281509 A JPH07281509 A JP H07281509A JP 7475894 A JP7475894 A JP 7475894A JP 7475894 A JP7475894 A JP 7475894A JP H07281509 A JPH07281509 A JP H07281509A
Authority
JP
Japan
Prior art keywords
charging
image
potential
photoconductor
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7475894A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagame
宏 永目
Shigeto Kojima
成人 小島
Hiroshi Ikuno
弘 生野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7475894A priority Critical patent/JPH07281509A/en
Publication of JPH07281509A publication Critical patent/JPH07281509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To provide an electrophotographic method whereby a change in the residual potential of a photoreceptor is supressed, the contrast potential of the photoreceptor is maintained and stable, satisfactory image quality can be obtained for a long time. CONSTITUTION:In the electrophotographic method for repeating image formation by an arrangement of an electrifier 3, image exposure device 4, developing device 5, transfer device 6, separation device 7, destaticization device 8 and a cleaner 9 in that order around the organic photoreceptor 1, electrifying units A2 and B3 are provided as the electrifier for the photoreceptor and arranged away from each other, one of them for use in negative electrification and the other for use in positive electrification, and image formation is carried out by causing electrification so that the polarity of the electrifying unit near the destaticization 8 is the same as the photoreceptor polarlity which is used in the operation at the time of latent-image formation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像形成装置において感
光体の残留電位及びそのレベルを有効に低減化し、繰返
し特性を安定させ、かつ良質の画像品質を維持するため
の電子写真法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic method for effectively reducing the residual potential of a photoconductor and its level in an image forming apparatus, stabilizing the repeating characteristics, and maintaining good image quality.

【0002】[0002]

【従来の技術】最近の電子写真複写機やレーザービーム
プリンターなどの画像形成装置では大半が有機系感光体
である。無機系に限らず有機系の感光体においても前記
画像形成装置で使用した場合、画像露光すると非画像部
は光減衰するが、1複写サイクルの間に完全に0ボルト
まで落ちきらず数10ボルト〜数100ボルトの電位が
残り(これは一般に残留電位と呼ばれる)、この複写法
を繰り返すとさらに上昇する一種の疲労現象が見られ
る。この残留電位は感光層内部に画像露光時の光照射に
より生成された正孔及び電子が複写サイクルの間に十分
に消去されずに残留することにより起こるもので、正孔
及び電子の移動が遅いものほど電位が高くなり、蓄積も
大きくなる。
2. Description of the Related Art In recent image forming apparatuses such as electrophotographic copying machines and laser beam printers, most of them are organic photoconductors. When used in the image forming apparatus not only for the inorganic type but also for the organic type photoconductor, the non-image part is attenuated by the light when the image is exposed, but it does not completely drop to 0 volt during one copying cycle and is several tens of volts. A potential of several hundreds of volts remains (this is generally called residual potential), and a kind of fatigue phenomenon is observed which is further increased when this copying method is repeated. This residual potential occurs because holes and electrons generated by light irradiation during image exposure remain inside the photosensitive layer without being sufficiently erased during the copying cycle, and holes and electrons move slowly. The higher the potential, the greater the accumulation.

【0003】摩耗による短寿命化改善のために感光層を
厚膜化すると残留電位はさらに増加し易くなる。正孔及
び電子の移動を低下させる要因は感光層内の不純物元素
や残留溶媒、構造欠陥などによるものであって、これら
に正孔または電子が捕獲され、初期よりあるいは外的要
因で経時発生するようになる。膜厚が厚くなれば、単位
膜厚あたりの電界が低くなり、また構造欠陥の数も多く
なるため、残留電位は増加すると考えられる。この様な
感光体を使用すると、極端な場合には残留電位の増加に
よる画像濃度低下や低濃度部の消失、地肌汚れなどが発
生し、また蓄積は低いが残留電位が高い場合には、初期
より原稿の低画像濃度部の画像損失や画像濃度が低下す
るという現象が起こる可能性がある。
If the photosensitive layer is thickened to shorten the life due to abrasion, the residual potential is likely to increase further. Factors that reduce the movement of holes and electrons are due to impurity elements in the photosensitive layer, residual solvent, structural defects, etc., and holes or electrons are trapped in these, and are generated over time from the initial stage or external factors. Like As the film thickness increases, the electric field per unit film thickness decreases and the number of structural defects also increases, so the residual potential is considered to increase. When such a photoconductor is used, in extreme cases, the image density may decrease due to the increase of residual potential, the low density part may disappear, and background stain may occur, and if the accumulation is low but the residual potential is high, There is a possibility that a phenomenon such as an image loss in the low image density portion of the document and a decrease in image density may occur.

