JPH07280951A - Reflection type optical sensor - Google Patents

Reflection type optical sensor

Info

Publication number
JPH07280951A
JPH07280951A JP10212794A JP10212794A JPH07280951A JP H07280951 A JPH07280951 A JP H07280951A JP 10212794 A JP10212794 A JP 10212794A JP 10212794 A JP10212794 A JP 10212794A JP H07280951 A JPH07280951 A JP H07280951A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical sensor
light emitting
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10212794A
Other languages
Japanese (ja)
Inventor
Kohei Tomita
公平 冨田
Hayami Hosokawa
速美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP10212794A priority Critical patent/JPH07280951A/en
Publication of JPH07280951A publication Critical patent/JPH07280951A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To provide a reflection type optical sensor which can accurately detect even an object having a mirror characteristic as metal has and an object with a high reflection factor, for example, white paper by lights different in wavelength projecting onto a reflector, reflector having a characteristic of reflecting light with some wavelength intensely, and detecting changes in the quantity of the light received as caused when the object intercepts the reflected light to judge the object. CONSTITUTION:Lights different in wavelength from each other are emitted separately from light emitting elements 1a and 1b and the outgoing lights are combined to be projected to a reflector 3 or an object 8. The reflector 8 has a characteristic with the reflection factor thereof different for each of the outgoing lights with the different wavelengths from the light emitting elements and thus, when the object 8 intercepts the reflected light in the optical path of the light projected and reflected, the quantity of reflected light with the respective wavelengths changes as received with a photodetecting part 2b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、対象物体に光を投光
し、その反射光を受光することにより対象物体の種類又
は有無を判別する反射型光センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type optical sensor for determining the type or presence of a target object by projecting light on the target object and receiving the reflected light.

【0002】[0002]

【従来の技術】従来、反射型光センサとして、図27に
示すように、投光部aと受光部bを備え、投光部aから
反射板cに光を投光し、その反射光を受光部bで受光す
る構成でなり、検出物体dが光路中に入った時に光が遮
られることにより受光部bでの受光量が変わることを検
出し、もって検出物体dを検知するものがある。
2. Description of the Related Art Conventionally, as shown in FIG. 27, as a reflection type optical sensor, a light projecting portion a and a light receiving portion b are provided, and light is projected from a light projecting portion a to a reflector c and the reflected light is reflected. There is a structure in which the light receiving unit b receives light, and it detects that the amount of light received by the light receiving unit b changes due to light being blocked when the detection object d enters the optical path, and thus detects the detection object d. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような光センサにおいて、検出物体dが金属のような鏡
面特性を有する場合には、投光部aからの光は検出物体
dで反射され、受光部bで受光されるので、検出物体d
が通過したにもかかわらず検出できないという問題があ
った。これを解決するために、投光部から偏光フィルタ
ーを用いてある偏光成分のみの光を反射板に投光し、反
射板は反射光の偏光成分が入射光の偏光成分に対して垂
直であるコーナーキューブ又はコーナーキューブの集合
体を用い、受光部は偏光フィルターにより投光された偏
光成分に対して垂直な偏光成分のみを受光する構成でな
り、反射板からの反射光は受光部で受光するが、反射光
の偏光成分が入射光と同じである鏡面特性を有する検出
物体からの反射光は受光しないようにした装置がある。
しかし、このような装置にあっても、白紙のような反射
率が高く、反射光の偏光成分がランダムである検出物体
の反射光は受光部で受光してしまい、誤動作するという
問題があった。また、近年、反射型光電センサにおいて
長距離化が望まれている。しかし、投光部又は受光部と
反射板との間の距離を長くしていくと、ある限界距離に
達すると、近距離での白紙のような高反射率の検出物体
の反射光量より小さくなってしまい、検出物体と反射板
の判別ができなくなるという問題があった。
However, in the optical sensor as described above, when the detection object d has a mirror surface characteristic like metal, the light from the light projecting portion a is reflected by the detection object d, Since the light is received by the light receiving section b, the detected object d
There was a problem that it could not be detected even though it passed. In order to solve this, the light projecting unit uses a polarizing filter to project light having only a certain polarization component to the reflection plate, and the reflection plate has the polarization component of the reflected light perpendicular to the polarization component of the incident light. A corner cube or an assembly of corner cubes is used, and the light receiving unit is configured to receive only the polarization component perpendicular to the polarization component projected by the polarization filter, and the reflected light from the reflector is received by the light receiving unit. However, there is an apparatus that does not receive the reflected light from the detection object having the mirror surface characteristic in which the polarization component of the reflected light is the same as that of the incident light.
However, even in such a device, there is a problem that the reflected light of the detection object, which has a high reflectance like white paper and the polarization component of the reflected light is random, is received by the light receiving unit, and malfunctions. . Further, in recent years, it has been desired to increase the distance of the reflective photoelectric sensor. However, when the distance between the light emitting unit or the light receiving unit and the reflector is increased, when the distance reaches a certain limit, it becomes smaller than the reflected light amount of a highly reflective detection object such as white paper at a short distance. Therefore, there is a problem that the detection object and the reflection plate cannot be distinguished.