【0004】この様な感光体自身あるいは外的要因によ
り発生する疲労現象を改善する方法の事例がいくつか提
案されている。下記の例は保護層の無いa−Si感光体
を用いたもので、特開昭60−142355はクリーニ
ングの前で光除電、更に主帯電の前でAC帯電を行い、
トラップしたフォトキャリアを放出させ、疲労現象を改
善するものである。特開昭60−156069は主帯電
の前に加熱と同時にAC帯電(ローラー帯電)、もしく
は+DC電圧を印加しながら除電を行い疲労現象を改善
するものである。特開昭60−203964は上記15
6069のローラーの代わりにコロナ放電器に換えたも
のである。特開昭61−165764は帯電または除電
を行う前に帯電と同極性の前帯電を行い、疲労現象を改
善するものである。これらの事例はいずれも効果が得ら
れる方法ではあるが、元々残留電位が高い場合には電位
レベルを下げる効果は殆どなく、また、感光層の膜厚が
厚い場合には、連続複写すると残留電位の蓄積改善が不
十分なこともありえる。
Several examples of methods for improving the fatigue phenomenon caused by the photoreceptor itself or external factors have been proposed. The following example uses an a-Si photosensitive member having no protective layer. In JP-A-60-142355, photo-erasing is performed before cleaning, and AC charging is performed before main charging.
The trapped photocarriers are released to improve the fatigue phenomenon. Japanese Unexamined Patent Publication No. 60-156069 is to improve the fatigue phenomenon by performing AC charging (roller charging) at the same time as heating before main charging, or static elimination while applying + DC voltage. JP-A-60-203964 describes the above 15
The roller of 6069 is replaced with a corona discharger. Japanese Unexamined Patent Publication No. 61-165764 improves the fatigue phenomenon by performing pre-charging having the same polarity as that of charging before charging or discharging. All of these cases are effective methods, but when the residual potential is originally high, there is almost no effect of lowering the potential level, and when the photosensitive layer is thick, continuous copying produces residual potential. It is possible that the improvement of accumulation of water is insufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる残留電
位の変動を更に抑制し、かつ初期より残留電位の高い感
光体についてもその電位レベルを下げることにより、感
光体のコントラスト電位を確保して、長期に亘って安定
した良質の画像品質が得られる電子写真法を提供するも
のである。
The present invention ensures the contrast potential of the photoconductor by further suppressing such fluctuations in the residual potential and lowering the potential level of the photoconductor having a higher residual potential than the initial stage. The object of the present invention is to provide an electrophotographic method capable of obtaining stable and high quality image quality over a long period of time.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、特許請求の範囲に記載したとおりの
電子写真法である。すなわち、有機系感光体を中心に順
に帯電、画像露光、現像、転写、分離、清掃及び除電の
各装置を配置し、画像形成を繰返し行わせる電子写真法
において、該感光体用の帯電装置として、二基の帯電装
置を備え、それらの帯電装置を互いに離して配置し、い
ずれか一方を負帯電用、もう一方を正帯電用とし、除電
装置に近い方の帯電装置の極性を感光体の潜像形成時の
動作極性になるように帯電して画像形成を行う電子写真
法である。特に除電装置に近い方の帯電装置作動後の感
光体の表面電位を、この感光体の潜像形成前の表面電位
より絶対値が200〜800ボルト大きくなるように帯
電させた後、第2の帯電装置で所定の表面電位に設定す
るようにして画像形成を行うのが好ましい。この本発明
を以下図面を参照して具体的に説明する。
The constitution of the present invention for solving the above-mentioned problems is an electrophotographic method as described in the scope of claims. That is, in the electrophotographic method in which each device for charging, image exposure, development, transfer, separation, cleaning and charge removal is sequentially arranged around the organic photoconductor as an electrification device for the photoconductor. , Two charging devices are provided, and these charging devices are arranged apart from each other, one of them is for negative charging, the other is for positive charging, and the polarity of the charging device closer to the static eliminator is This is an electrophotographic method in which an image is formed by charging so as to have an operating polarity when forming a latent image. In particular, after charging the surface potential of the photoconductor after operation of the charging device, which is closer to the static eliminator, to an absolute value larger than the surface potential of the photoconductor before latent image formation by 200 to 800 volts, Image formation is preferably performed by setting a predetermined surface potential with a charging device. The present invention will be specifically described below with reference to the drawings.