【0004】本発明は、上記問題を解決するもので、波
長の異なる光を発光する素子と、その光を合成する光学
フィルターとを用いて反射板に投光し、反射板はいずれ
かの波長の光を強く反射する特性を有するものを用い、
検出物体が反射光を遮った時の受光部での複数の波長の
反射光の変化を検出することで検出物体を判別するよう
にしたことにより、金属のような鏡面特性を有する検出
物体であっても、また、白紙のような反射率が高い検出
物体であっても、しかも反射板までの距離が長くとも確
実に物体を検出できる反射型光センサを提供することを
目的とする。
The present invention solves the above-mentioned problems by projecting light onto a reflector using an element that emits light of different wavelengths and an optical filter that synthesizes the light, and the reflector can emit light of any wavelength. , Which has the property of strongly reflecting the light of
By detecting changes in the reflected light of multiple wavelengths at the light receiving part when the detected object blocks the reflected light, the detected object can be distinguished, so that it is a detected object having mirror-like characteristics such as metal. In addition, it is an object of the present invention to provide a reflective optical sensor that can reliably detect an object such as a white paper that has a high reflectance and that can reliably detect the object even if the distance to the reflector is long.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、投光部と、この投光部からの投光
を反射させる反射板と、この反射板又は物体からの反射
光を受光する受光部とを備え、投光と反射光との光路中
で該物体が反射光を遮光することにより、受光部で受光
される反射光量が変化することを検出して該物体を検出
する反射型光センサにおいて、投光部は、或る波長の光
を出射する第1の発光素子と、第1の発光素子とは異な
る波長の光を出射する第2の発光素子と、第1及び第2
の発光素子からの出射光を合成する光合成手段とを備
え、反射板は、第1の発光素子からの出射光に対する反
射率と第2の発光素子からの出射光に対する反射率とが
異なる特性を有したものである。請求項2の発明は、請
求項1記載の反射型光センサにおいて、光合成手段とし
て、第1及び第2の発光素子からの出射光の内の一方の
光を透過させ他方の光を反射させることにより合成する
平板状の光学部材を用いたものである。請求項3の発明
は、請求項2記載の反射型光センサにおいて、光合成手
段として、2波長分離フィルターとしてのダイクロック
ミラーを用いたものである。請求項4の発明は、請求項
3記載の反射型光センサにおいて、ダイクロックミラー
が、発散光路中に配置されているものである。請求項5
の発明は、請求項1乃至3記載の反射型光センサにおい
て、投光部が、2つの発光素子を交互に発光させ、受光
部は1つの受光素子で反射板又は物体からの反射光を受
光するものである。請求項6の発明は、請求項1乃至3
記載の反射型光センサにおいて、受光部が、波長の異な
る2つの光に分離する光分離手段と、この光分離手段に
より分離された2つの光をそれぞれ受光する少なくとも
2つの受光素子とを備えたものである。請求項7の発明
は、請求項1乃至3記載の反射型光センサにおいて、受
光部が、波長の異なる2つの感度を有するカラーセンサ
を備えたものである。請求項8の発明は、請求項2記載
の反射型光センサにおいて、光合成手段を構成する平板
状の光学部材は、反射板における反射率の高い方の波長
の光が入射する側の面に反射膜が形成され、他方側の面
に反射防止膜が形成されているものである。請求項9の
発明は、請求項1乃至3記載の反射型光センサにおい
て、投光部における、反射板での反射率の高い方の波長
の出射光の拡がり角を、もう一方の波長の出射光の拡が
り角よりも小さく設定したものである。請求項10の発
明は、請求項1乃至3記載の反射型光センサにおいて、
第1及び第2の発光素子の発光出力をモニターする受光
素子を備えたものである。請求項11の発明は、請求項
1乃至3記載の反射型光センサにおいて、反射板がコー
ナーキューブ又はコーナーキューブの集合体で構成され
ているものである。請求項12の発明は、請求項1乃至
3記載の反射型光センサにおいて、第1及び第2の発光
素子がそれぞれ赤色光と赤外光の2つの波長の光を投光
し、反射板は赤外光を吸収するようにしたものである。
請求項13の発明は、請求項1乃至3記載の反射型光セ
ンサにおいて、受光部が、第1及び第2の発光素子が出
射する波長帯域の光を透過し、その他の波長帯域の光を
反射もしくは吸収するフィルターを備えたものである。
In order to achieve the above object, the invention of claim 1 is such that a light projecting portion, a reflecting plate for reflecting the light projected from the light projecting portion, and the reflecting plate or the object. A light receiving unit for receiving the reflected light, and by detecting that the reflected light amount received by the light receiving unit changes when the object shields the reflected light in the optical path between the projected light and the reflected light In the reflection type optical sensor for detecting, the light projecting unit includes a first light emitting element that emits light of a certain wavelength, and a second light emitting element that emits light of a wavelength different from the first light emitting element, First and second
And a light combining means for synthesizing light emitted from the light emitting element of the first light emitting element, wherein the reflection plate has a characteristic that the reflectance with respect to the light emitted from the first light emitting element and the reflectance with respect to the light emitted from the second light emitting element differ. I have. According to a second aspect of the present invention, in the reflection-type photosensor according to the first aspect, one of light emitted from the first and second light emitting elements is transmitted and the other light is reflected, as the light combining means. A flat plate-shaped optical member synthesized by the above method is used. According to a third aspect of the present invention, in the reflection type optical sensor according to the second aspect, a dichroic mirror as a two-wavelength separation filter is used as the light combining means. According to a fourth aspect of the present invention, in the reflection type optical sensor according to the third aspect, the dichroic mirror is arranged in the divergent optical path. Claim 5
In the reflection type optical sensor according to any one of claims 1 to 3, the light emitting section alternately emits two light emitting elements, and the light receiving section receives light reflected from the reflector or the object by one light receiving element. To do. The invention of claim 6 relates to claims 1 to 3.
In the reflective optical sensor described above, the light receiving section includes a light separating unit that separates the light into two lights having different wavelengths, and at least two light receiving elements that respectively receive the two lights separated by the light separating unit. It is a thing. According to a seventh aspect of the present invention, in the reflection type optical sensor according to the first to third aspects, the light receiving section includes a color sensor having two sensitivities having different wavelengths. According to an eighth aspect of the present invention, in the reflection-type photosensor according to the second aspect, the flat plate-shaped optical member that constitutes the light synthesizing means is reflected on the surface on the side on which the light having the wavelength with the higher reflectance of the reflection plate is incident. A film is formed and an antireflection film is formed on the other surface. According to a ninth aspect of the present invention, in the reflection-type optical sensor according to the first to third aspects, the divergence angle of the emitted light of the wavelength having a higher reflectance at the reflecting plate in the light projecting portion is set to the output of the other wavelength. It is set to be smaller than the divergence angle of the emitted light. According to a tenth aspect of the present invention, in the reflective optical sensor according to the first to third aspects,
A light receiving element for monitoring the light emission output of the first and second light emitting elements is provided. According to an eleventh aspect of the present invention, in the reflection-type optical sensor according to the first to third aspects, the reflection plate is composed of a corner cube or an assembly of corner cubes. According to a twelfth aspect of the present invention, in the reflection-type photosensor according to any of the first to third aspects, the first and second light emitting elements respectively project light of two wavelengths, red light and infrared light, and the reflector is It is designed to absorb infrared light.
According to a thirteenth aspect of the present invention, in the reflection type optical sensor according to the first to third aspects, the light receiving section transmits the light in the wavelength band emitted by the first and second light emitting elements, and transmits the light in the other wavelength bands. It is equipped with a filter that reflects or absorbs.

【0006】[0006]

【作用】本発明の反射型光センサによれば、第1及び第
2の発光素子から互いに異なる波長の光がそれぞれ出射
され、これらの出射光は合成されて、反射板又は物体に
投光される。反射板は第1及び第2の発光素子からの異
なる波長の出射光の各々に対する反射率が異なる特性を
有することから、投光と反射光との光路中で物体が反射
光を遮光したとき、受光部で受光される各波長の反射光
量に変化が生じる。この反射光量の変化を検出すること
で、該物体が存在することを検出できる。
According to the reflection type optical sensor of the present invention, lights having different wavelengths are respectively emitted from the first and second light emitting elements, and the emitted lights are combined and projected onto the reflector or the object. It Since the reflection plate has characteristics that the reflectances with respect to the emitted lights of different wavelengths from the first and second light emitting elements are different, when the object shields the reflected light in the optical path of the projected light and the reflected light, The amount of reflected light of each wavelength received by the light receiving unit changes. The presence of the object can be detected by detecting the change in the reflected light amount.