【0007】図1に本発明の複写法の概略図、図2に使
用感光体の構成図を示す。図1中除電ランプ10側の帯
電器を帯電器A、画像露光側の帯電器を帯電器Bとして
以下の説明をする。図1に記載した複写法は、図2に示
す構成の機能分離型感光体(ホール移動型の一帯電系)
1にまず帯電器A2で負帯電を行い、次に帯電器B3で
正帯電を行い、画像形成に必要な帯電電位に設定する。
ここでは感光体は負帯電系の導電性支持体(CB)、下
引き層(UL)、電荷発生層(CGL)及び電荷輸送層
(CTL)から成る全4層構成の機能分離型有機系感光
体(OPC感光体)としたが、特に限定する必要は無
く、設定する感光体構成(CGLとCTLを逆にした4
層構成、CGLとCTLの機能を合わせ持つ3層構成)
に応じて帯電の極性を変更すれば使用できる。図2に示
す負帯電系の感光体を使用する場合の帯電は帯電器A2
で画像形成に必要な帯電電位の200〜800ボルト高
めに帯電し、次に帯電器B3にプラス電流を流し、画像
形成に必要な表面電位(通常は−600〜−1200ボ
ルト程度で使用される)を設定する。
FIG. 1 is a schematic diagram of the copying method of the present invention, and FIG. 2 is a structural diagram of a photoconductor used. In the following description, the charger on the side of the static elimination lamp 10 in FIG. 1 is the charger A and the charger on the image exposure side is the charger B. The copying method shown in FIG. 1 is a function-separated type photoconductor (hole-moving type one charging system) having the structure shown in FIG.
First, the charger A2 is negatively charged, then the charger B3 is positively charged to set the charging potential required for image formation.
Here, the photosensitive member is a function-separated organic photosensitive member having a four-layer structure including a negatively-charged conductive support (CB), an undercoat layer (UL), a charge generation layer (CGL) and a charge transport layer (CTL). Although the body (OPC photoconductor) is used, there is no particular limitation, and the photoconductor configuration to be set (CGL and CTL are reversed 4
Layer structure, 3 layer structure that has the functions of CGL and CTL)
It can be used if the polarity of charging is changed according to. When the negative charging type photoreceptor shown in FIG. 2 is used, the charging is performed by the charger A2.
To a voltage higher than the charging potential required for image formation by 200 to 800 volts, and then a positive current is applied to the charger B3 to generate a surface potential required for image formation (usually at about -600 to -1200 volts). ) Is set.

【0008】図2のような構成の感光体をマイナス帯電
で使用した場合に観測される残留電位は電荷輸送層(C
TL)中に捕獲された正孔、電荷発生層(CGL)に捕
獲された電子及び移動中の正孔/電子に起因するもの
で、感光体中の正孔/電子を排除するには感光体に負電
圧を印加すれば良いが、除去効率を考えるとできるだけ
高電圧の方が望ましい。感光体に印加できる電圧は感光
体の耐電圧により制限を受けるが、通常採用される20
〜40μm膜厚の感光層での許容できる帯電電位は約−
2000ボルト程度であるので、画像品質を加味すると
画像形成に必要な電位の200〜800ボルト高めの範
囲内で設定するのが望ましい。また、正孔や電子の感光
層内での移動時間を考えると、感光体の複写スピードと
の関係もあるが、帯電器Aと帯電器Bは可能な範囲内で
離した方が有効である。
The residual potential observed when the photoreceptor having the structure as shown in FIG. 2 is used with a negative charge is the charge transport layer (C
TL), holes trapped in the charge generation layer (CGL), electrons trapped in the charge generation layer (CGL), and holes / electrons that are moving. It is sufficient to apply a negative voltage to, but considering the removal efficiency, a higher voltage is preferable. The voltage that can be applied to the photoconductor is limited by the withstand voltage of the photoconductor, but it is usually adopted.
The allowable charging potential for a photosensitive layer having a thickness of -40 μm is about −
Since it is about 2000 V, it is desirable to set it within the range of 200 to 800 V higher than the potential required for image formation in consideration of image quality. Also, considering the movement time of holes and electrons in the photosensitive layer, it is effective to separate the charger A and the charger B within a possible range, although it is related to the copying speed of the photoreceptor. .

【0009】帯電器A2で正孔移動型の電荷輸送材を用
いた感光体を負帯電するとその表面電位が高いほど、感
光層中を移動中の、及び浅いトラップレベルに捕獲され
た正孔または電子が表層または支持体の電荷に引かれ消
滅しやすくなるため、空間電荷の形成が少なくなると考
えられる。その結果、光減衰がスムーズに行われ、電位
レベルの低減化および残留電位の上昇速度を低く抑える
ことができるため、良好な画像品質を長期に亘って維持
可能となる。−1500ボルト程度に帯電した表面電位
を−800ボルト程度に落すためには、帯電器B3の放
電ワイヤーおよびグリッド(コントロールグリッド)に
プラスの電圧を印加し、表面電位を調節する。したがっ
て、帯電器B3はコントロールグリッドを有するスコロ
トロンタイプの帯電器が望ましい。図1に示す帯電方式
はコロナ放電方式であるが、高圧でマイナス放電を行う
とオゾンを始め窒素酸化物等の有害な物質が多量に発生
し、感光体に少なからず悪影響を及ぼすので、これらの
生成物の発生が少ないローラー帯電方式への切り替えも
可能である。なお、正帯電感光体を使用する場合は帯電
器への印加極性は上記の逆となり、正帯電の後負帯電を
行い画像形成に必要な正帯電電位を得る。
When the photoreceptor using the hole-transporting charge transport material is negatively charged by the charger A2, the higher the surface potential thereof, the more holes that are moving in the photosensitive layer and trapped in the shallow trap level. It is considered that the formation of space charges is reduced because the electrons are easily attracted by the charges of the surface layer or the support and disappear. As a result, the light is smoothly attenuated, the potential level can be reduced, and the rising rate of the residual potential can be suppressed to a low level, so that good image quality can be maintained for a long period of time. In order to reduce the surface potential charged to about -1500 V to about -800 V, a positive voltage is applied to the discharge wire and the grid (control grid) of the charger B3 to adjust the surface potential. Therefore, the charger B3 is preferably a scorotron type charger having a control grid. The charging method shown in FIG. 1 is a corona discharge method. However, when negative discharge is performed at a high pressure, a large amount of harmful substances such as ozone and nitrogen oxides are generated, which adversely affects the photoconductor to a considerable extent. It is also possible to switch to a roller charging system that produces less product. When a positively charged photoreceptor is used, the polarity applied to the charger is the opposite of that described above, and positive charging is followed by negative charging to obtain the positive charging potential necessary for image formation.

【0010】画像形成に必要な表面電位を設定後、アナ
ログまたはデジタルの画像露光工程4で感光体に潜像を
形成し、現像装置5でトナーによる顕像化を行う。つぎ
に転写器6でコピー用紙13に転写した後、コピー用紙
13は感光体1より分離器7より分離される。次いでト
ナーの残留する感光体1は清掃装置9により清掃され、
除電ランプにより全面露光される。一方、コピー用紙1
3に転写されたトナー像は定着装置11により定着され
ハードコピーとなり、一連の複写工程は終了する。図2
は負帯電用の機能分離型の感光体構成を示したもので、
キャリアは正孔である。正帯電で動作する感光体の場合
は電荷発生層(CGL)と電荷輸送層(CTL)が逆構
成になっている型、電荷輸送材料と電荷発生材料が混在
した単層型の感光層構成の感光体がある。正帯電用の感
光体の場合は前述したように帯電工程を順に正帯電、負
帯電とすればよい。もちろん他の各装置もそれに応じて
極性を変更する必要がある。図3は帯電工程の部分が一
本の帯電器21で構成されている従来の複写法を示した
概略図である。
After the surface potential required for image formation is set, a latent image is formed on the photoconductor in an analog or digital image exposure process 4, and a developing device 5 visualizes it with toner. Next, after being transferred to the copy paper 13 by the transfer device 6, the copy paper 13 is separated from the photoconductor 1 by the separator 7. Next, the photoconductor 1 on which the toner remains is cleaned by the cleaning device 9,
The entire surface is exposed by the static elimination lamp. On the other hand, copy paper 1
The toner image transferred to No. 3 is fixed by the fixing device 11 to form a hard copy, and a series of copying steps are completed. Figure 2
Shows the function-separated type photoreceptor structure for negative charging.
The carriers are holes. In the case of a photoreceptor that operates by positive charging, a charge generation layer (CGL) and a charge transport layer (CTL) are of opposite type, or a single layer type photosensitive layer configuration in which a charge transport material and a charge generation material are mixed. There is a photoconductor. In the case of a photoconductor for positive charging, the charging process may be positive charging and negative charging in sequence as described above. Of course, the other devices also need to change their polarities accordingly. FIG. 3 is a schematic diagram showing a conventional copying method in which the charging step is composed of one charger 21.