【0007】[0007]

【実施例】【Example】

(実施例1)本発明の実施例1の構成を図1に示す。光
センサは、投光部1と受光部2を備え、投光部1から反
射板3に異なる2つの光を投光し、その反射光を受光部
2で受光する構成としている。投光部1では交互に発光
する波長の異なる2つの発光素子1a(波長λ1)及び
発光素子1b(波長λ2)を備え、それぞれの光を投光
レンズ5a,5bによりコリメートし、図2(a)に示
すような、波長λ1の光を反射し波長λ2の光を透過す
る特性を持つダイクロイックミラー6により2つの光を
合成して、反射板3に向け投光する。反射板3は、図2
(b)に示すような、波長λ1の光を反射し波長λ2の
光を吸収する特性を有する。また、受光部2は、反射板
3からの反射光を受光レンズ7を介して受光素子2aで
受光する構成としている。検出物体8が投光及び反射光
の光路中に入ると、これが検出されるようになってい
る。
(Embodiment 1) The configuration of Embodiment 1 of the present invention is shown in FIG. The optical sensor includes a light projecting section 1 and a light receiving section 2, two different lights are projected from the light projecting section 1 to the reflector 3, and the reflected light is received by the light receiving section 2. The light projecting unit 1 is provided with two light emitting elements 1a (wavelength λ1) and a light emitting element 1b (wavelength λ2) that emit light alternately and collimate each light by the light projecting lenses 5a and 5b. ), The two lights are combined by a dichroic mirror 6 having a characteristic of reflecting the light of wavelength λ1 and transmitting the light of wavelength λ2, and projecting the two lights toward the reflecting plate 3. The reflector 3 is shown in FIG.
As shown in (b), it has a characteristic of reflecting light of wavelength λ1 and absorbing light of wavelength λ2. Further, the light receiving section 2 is configured to receive the reflected light from the reflecting plate 3 via the light receiving lens 7 by the light receiving element 2a. When the detection object 8 enters the optical paths of the projected light and the reflected light, this is detected.

【0008】前記受光素子2aで得られた信号の処理回
路を図3に示す。処理回路は、主発振回路、発振回路、
アンプ、サンプルホールド回路(S/H)、減算回路、
加算回路、比較器、AND回路からなる。この処理回路
により、2つの発光素子1a,1bのそれぞれの発光信
号と同期をとり、それぞれの波長の反射光の信号を得、
2つの反射光量の差、和により検出物体8と反射板3と
を判別する。判別論理は以下の通りである。
FIG. 3 shows a processing circuit of the signal obtained by the light receiving element 2a. The processing circuit is a main oscillation circuit, an oscillation circuit,
Amplifier, sample hold circuit (S / H), subtraction circuit,
It consists of an adder circuit, a comparator, and an AND circuit. This processing circuit synchronizes with the respective light emission signals of the two light emitting elements 1a and 1b to obtain the reflected light signals of the respective wavelengths.
The detection object 8 and the reflector 3 are discriminated by the difference and sum of the two reflected light amounts. The discriminant logic is as follows.

【0009】[0009]

【表1】 [Table 1]

【0010】なお、図3において、V1:波長λ1の受
光信号、V2:波長λ2(反射板3で吸収される方)の
受光信号、Vth1:比較器11のしきい値(検出物体
8がない場合と検出物体8が鏡面の場合のV1−V2の
間の値)、Vth2:比較器12のしきい値(検出物体
8がない場合のV1+V2よりやや小さめの値) 比較器11の出力:V1−V2>Vth1のとき H 比較器12の出力:V1+V2>Vth2のとき H
In FIG. 3, V1: received light signal of wavelength λ1, V2: received light signal of wavelength λ2 (which is absorbed by the reflector 3), Vth1: threshold value of the comparator 11 (there is no detection object 8) Case and a value between V1 and V2 when the detected object 8 is a mirror surface), Vth2: threshold value of the comparator 12 (a value slightly smaller than V1 + V2 when the detected object 8 is not present) output of the comparator 11: V1 -V2> Vth1 H output of comparator 12: H when V1 + V2> Vth2

【0011】波長λ1、λ2の投光パワー及び指向性が
等しいと仮定すると、検出物体8がない場合、反射板3
からの反射光は波長λ1の成分が波長λ2より大きくな
るため、比較器11の出力はH、比較器12の出力もH
となるので、“検出物体なし”と判別する。また、図4
に示すように、検出物体8´が鏡面の場合や、近距離に
白紙のような反射率の高い検出物体がある場合、波長λ
1、波長λ2の反射光量は等しく、比較器11の出力は
Lとなり“検出物体あり”と判別する。一方、反射率が
低い検出物体の場合、波長λ1、λ2の反射光量の大小
(比較器11の出力)に関わらず、比較器12の出力が
Lとなり、従来と同様に“検出物体あり”と判別する。
Assuming that the projection power and the directivity of the wavelengths λ1 and λ2 are equal, if there is no detection object 8, the reflector 3
Since the component of the wavelength λ1 of the reflected light from is larger than the wavelength λ2, the output of the comparator 11 is H and the output of the comparator 12 is also H.
Therefore, it is determined that there is no detected object. Also, FIG.
As shown in, when the detection object 8'is a mirror surface or when there is a detection object with a high reflectance such as a white paper in a short distance, the wavelength λ
1, the amounts of reflected light of the wavelength λ2 are equal, the output of the comparator 11 becomes L, and it is determined that “there is a detected object”. On the other hand, in the case of a detection object having a low reflectance, the output of the comparator 12 becomes L regardless of the magnitude of the reflected light amount of the wavelengths λ1 and λ2 (the output of the comparator 11), and “there is a detection object” as in the conventional case. Determine.

【0012】従って、検出物体が金属のような鏡面特性
を有する場合、及び白紙のような高反射率の検出物体が
近距離にある場合でも、2つの波長の反射光量の大小に
より検出物体ありと判別でき、比較器12のしきい値を
下げることができるので、反射板3の設置距離を長く
し、受光量が小さくなっても反射板3と検出物体8の判
別ができ、長距離化が図れる。
Therefore, even when the detection object has a mirror surface characteristic like metal, and even when a detection object having a high reflectance such as white paper is in a short distance, there is a detection object depending on the amount of reflected light of two wavelengths. Since the discrimination can be made and the threshold value of the comparator 12 can be lowered, the installation distance of the reflection plate 3 can be made longer and the reflection plate 3 and the detection object 8 can be discriminated even if the amount of received light becomes small, and the long distance can be achieved. Can be achieved.

【0013】処理回路の他の例を図5、図6に示す。図
5は波長λ1、λ2の受光量の比(V1/V2)、図6
は差/和(V1−V2/V1+V2)により検出したも
ので、それぞれ適当なしきい値と比較することで前記の
処理回路と同じ結果が得られる。2つの発光素子の波長
選択は、一般的に入手し易く発光パワーが大きいものを
考えると、波長900nm程度(赤外光)と波長700
程度(赤色光)の組み合わせがよい。また、緑色や青色
の検出物体は赤色光より赤外光の反射率が高いため、反
射板はそのような検出物体と反対の特性を持たせる必要
がある。従って、反射板で反射する光の波長は赤色光の
700nmとすればよい。また、ダイクロイックミラー
は光学多層膜が形成されており、長波長を透過、短波長
を反射する特性とその逆の特性の2つのものがある。膜
層数が同程度であれば、前者の方が透過波長領域での透
過率、反射領域での反射率は高く、透過と反射の境界の
立上りが鋭い特性が得ることができる。従って、性能、
コスト面から前者のダイクロイックミラーを用いるのが
望ましい。
Another example of the processing circuit is shown in FIGS. FIG. 5 is a ratio (V1 / V2) of the amount of received light of wavelengths λ1 and λ2, and FIG.
Is detected by the difference / sum (V1−V2 / V1 + V2), and the same result as that of the above processing circuit can be obtained by comparing each with an appropriate threshold value. The wavelength selection of the two light emitting elements is generally 900 nm (infrared light) and 700
A combination of degrees (red light) is good. Further, since the green or blue detection object has a higher reflectance of infrared light than the red light, it is necessary for the reflector to have characteristics opposite to those of the detection object. Therefore, the wavelength of light reflected by the reflector may be 700 nm of red light. The dichroic mirror is formed with an optical multilayer film and has two characteristics: a characteristic of transmitting a long wavelength and a characteristic of reflecting a short wavelength, and a characteristic opposite thereto. If the number of film layers is about the same, the former has higher transmittance in the transmission wavelength region and higher reflectance in the reflection region, so that the characteristics of sharp rise of the boundary between transmission and reflection can be obtained. Therefore, performance,
It is desirable to use the former dichroic mirror in terms of cost.

【0014】(実施例2)本発明の実施例2を図7に示
す。実施例2は実施例1の投光部1の構成を変えたもの
で、発光素子1a、1bから出射された光の発散光路中
にダイクロイックミラー6を配置し、2つの光を合成し
た後、投光レンズ5を介して、反射板3に投光する構成
である。ダイクロイックミラー6の波長λ1、λ2にお
ける透過率及び反射率は、投光レンズ5に入射する光の
入射角範囲においてほぼ一定である。本構成によれば、
実施例1に比べ、1個の投光レンズを省くことができ、
投光部1の小型化、ローコスト化が図れる。
(Embodiment 2) Embodiment 2 of the present invention is shown in FIG. Example 2 is a modification of the configuration of the light projecting unit 1 of Example 1, in which a dichroic mirror 6 is arranged in the divergent light path of the light emitted from the light emitting elements 1a and 1b, and two lights are combined, The light is projected onto the reflecting plate 3 via the light projecting lens 5. The transmittance and the reflectance of the dichroic mirror 6 at the wavelengths λ1 and λ2 are substantially constant in the incident angle range of the light incident on the light projecting lens 5. According to this configuration,
Compared to the first embodiment, one light projecting lens can be omitted,
It is possible to reduce the size and cost of the light projecting unit 1.

【0015】(実施例3)本発明の実施例3を図8に示
す。実施例3は、実施例2において投光部1の2つの発
光素子1a,1bを同時に発光させ、受光部2を2つの
波長の光をダイクロイックミラー9で分離し、それぞれ
の波長の光を受光素子2a,2bで受光する構成とした
ものである。この実施例の処理回路は図9に示すごとく
である。
(Embodiment 3) Embodiment 3 of the present invention is shown in FIG. In the third embodiment, the two light emitting elements 1a and 1b of the light projecting unit 1 in the second embodiment are made to emit light at the same time, the light receiving unit 2 separates the light of two wavelengths by the dichroic mirror 9, and receives the light of each wavelength. The light is received by the elements 2a and 2b. The processing circuit of this embodiment is as shown in FIG.

【0016】(実施例4)本発明の実施例4を図10〜
図12に示す。実施例4は、実施例2において投光部1
の2つの発光素子1a,1bを同時に発光させ、受光部
2における受光素子2aに代えて、カラーセンサ20を
用いて受光するものである。処理回路は図11に示すも
のを用い、カラーセンサ20としては、図12に示すよ
うな、2つの波長λ1、λ2のそれぞれに感度ピーク
(PD−a,PD−b)を有するものを用いればよい。
(Embodiment 4) A fourth embodiment of the present invention will be described with reference to FIGS.
It shows in FIG. The fourth embodiment is the same as the second embodiment except that the light projecting unit 1 is used.
The two light emitting elements 1a and 1b are simultaneously made to emit light, and instead of the light receiving element 2a in the light receiving section 2, the color sensor 20 is used to receive light. The processing circuit shown in FIG. 11 is used, and the color sensor 20 having sensitivity peaks (PD-a, PD-b) at two wavelengths λ1 and λ2 as shown in FIG. 12 is used. Good.

【0017】(実施例5)本発明の実施例5を図13に
示す。実施例5は、投光部1のダイクロイックミラー6
の構造に特徴を有する。このダイクロイックミラー6
は、反射板(図示なし)で反射される波長λ1の発光素
子1aの光の入射面に波長を合成する特性をもつ光学多
層膜を基板上に形成し、また、反射板(図示なし)で吸
収される波長λ2の発光素子1bの光の入射面(上記基
板の光学多層膜が設けられている面の背面)に反射防止
膜6a(無反射コーティング)を形成したものである。
発散光路中に平行平板の光学素子(ここでは、ダイクロ
イックミラー6)を配置した場合、それを透過した光は
コマ収差、非点収差を持つため、投光されたビームの強
度分布が歪む。従って、波長λ1の光を入射面で反射す
る構成にすれば、反射板(図示なし)で反射されて受光
する波長λ1の投光ビームには歪みがなくなるので、安
定した受光量が得られる。また、波長λ2の入射面に反
射防止膜6aを形成したことでフレネル反射を防ぎ、投
光パワーのロスが小さくなる。
(Fifth Embodiment) FIG. 13 shows a fifth embodiment of the present invention. The fifth embodiment is a dichroic mirror 6 of the light projecting unit 1.
It is characterized by the structure of. This dichroic mirror 6
Is an optical multi-layer film having a property of synthesizing wavelengths formed on the incident surface of the light of the light emitting element 1a having the wavelength λ1 reflected by the reflection plate (not shown). An antireflection film 6a (non-reflection coating) is formed on the incident surface of light of the light emitting element 1b of the wavelength λ2 to be absorbed (the rear surface of the surface of the substrate on which the optical multilayer film is provided).
When a parallel plate optical element (here, the dichroic mirror 6) is arranged in the divergent light path, the light transmitted through it has coma and astigmatism, and thus the intensity distribution of the projected beam is distorted. Therefore, when the light having the wavelength λ1 is reflected on the incident surface, the projected beam having the wavelength λ1 reflected and received by the reflection plate (not shown) is not distorted, so that a stable received light amount can be obtained. Further, since the antireflection film 6a is formed on the incident surface of the wavelength λ2, Fresnel reflection is prevented and the loss of projection power is reduced.