【0011】[0011]

【実施例】以下実施例、およびそれに対する比較例を示
す。 実施例1 直径80mm、長さ340mm、厚さ1mmのアルミニ
ウム製シリンダー上にポリアミド樹脂にTiO2(石原
産業製)の微粒子を分散した樹脂液をディッピング法に
より塗布、加熱乾燥し約2μmの下引き層(UL)を作
製した。ついでトリスアゾ顔料をポリエステル樹脂に分
散した樹脂液を0.15μmの電荷発生層(CGL)に
なるように塗布後、加熱乾燥、更に電荷発生層上にスチ
ルベン化合物をポリカーボネート樹脂(パンライト、C
−1400、帝人化成製)に分散した樹脂液を塗布後加
熱乾燥し、電荷輸送層(CTL)を作製し、感光層の膜
厚として約25μmの機能分離型有機感光体を作製し、
サンプルとした。このようにして得られた感光体を実験
装置にセットして、機内電位を測定し感光体を評価し
た。
EXAMPLES Examples and comparative examples will be described below. Example 1 A resin liquid in which fine particles of TiO 2 (manufactured by Ishihara Sangyo Co., Ltd.) were dispersed in a polyamide resin was applied onto a cylinder made of aluminum having a diameter of 80 mm, a length of 340 mm and a thickness of 1 mm by a dipping method, followed by heating and drying to obtain a subbing of about 2 μm. The layers (UL) were made. Then, a resin solution in which a trisazo pigment is dispersed in a polyester resin is applied so as to form a charge generation layer (CGL) having a thickness of 0.15 μm, and dried by heating. Further, a stilbene compound is added onto the charge generation layer with a polycarbonate resin (Panlite, C
-1400, manufactured by Teijin Chemicals Co., Ltd.) and then dried by heating to form a charge transport layer (CTL), and a functional separation type organic photoreceptor having a thickness of the photosensitive layer of about 25 μm.
It was used as a sample. The photoconductor thus obtained was set in an experimental apparatus, and the in-machine potential was measured to evaluate the photoconductor.

【0012】実験機として帯電系を改造したデジタル複
写機(リコー製複写機イマジオ420機)を用意し、除
電ランプ露光部に負帯電器をセットし、主帯電器用の高
圧電源を接続、従来の主帯電器の放電部及びグリッドに
は夫々正の外部高圧電源を接続した。なお、今回は帯電
器Aと帯電器Bとの間隔は時間にして帯電器の中心間で
0.36秒に設定した。確認方法として、まず、−13
00または−1700ボルトの帯電電位になるように帯
電器Aを調整した後、帯電器Bのグリッドに+700ボ
ルト印加して画像形成時の表面電位(帯電電位)が−7
50〜−760ボルトになるように設定した。原稿とし
てグレースケールを用いて、5000枚の連続時の表面
電位を測定し、定期的に画像評価を行った。結果を図4
に示す。
As a test machine, a digital copying machine with a modified charging system (Ricoh's copying machine Imagio 420) was prepared, a negative charging device was set in the exposure section of the discharge lamp, and a high voltage power supply for the main charging device was connected to the conventional copying machine. A positive external high-voltage power supply was connected to the discharge part and the grid of the main charger. In addition, this time, the interval between the charger A and the charger B was set to 0.36 seconds between the centers of the chargers in terms of time. As a confirmation method, first, -13
After adjusting the charger A so that the charging potential is 00 or -1700 V, +700 V is applied to the grid of the charger B so that the surface potential (charging potential) during image formation is -7.
It was set to 50 to -760 volts. Using a gray scale as a document, the surface potential of 5,000 consecutive sheets was measured, and image evaluation was performed periodically. The result is shown in Figure 4.
Shown in.

【0013】比較例1 実施例1と同等の感光体を用い、図3に示す従来の複写
法を使用した実験機(リコー製イマジオ420機)で特
性評価を行った。結果を図4に示す。電位の推移は図4
に示す通りで、通常の1つの帯電器を用いた帯電方式の
画像部電位が−200ボルトでスタートする(通常法・
実線)のに対し、マイナス帯電を−1300ボルト与え
た場合(破線)には−140ボルトより、−1700ボ
ルトの場合(一点鎖線)には−110ボルトより夫々ス
タートとしており、画像部電位レベルを下げることがで
きた。またリピート特性も改善できた。このことは画像
部と非画像部のコントラスト電位を大きく取ることがで
きるため、より一層低画像濃度の原稿の再現性を良く
し、初期の画像品質を長時間に亘って維持することが可
能であることを意味する。
Comparative Example 1 Using the same photoconductor as in Example 1, the characteristics were evaluated by an experimental machine (Imagio 420 machine manufactured by Ricoh) using the conventional copying method shown in FIG. The results are shown in Fig. 4. Figure 4 shows the transition of the electric potential
As shown in, the electric potential of the image area of the charging method using one ordinary charger starts at -200 V (normal method
In contrast to the solid line), when negative electrification is given at -1300 V (broken line), starting from -140 V, and at -1700 V (dashed line), starting from -110 V. I was able to lower it. Moreover, the repeat characteristics were also improved. This makes it possible to increase the contrast potential between the image portion and the non-image portion, so that the reproducibility of a document having a lower image density can be improved and the initial image quality can be maintained for a long time. Means there is.