【0018】(実施例6)本発明の実施例6を図14に
示す。本実施例は、図14(a)に示すように、反射板
3における反射率の高い方の波長λ1の投光ビームが他
方の波長λ2の投光ビームの中に含まれるように、セン
サ本体10の投光部の投光ビームの拡がり角を設計した
ものである。2つの波長の投光ビームの光軸、拡がり角
は作製上、発光素子の外形とチップの位置ずれ、投光レ
ンズと2つの発光素子の相対的な位置ずれ、ダイクロイ
ックミラーの角度ずれなどによりバラツキが生じ、図1
4(b)に示すように、2つの投光ビームが重ならない
部分が生じる。反射板が波長λ1だけの範囲に設置され
たとき、センサ本体10と反射板3の間で鏡面の検出物
体8´が遮った場合、この検出物体8´で反射される光
は反射板3の場合と変わらず、波長λ1だけであり、検
出物体8´を検出できないことになる。そこで、上記の
作製上の位置ずれなどがあった場合のバラツキを考慮し
て、図14(a)のように必ず波長λ1の投光ビームが
波長λ2の投光ビームの中に含まれるように2つの投光
ビームの拡がり角を設計する。
(Embodiment 6) Embodiment 6 of the present invention is shown in FIG. In the present embodiment, as shown in FIG. 14A, the sensor main body is so arranged that the projection beam of wavelength λ1 having the higher reflectance on the reflection plate 3 is included in the projection beams of the other wavelength λ2. The divergence angle of the projection beam of the 10 projection parts is designed. The optical axes and divergence angles of the projected light beams of two wavelengths vary due to the deviation of the outer shape of the light emitting element and the chip, the relative positional deviation of the light projecting lens and the two light emitting elements, and the angular deviation of the dichroic mirror. Occurs, and Fig. 1
As shown in FIG. 4 (b), a part where the two projected beams do not overlap occurs. When the reflecting plate is installed only in the range of wavelength λ1, and the mirror-like detection object 8 ′ is blocked between the sensor body 10 and the reflection plate 3, the light reflected by this detection object 8 ′ is reflected by the reflection plate 3. As in the case, only the wavelength λ1 is present, and the detection object 8 ′ cannot be detected. Therefore, in consideration of the variation in the case where there is a positional deviation in the above manufacturing, the projection beam of the wavelength λ1 is always included in the projection beam of the wavelength λ2 as shown in FIG. Design the divergence angle of the two projection beams.

【0019】つまり、波長λ1の投光ビームの拡がり角
をθ1、反射板3で吸収される波長の投光ビームの拡が
り角をθ2、波長λ1と波長λ2の光軸の角度ずれをθ
dとしたとき、 (θ2/2)>(θ1/2)+θd となる条件になるように設計する。従って、波長λ1の
投光ビームだけが存在する領域がなくなるので前記の検
出物体が検出できないということはなくなる。図15に
投光部において波長λ1、λ2の投光ビームの拡がり角
を異ならせる構成を示す。波長λ2の発光素子1bと投
光レンズ5間の光路長を、波長λ1の発光素子1aと投
光レンズ5間の光路長より短くすることにより、波長λ
2の投光ビームの拡がり角を波長λ1の投光ビームの拡
がり角より大きくできる。
That is, the divergence angle of the projection beam of the wavelength λ1 is θ1, the divergence angle of the projection beam of the wavelength absorbed by the reflector 3 is θ2, and the angular deviation between the optical axes of the wavelengths λ1 and λ2 is θ.
When d is set, the condition is such that (θ2 / 2)> (θ1 / 2) + θd. Therefore, there is no region in which only the projection beam of the wavelength λ1 exists, so that the detection object cannot be detected. FIG. 15 shows a configuration in which the divergence angles of the projection beams of wavelengths λ1 and λ2 are made different in the light projecting section. By making the optical path length between the light emitting element 1b having the wavelength λ2 and the light projecting lens 5 shorter than the optical path length between the light emitting element 1a having the wavelength λ1 and the light projecting lens 5, the wavelength λ
The divergence angle of the second projected beam can be made larger than the divergence angle of the projected beam of wavelength λ1.

【0020】(実施例7)本発明の実施例7を図16に
示す。LEDなどの発光素子は一般的に波長が異なると
発光効率の温度変化率も異なる。従って、周囲温度が変
わったときに2つの波長の投光パワーの比が変り、受光
部での2つの波長の受光量の差が変ってしまい、誤動作
する可能性がある。そこで、図16に示す実施例7で
は、実施例2の投光部において図17のような波長λ1
の透過率が5%、波長λ2の透過率が95%である特性
を有するダイクロイックミラー6を用い、発光素子1a
からの透過光、及び発光素子1bからの反射光をモニタ
用の受光素子21により受光し、それぞれの受光量によ
りそれぞれの発光素子にフィードバックをかけるように
した。図18はその処理回路を示す。こうすることによ
り、発光パワーを安定させることができ、前記の誤動作
を防止することができる。
(Embodiment 7) Embodiment 7 of the present invention is shown in FIG. Light emitting elements such as LEDs generally have different rates of change in luminous efficiency with temperature when the wavelengths are different. Therefore, when the ambient temperature changes, the ratio of the projection power of the two wavelengths changes, and the difference in the amount of received light of the two wavelengths in the light receiving unit changes, which may cause a malfunction. Therefore, in the seventh embodiment shown in FIG. 16, the wavelength λ1 as shown in FIG.
Of the light emitting element 1a using the dichroic mirror 6 having the characteristics that the transmittance of 5% and the transmittance of wavelength λ2 are 95%.
The transmitted light from and the reflected light from the light emitting element 1b are received by the light receiving element 21 for monitoring, and feedback is applied to each light emitting element according to the amount of each received light. FIG. 18 shows the processing circuit. By doing so, the light emission power can be stabilized and the above-mentioned malfunction can be prevented.

【0021】図19に実施例7のもう一つの構成例を示
す。この例では、ダイクロイックミラー6として、図2
0に示すように、投光レンズ5に入射しない入射角θ1
以下において波長λ1の透過率曲線が上がっており、波
長λ2の透過率曲線が下がっている特性を持つものを用
い、発光素子1a、1bからの光のうち投光レンズ5に
入射しない範囲でそれぞれ透過、及び反射した光をモニ
タ用受光素子21で受光するようにしている。この構成
によれば、図16の構成に比べ、投光パワーの損失が無
くなる。
FIG. 19 shows another configuration example of the seventh embodiment. In this example, the dichroic mirror 6 shown in FIG.
As shown in 0, the incident angle θ1 that does not enter the projection lens 5
In the following, one having characteristics that the transmittance curve for wavelength λ1 is increased and the transmittance curve for wavelength λ2 is decreased, and the light from the light-emitting elements 1a and 1b is used in a range that does not enter the projection lens 5, respectively. The monitor light-receiving element 21 receives the transmitted and reflected light. According to this configuration, the loss of projection power is eliminated as compared with the configuration of FIG.

【0022】(実施例8)図21は実施例8による反射
板3の各種構成を示す。本実施例の反射板は樹脂、又は
ガラスで成形されたコーナーキューブの集合体を基本と
する。(a)はコーナーキューブ3a自体を波長λ2を
吸収する特性を有する樹脂などで成形したものである。
(b)はコーナーキューブ3aの入射面に波長λ2を吸
収するフィルター3bを貼り合わせたものである。
(c)はコーナーキューブ3aの反射面にダイクロイッ
クミラーと同様の特性を有する光学多層膜3cを形成し
たもので、光学多層膜3cを透過した光が再度コーナー
キューブに戻らないように、吸収体3dを設けたもので
ある。(d)は(c)と同様に反射面に光学多層膜3c
を形成し、この光学多層膜3cを透過した光が再度コー
ナーキューブ3aに戻らないように受光部と異なる方向
に反射させる面を有する部材3eを設けたものである。
(Embodiment 8) FIG. 21 shows various configurations of the reflector 3 according to Embodiment 8. The reflector of this embodiment is based on an aggregate of corner cubes made of resin or glass. (A) is obtained by molding the corner cube 3a itself with a resin having a characteristic of absorbing the wavelength λ2.
In (b), a filter 3b that absorbs the wavelength λ2 is attached to the entrance surface of the corner cube 3a.
(C) shows an optical multilayer film 3c having the same characteristics as the dichroic mirror formed on the reflecting surface of the corner cube 3a. The absorber 3d prevents the light transmitted through the optical multilayer film 3c from returning to the corner cube again. Is provided. (D) is the optical multilayer film 3c on the reflecting surface as in (c).
And a member 3e having a surface for reflecting the light transmitted through the optical multilayer film 3c in a direction different from the light receiving portion so as not to return to the corner cube 3a again.

【0023】(実施例9)本発明の実施例を図22〜図
26に示す。光電センサにおいて、外乱光対策として受
光部に発光素子2aの波長帯域のみを透過するバンドパ
スフィルターBPFを備えたものがある。従来のバンド
パスフィルターは、図23(b)に示すように、或る1
つの波長帯域のみを透過するものであって、本センサの
ように異なる2つの波長を用いるものには使用できな
い。2つの発光素子の波長帯域を含む帯域をすべて透過
するBPFを使用することも可能であるが、その場合、
2つ波長帯域の間の帯域成分のノイズをカットできず、
S/Nが十分とれないことがある。
(Embodiment 9) An embodiment of the present invention is shown in FIGS. Some photoelectric sensors include a bandpass filter BPF that transmits only the wavelength band of the light emitting element 2a in the light receiving unit as a measure against ambient light. As shown in FIG. 23B, the conventional bandpass filter has a certain 1
It transmits only one wavelength band, and cannot be used for a sensor using two different wavelengths like this sensor. It is also possible to use a BPF that transmits all the bands including the wavelength bands of the two light emitting elements, but in that case,
It is not possible to cut the noise of the band component between the two wavelength bands,
S / N may not be sufficient.

【0024】そこで、図23(a)に示すような2つの
波長透過帯域を有する光学フィルターを用いることで上
記問題点を解決できる。図24は入射角依存性の小さい
前記特性を持つ光学フィルターBPFを受光レンズ7と
受光素子2aの間に配置したものである。また、図25
に前記フィルターBPFを受光素子と一体化した例を示
す。同図の(a)はキャンタイプの例で、受光素子2a
の窓を前記光学フィルターBPFにしたものであり、
(b)は樹脂モールドタイプの例で、受光素子の前に光
学フィルターBPFを貼り付けたものである。このよう
に一体化することで部品点数、製作工程を削減すること
ができ、コストダウンが図れる。
Therefore, the above problem can be solved by using an optical filter having two wavelength transmission bands as shown in FIG. 23 (a). In FIG. 24, an optical filter BPF having the above-mentioned characteristic of having small incident angle dependency is arranged between the light receiving lens 7 and the light receiving element 2a. In addition, FIG.
An example in which the filter BPF is integrated with a light receiving element is shown in FIG. (A) of the figure is an example of a can type, and the light receiving element 2a
The optical filter BPF is used for the window of
(B) is an example of a resin mold type in which an optical filter BPF is attached in front of the light receiving element. Such integration can reduce the number of parts and the manufacturing process, and can reduce the cost.

【0025】上記光学フィルターBPFの構成例を図2
6(a)に示す。光学フィルターBPFは、透明基板3
0の両面に光学多層膜31,32を形成したもので、一
方の面の光学多層膜31は、図26(b)のように、発
光素子1aの波長帯域と発光素子1bの波長帯域とを含
む1つの透過帯域(特性1)を持ち、もう一方の面の光
学多層膜32は、2つの発光素子の帯域の間の帯域以外
の波長の光を透過させる透過帯域(特性2)を持つよう
に形成したものである。
FIG. 2 shows an example of the structure of the above optical filter BPF.
6 (a). The optical filter BPF is a transparent substrate 3
The optical multi-layered films 31 and 32 are formed on both surfaces of 0, and the optical multi-layered film 31 on one side has the wavelength band of the light emitting element 1a and the wavelength band of the light emitting element 1b as shown in FIG. The optical multi-layer film 32 on the other surface has one transmission band (characteristic 1) included therein and has a transmission band (characteristic 2) that transmits light having a wavelength other than the band between the bands of the two light emitting elements. It was formed in.

【0026】本発明は、上記実施例構成に限られず種々
の変形が可能であり、要するに少なくとも2つの異なる
波長λ1,λ2の光を、波長によって反射率の異なる反
射板に投光し、その光路中に検出対象物体がある場合と
ない場合とで各波長の反射受光量が変化することを利用
して、検出対象物体が有るか否かを判定するものであ
り、その判定の一つの方法として、波長λ1の受光量を
P1、波長λ2(反射板で吸収される方)の受光量をP
2としたとき、P1>P2の場合は対象物体なし、P1
≦P2の場合は対象物体あり、というような判定方法が
挙げられるが、これに限られるものではない。
The present invention is not limited to the configuration of the above-described embodiment, but can be modified in various ways. In short, at least two light beams having different wavelengths λ1 and λ2 are projected onto a reflecting plate having a different reflectance depending on the wavelength, and the optical path thereof is changed. By utilizing the fact that the amount of reflected light received at each wavelength changes depending on whether or not there is a detection target object, it is to determine whether or not there is a detection target object. , P1 is the amount of light received at wavelength λ1 and P is the amount of light received at wavelength λ2 (which is absorbed by the reflector).
2, when P1> P2, there is no target object, P1
A determination method such that the target object is present when ≦ P2 is given, but the determination method is not limited to this.