【0014】本発明の方法による画像品質は解像力が5
000枚の間4.5〜5.6本/mmと鮮明であり、ハ
ーフトーン画像及び文字画像の再現性及び均一性も良好
で実用上問題はなかった。一方、通常法による画像では
5000枚終了後低濃度部の文字画像、ハーフトーン画
像には初期画像に較べ、僅かではあるが再現性の低下が
見られ、方法の相違による効果が確認できた。更に帯電
器Aによる帯電電位を変化させ、画像形成時の帯電電位
を−730〜−750ボルトになるように帯電器Bの放
電電流を調整して、図3の複写法に示す通常法との10
0枚通紙した後の画像部電位レベルの低減化量を確認し
た。結果を図5に示す。帯電器Aによる帯電電位量によ
り画像部電位の低減化量が変化し、電位が高くなる程画
像部電位レベルが大きくなる(画像部電位レベルを下げ
られる)ことが分かる。
The image quality obtained by the method of the present invention has a resolution of 5 or less.
It was as clear as 4.5 to 5.6 lines / mm between 000 sheets, and the reproducibility and uniformity of halftone images and character images were good, and there was no problem in practical use. On the other hand, in the case of the image by the ordinary method, the reproducibility was slightly reduced in the character image and the halftone image in the low density area after the completion of 5000 sheets, and the effect due to the difference in the method was confirmed. Further, the charging potential by the charger A is changed, and the discharge current of the charger B is adjusted so that the charging potential at the time of image formation becomes −730 to −750 V. 10
The reduction amount of the potential level in the image area after passing 0 sheets was confirmed. Results are shown in FIG. It can be seen that the reduction amount of the image portion potential changes depending on the charged potential amount by the charger A, and the higher the potential, the higher the image portion potential level (the image portion potential level can be lowered).

【0015】実施例2,比較例2 CTLの厚膜化に対する効果を確認するために、実施例
1に示す製法にしたがって、アルミニウム製シリンダー
の上に順に約2μmのUL、ついで約0.15μmのC
GLを、その上に膜厚35μmまたは42μmのCTL
を積層して、有機感光体を作製した。このようにして作
製した感光体を図1の複写法に示される実験機(改造イ
マジオ420機)及び図3に示される通常方式の実験機
にセットした。効果の確認方法として、本発明法では帯
電器Aによる帯電電位を−1400ボルト一定とし、潜
像形成時の帯電電位を約−750ボルトになるように帯
電器Bの電流値を設定、比較例では図3に示す帯電器の
放電電流を調整し、帯電電位が約−750ボルトになる
ようにし、夫々5000枚連続複写を行い、帯電電位の
推移を確認した。結果を図6に示す。
Example 2 and Comparative Example 2 In order to confirm the effect of CTL on thickening the film, a UL of about 2 μm and then about 0.15 μm were sequentially deposited on an aluminum cylinder according to the manufacturing method shown in Example 1. C
GL and CTL with a film thickness of 35 μm or 42 μm on it
Were laminated to prepare an organic photoconductor. The thus prepared photoconductor was set in the experimental machine (modified Imagio 420 machine) shown in the copying method of FIG. 1 and the normal type experimental machine shown in FIG. As a method of confirming the effect, in the method of the present invention, the charging potential of the charging device A is kept constant at -1400 V, and the current value of the charging device B is set so that the charging potential during latent image formation is about -750 V. Comparative Example Then, the discharge current of the charger shown in FIG. 3 was adjusted so that the charging potential was about −750 V, and continuous copying was performed on 5,000 sheets each, and the transition of the charging potential was confirmed. Results are shown in FIG.

【0016】帯電器A、帯電器Bを用いて感光体に潜像
形成前の帯電を行う本発明の方式ではCTLを厚膜化に
よっても画像部電位に上昇が抑制され、また画像部電位
レベルも低下しており、感光体の高耐久化を目的とした
CTLの厚膜化に対しても十分な実用的な電位推移が確
認された。通常の帯電法を用いた方式ではCTL膜厚の
厚膜化により画像部電位上昇が大きくなり、その傾向は
35μmより42μmの方がより大きくなるのが観測さ
れ、画像品質に問題が生じる可能性が認められる。
In the method of the present invention in which the charging device A and the charging device B are used to charge the photosensitive member before the latent image is formed, the increase in the image portion potential is suppressed even when the CTL is thickened, and the image portion potential level is also reduced. It was also confirmed that sufficient practical potential transition was achieved even when the thickness of CTL was increased to increase the durability of the photoconductor. In the method using the ordinary charging method, it is observed that the electric potential rise in the image area becomes large due to the thickening of the CTL film thickness, and that tendency is larger at 42 μm than at 35 μm, which may cause a problem in image quality. Is recognized.