【0027】[0027]

【発明の効果】以上のように本発明の反射型光センサに
よれば、波長の異なる2つの光を反射板に投光し、各々
の波長の光に対する反射率が異なる反射板からの反射光
を受光し、検出物体が光路を遮った時の各波長の光の反
射光量の変化に基づいて反射板と検出物体とを判別する
ようにしているので、 検出物体が金属のような鏡面特性を有する場合でも、
2つの波長の反射光量がほぼ等しくなることから、検出
物体があることを検知できる。 白紙のような高反射率の検出物体が近距離にあった場
合も同様に検出物体があることを検知できる。 上記のことから、反射板の設置距離を長くして、受光
量が小さくなっても反射板と検出物体の判別ができるた
め、あらゆる検出物体に対して誤動作がなく、しかも、
長距離検出が可能な反射型光センサを実現できる。
As described above, according to the reflection type optical sensor of the present invention, two light beams having different wavelengths are projected onto the reflection plate, and the reflection light beams from the reflection plate having different reflectances for the respective wavelengths of light. It is designed to distinguish between the reflector and the detection object based on the change in the amount of reflected light of each wavelength when the detection object intercepts the optical path. Even if you have
Since the reflected light amounts of the two wavelengths are almost equal to each other, it is possible to detect the presence of the detection object. Even when a high reflectance detection object such as a white paper is in a short distance, the presence of the detection object can be similarly detected. From the above, it is possible to distinguish the reflector and the detection object even if the amount of received light is reduced by increasing the installation distance of the reflection plate, so there is no malfunction for any detection object, and moreover,
A reflection type optical sensor capable of long-distance detection can be realized.

【0028】上記の効果の他に、特に、光合成するため
のダイクロックミラーを発散光路中に配置した場合は、
投光部の小型化、ローコスト化が図れる。また、ダイク
ロックミラーにおいて、反射板で反射させる波長の光が
入射する側の面に反射膜を、透過させる波長の光が入射
する側の面に反射防止膜を形成することで、ダイクロッ
クミラーを発散光路中に配置した場合であっても、投光
ビームに歪みがなくなると共に投光パワーロスがなくな
る。また、投光部から出射光のうち、反射板における反
射率の高い方の波長の光の拡がり角をもう一方の波長の
光の拡がり角よりも小さくしておくことで、前者だけの
投光域がなくなるので、物体の検出ができないといった
ことがなくなる。また、投光用の発光出力をモニター受
光し、発光パワーを安定させることで、誤動作を防止で
きる。また、発光素子が出射する波長帯域の光を通過さ
せるフィルターを備えることで、S/Nを十分に取るこ
とができる、といった効果がある。
In addition to the above effects, particularly when a dichroic mirror for photosynthesis is arranged in the divergent optical path,
It is possible to reduce the size and cost of the light projecting unit. Further, in the dichroic mirror, a reflecting film is formed on the surface on the side where the light of the wavelength to be reflected by the reflecting plate is incident, and an antireflection film is formed on the surface on the side where the light of the wavelength to be transmitted is incident. Even in the case of arranging in the divergent light path, the projection beam is not distorted and the projection power loss is eliminated. Also, of the light emitted from the light projecting part, the divergence angle of the light of the wavelength having the higher reflectance on the reflecting plate is set to be smaller than the divergence angle of the light of the other wavelength, so that the former only Since there is no area, there is no possibility that an object cannot be detected. Moreover, malfunctions can be prevented by receiving the light emission output for light emission from the monitor and stabilizing the light emission power. Further, by providing a filter that allows light in the wavelength band emitted from the light emitting element to pass, there is an effect that a sufficient S / N can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による反射型光センサの構成
図である。
FIG. 1 is a configuration diagram of a reflective photosensor according to a first embodiment of the present invention.

【図2】(a)(b)は実施例1に用いたダイクロイッ
クミラー及び反射板の透過率及び反射率の特性図であ
る。
2A and 2B are characteristic diagrams of transmittance and reflectance of the dichroic mirror and the reflector used in Example 1. FIG.

【図3】実施例1による反射型光センサの処理回路の回
路図である。
FIG. 3 is a circuit diagram of a processing circuit of the reflective photosensor according to the first embodiment.

【図4】上記反射型光センサで検出物体が鏡面特性を有
する場合の図である。
FIG. 4 is a diagram of a case where a detection object has a mirror surface characteristic in the reflective optical sensor.

【図5】処理回路の他の例を示す回路図である。FIG. 5 is a circuit diagram showing another example of a processing circuit.

【図6】処理回路のさらに他の例を示す回路図である。FIG. 6 is a circuit diagram showing still another example of the processing circuit.

【図7】実施例2による反射型光センサの構成図であ
る。
FIG. 7 is a configuration diagram of a reflective photosensor according to a second embodiment.

【図8】実施例3による反射型光センサの構成図であ
る。
FIG. 8 is a configuration diagram of a reflective photosensor according to a third embodiment.

【図9】実施例3における処理回路の回路図である。FIG. 9 is a circuit diagram of a processing circuit according to a third embodiment.

【図10】実施例4による反射型光センサの構成図であ
る。
FIG. 10 is a configuration diagram of a reflective photosensor according to a fourth embodiment.

【図11】実施例4における処理回路の回路図である。FIG. 11 is a circuit diagram of a processing circuit according to a fourth embodiment.

【図12】(a)(b)(c)は実施例4に用いたカラ
ーセンサの断面図、回路図、特性図である。
12A, 12B, and 12C are a cross-sectional view, a circuit diagram, and a characteristic diagram of a color sensor used in Example 4.

【図13】実施例5による反射型光センサの投光部の構
成図である。
FIG. 13 is a configuration diagram of a light projecting unit of a reflective photosensor according to a fifth embodiment.

【図14】(a)は実施例6の反射型光センサの構成を
示し、誤動作のない場合の図、(b)は誤動作が生じる
場合の図である。
14A is a diagram showing a configuration of a reflective photosensor of Example 6, showing a case where no malfunction occurs, and FIG. 14B is a diagram showing a case where malfunction occurs.

【図15】実施例6による反射型光センサの構成図であ
る。
FIG. 15 is a configuration diagram of a reflective photosensor according to a sixth embodiment.

【図16】実施例7による反射型光センサの投光部の構
成図である。
FIG. 16 is a configuration diagram of a light projecting unit of a reflective photosensor according to a seventh embodiment.

【図17】実施例7のダイクロイックミラーの透過率の
特性図である。
FIG. 17 is a characteristic diagram of the transmittance of the dichroic mirror of Example 7.

【図18】実施例7における処理回路の回路図である。FIG. 18 is a circuit diagram of a processing circuit according to a seventh embodiment.

【図19】実施例7の反射型光センサの投光部の他の例
を示す構成図である。
FIG. 19 is a configuration diagram showing another example of the light projecting unit of the reflective photosensor of the seventh embodiment.