【0017】実施例3〜7、比較例3 試料として実施例2で作製したCTL42μmの感光体
と同等品を用いた。また、効果確認法として、実施例で
は帯電器Aによる表面電位を−920〜−2150ボル
トの間で変化させ、潜像形成前の表面電位を−700ボ
ルトになるように帯電器Bの電流を調整し、画像部電位
のレベル及びその電位上昇について5000枚連続複写
し改善効果を確認した。また、比較例では図3に示す従
来法を用い、潜像形成前の帯電電位を−700ボルトに
して電位の推移及び初期と5000枚終了後の画像を確
認した。電位条件を表1に示す。
Examples 3 to 7 and Comparative Example 3 As the sample, the same product as the CTL 42 μm photosensitive member produced in Example 2 was used. As an effect confirmation method, in the embodiment, the surface potential of the charger A is changed between -920 and -2150 volts, and the current of the charger B is adjusted so that the surface potential before latent image formation becomes -700 volts. After adjustment, the potential level of the image area and its potential increase were continuously copied on 5,000 sheets, and the improvement effect was confirmed. Further, in the comparative example, the conventional method shown in FIG. 3 was used, the charging potential before latent image formation was set to −700 V, and the transition of the potential and the images at the initial stage and after 5,000 sheets were confirmed. The potential conditions are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】結果を表2に示す。The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】感光層の厚膜化により感度が良くなるの
で、画像部電位レベルは比較例1の試料に較べ低下する
が、残留電位の蓄積が生じやすくなるので、特に低濃度
原稿の文字画像の濃度低下が生じ、切れぎれの文字にな
るなどの画像品質低下が出てくる。しかし、本発明に示
す帯電法を用いれば電位レベルが補正され、安定した画
像品質維持が可能となる。ただし、帯電器Aで−215
0ボルトと過剰な高電圧を帯電すると初期画像では問題
は殆ど生じないが、次第にハーフトーン画像にあれが目
立つようになり、また0.1mm以下の黒点や白点が徐
々に目立つようになり、明らかな画像劣化が確認され
た。したがって、帯電器Aによる帯電量は画像劣化を起
こさない範囲内に留める必要がある。
Since the sensitivity is improved by increasing the thickness of the photosensitive layer, the potential level in the image area is lower than that of the sample of Comparative Example 1, but residual potential is likely to be accumulated, so that a character image of a low-density original is particularly likely to be generated. As a result, the density is reduced, and the image quality is degraded, such as broken characters. However, if the charging method according to the present invention is used, the potential level is corrected, and stable image quality can be maintained. However, the charger A is -215
If an excessively high voltage of 0 volt is charged, there will be almost no problem in the initial image, but gradually it will become noticeable in the halftone image, and black and white spots of 0.1 mm or less will gradually become noticeable. Clear image deterioration was confirmed. Therefore, the amount of charge by the charger A needs to be kept within a range that does not cause image deterioration.

【0022】[0022]

【発明の効果】以上、説明したように本発明によれば、
従来の負帯電工程のみより残留電位を低くすることが出
きるため、コントラスト電位を大きくすることができ、
更に、摩耗による帯電性低下を考慮して感光層膜厚を厚
くしても、繰返し電位を安定することが出きるため、初
期画像品質を長時間に亘って安定して維持することが従
来に比して可能となる。
As described above, according to the present invention,
Since the residual potential can be made lower than only the conventional negative charging step, the contrast potential can be increased,
Further, even if the photosensitive layer thickness is increased in consideration of the decrease in charging property due to abrasion, the potential can be stabilized repeatedly, so that it is possible to maintain the initial image quality stably for a long time. It is possible in comparison.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複写法の概略図、FIG. 1 is a schematic diagram of a copying method of the present invention,

【図2】感光体構成図、FIG. 2 is a configuration diagram of a photoconductor,

【図3】従来の複写法の概略図、FIG. 3 is a schematic view of a conventional copying method,

【図4】本発明の複写法を使用した機内電位のリピート
特性を示すグラフ、
FIG. 4 is a graph showing the repeatability of in-machine potential using the copying method of the present invention,

【図5】帯電器Aによる帯電電位と画像部レベル低下量
の関係を示すグラフ、
FIG. 5 is a graph showing the relationship between the charging potential of the charger A and the image area level reduction amount;

【図6】感光層厚膜化感光体による機内電位のリピート
特性を示すグラフ。
FIG. 6 is a graph showing the repeatability of the in-machine potential by a photosensitive layer thick film photoreceptor.

【符号の説明】[Explanation of symbols]

1 感光体 2 帯電器A 3 帯電器B 4 画像露光 5 現像装置 6 転写器 8 分離器 8 除電器 9 清掃装置 10 除電ランプ 11 定着装置 12 コピー用紙トレイ 13 コピー用紙 21 主帯電器 1 Photoconductor 2 Charger A 3 Charger B 4 Image exposure 5 Developing device 6 Transfer device 8 Separator 8 Static eliminator 9 Cleaning device 10 Static erasing lamp 11 Fixing device 12 Copy paper tray 13 Copy paper 21 Main charger

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機系感光体を中心に順に帯電、画像露
光、現像、転写、分離、清掃及び除電の各装置を配置
し、画像形成を繰返し行わせる電子写真法において、該
感光体用の帯電装置として、二基の帯電装置を備え、そ
れらの帯電装置を互いに離して配置し、いずれか一方を
負帯電用、もう一方を正帯電用とし、除電装置に近い方
の帯電装置の極性を感光体の潜像形成時の動作極性にな
るように帯電して画像形成を行うことを特徴とする電子
写真法。
1. An electrophotographic method in which charging, image exposure, development, transfer, separation, cleaning and charge removal devices are sequentially arranged around an organic photoconductor to repeatedly perform image formation. As a charging device, two charging devices are provided, and these charging devices are arranged apart from each other. One of them is for negative charging, the other is for positive charging, and the polarity of the charging device closer to the static eliminator is set. An electrophotographic method characterized in that an image is formed by charging the photosensitive member so as to have an operating polarity when forming a latent image.
【請求項2】 除電装置に近い方の帯電装置作動後の感
光体の表面電位を該感光体の潜像形成前の表面電位より
絶対値が200〜800ボルト大きくなるように帯電さ
せたのち、第2の帯電装置で所定の表面電位に設定する
ようにして画像形成を行うことを特徴とする請求項1に
記載の電子写真法。
2. The surface potential of the photoconductor after the operation of the charging device, which is closer to the static eliminator, is charged so that the absolute value thereof becomes larger than the surface potential of the photoconductor before the latent image is formed by 200 to 800 volts, The electrophotographic method according to claim 1, wherein an image is formed by setting a predetermined surface potential with a second charging device.
JP7475894A 1994-04-13 1994-04-13 Electrophotographic method Pending JPH07281509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7475894A JPH07281509A (en) 1994-04-13 1994-04-13 Electrophotographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7475894A JPH07281509A (en) 1994-04-13 1994-04-13 Electrophotographic method

Publications (1)

Publication Number Publication Date
JPH07281509A true JPH07281509A (en) 1995-10-27

Family

ID=13556504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7475894A Pending JPH07281509A (en) 1994-04-13 1994-04-13 Electrophotographic method

Country Status (1)

Country Link
JP (1) JPH07281509A (en)

Similar Documents

Publication Publication Date Title
EP0280542A2 (en) An image forming apparatus
EP0028680B1 (en) Process of, and means for charging an imaging element in an electrophotographic machine
JP3250851B2 (en) Multicolor image forming device
JP2608308B2 (en) Method for preventing pepper tracking in corona charger
US5581331A (en) Color image forming apparatus
JP2004347782A (en) Electrifying device and image forming apparatus
US20020181970A1 (en) Image forming apparatus having charging rotatable member
JPS60249166A (en) Method for adjusting image density of electrophotograph
JPH07281509A (en) Electrophotographic method
JPH09319219A (en) Image forming device
JP3482131B2 (en) Image forming device
US7734204B2 (en) System and methods for reducing ghosting
JPH06222649A (en) Electrostatic charging device
JP3996566B2 (en) Image forming apparatus and image forming method
JP2002023467A (en) Image forming device
JPH09185301A (en) Image forming device
US20100329714A1 (en) Image forming apparatus
US20190163089A1 (en) Image forming apparatus
JP2002006703A (en) Method and device for electrophotography
JP2002049167A (en) Electrophotographic device and process cartridge
JP3976025B2 (en) Charging device and image forming apparatus having the same
JPH01191174A (en) Image forming device
JPH11272023A (en) Image forming device
JP2003162160A (en) Image forming apparatus
JPH0519670A (en) Cleaning device of image forming device