【図20】図19の例で用いたダイクロイックミラーの
透過率の特性図である。
20 is a characteristic diagram of the transmittance of the dichroic mirror used in the example of FIG.

【図21】実施例8による反射板の各種例を示す図であ
る。
FIG. 21 is a diagram showing various examples of a reflector according to Example 8.

【図22】実施例9による反射型光センサの受光部の構
成図である。
FIG. 22 is a configuration diagram of a light receiving portion of a reflective photosensor according to a ninth embodiment.

【図23】(a)は実施例9に用いた光学フィルターの
特性図、(b)は従来の光学フィルターの特性図であ
る。
23A is a characteristic diagram of the optical filter used in Example 9, and FIG. 23B is a characteristic diagram of a conventional optical filter.

【図24】実施例9による反射型光センサの受光部の他
の例を示す構成図である。
FIG. 24 is a configuration diagram showing another example of the light receiving unit of the reflective photosensor according to the ninth embodiment.

【図25】(a)(b)は光学フィルターの構成図及び
特性図である。
25A and 25B are a configuration diagram and a characteristic diagram of an optical filter.

【図26】(a)(b)は受光素子と光学フィルターの
一体化例を示す斜視図である。
26A and 26B are perspective views showing an example of integration of a light receiving element and an optical filter.

【図27】従来の反射型光センサの構成図である。FIG. 27 is a configuration diagram of a conventional reflective photosensor.

【符号の説明】[Explanation of symbols]

1 投光部 1a,1b 発光素子 2 受光部 2a,2b 受光素子 3 反射板 3a コーナーキューブ 6 ダイクロイックミラー 8 検出物体 20 カラーセンサ 21 モニター用受光素子 BPF 光学フィルター 1 Light emitting part 1a, 1b Light emitting element 2 Light receiving part 2a, 2b Light receiving element 3 Reflector 3a Corner cube 6 Dichroic mirror 8 Detecting object 20 Color sensor 21 Light receiving element for monitor BPF Optical filter

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 投光部と、この投光部からの投光を反射
させる反射板と、この反射板又は物体からの反射光を受
光する受光部とを備え、前記投光と反射光との光路中で
該物体が前記反射光を遮光することにより、前記受光部
で受光される反射光量が変化することを検出して該物体
を検出する反射型光センサにおいて、前記投光部は、或
る波長の光を出射する第1の発光素子と、前記第1の発
光素子とは異なる波長の光を出射する第2の発光素子
と、前記第1及び第2の発光素子からの出射光を合成す
る光合成手段とを備え、 前記反射板は、前記第1の発光素子からの出射光に対す
る反射率と前記第2の発光素子からの出射光に対する反
射率とが異なる特性を有したことを特徴とする反射型光
センサ。
1. A light projecting unit, a reflecting plate for reflecting light projected from the light projecting unit, and a light receiving unit for receiving reflected light from the reflecting plate or an object, and the light projecting unit and the reflected light. In the reflective optical sensor for detecting the object by detecting that the amount of reflected light received by the light receiving unit changes by blocking the reflected light by the object in the optical path of, A first light emitting element that emits light of a certain wavelength, a second light emitting element that emits light of a wavelength different from that of the first light emitting element, and light emitted from the first and second light emitting elements A light synthesizing means for synthesizing light, wherein the reflection plate has a characteristic in which the reflectance with respect to the light emitted from the first light emitting element and the reflectance with respect to the light emitted from the second light emitting element have different characteristics. Characteristic reflection type optical sensor.
【請求項2】 前記光合成手段は、第1及び第2の発光
素子からの出射光を、その内の一方の光を透過させ他方
の光を反射させることにより合成する平板状の光学部材
であることを特徴とする請求項1記載の反射型光セン
サ。
2. The light combining means is a flat plate-shaped optical member that combines the light emitted from the first and second light emitting elements by transmitting one of the lights and reflecting the other light. The reflective optical sensor according to claim 1, wherein
【請求項3】 前記光合成手段は、2波長分離フィルタ
ーとしてのダイクロックミラーであることを特徴とする
請求項2記載の反射型光センサ。
3. The reflection type optical sensor according to claim 2, wherein the photosynthesis means is a dichroic mirror as a two-wavelength separation filter.
【請求項4】 前記ダイクロックミラーは、発散光路中
に配置されていることを特徴とする請求項3記載の反射
型光センサ。
4. The reflective photosensor according to claim 3, wherein the dichroic mirror is arranged in a divergent optical path.
【請求項5】 前記投光部は、2つの発光素子を交互に
発光させ、前記受光部は1つの受光素子で前記反射板又
は物体からの反射光を受光することを特徴とする請求項
1乃至3記載の反射型光センサ。
5. The light projecting section causes two light emitting elements to alternately emit light, and the light receiving section receives the reflected light from the reflector or the object with one light receiving element. The reflective optical sensor according to any one of 3 to 3.
【請求項6】 前記受光部は、波長の異なる2つの光に
分離する光分離手段と、この光分離手段により分離され
た2つの光をそれぞれ受光する少なくとも2つの受光素
子とを備えたことを特徴とする請求項1乃至3記載の反
射型光センサ。
6. The light receiving unit includes a light separating unit that separates the light into two lights having different wavelengths, and at least two light receiving elements that respectively receive the two lights separated by the light separating unit. The reflective optical sensor according to claim 1, wherein the reflective optical sensor is a reflective optical sensor.
【請求項7】 前記受光部は、波長の異なる2つの感度
を有するカラーセンサを備えたことを特徴とする請求項
1乃至3記載の反射型光センサ。
7. The reflection type photosensor according to claim 1, wherein the light receiving unit includes a color sensor having two sensitivities having different wavelengths.
【請求項8】 前記光合成手段を構成する平板状の光学
部材は、前記反射板における反射率の高い方の波長の光
が入射する側の面に反射膜が形成され、他方側の面に反
射防止膜が形成されていることを特徴とする請求項2記
載の反射型光センサ。
8. The flat plate-shaped optical member constituting the light combining means has a reflection film formed on the surface on the side on which light of the wavelength with the higher reflectance of the reflection plate is incident, and is reflected on the surface on the other side. The reflective optical sensor according to claim 2, wherein an anti-reflection film is formed.
【請求項9】 前記投光部における、前記反射板での反
射率の高い方の波長の出射光の拡がり角を、もう一方の
波長の出射光の拡がり角よりも小さく設定したことを特
徴とする請求項1乃至3記載の反射型光センサ。
9. The divergence angle of the emitted light of the wavelength having a higher reflectance at the reflection plate in the light projecting portion is set to be smaller than the divergence angle of the emitted light of the other wavelength. The reflection type optical sensor according to claim 1.
【請求項10】 前記第1及び第2の発光素子の発光出
力をモニターする受光素子を備えたことを特徴とする請
求項1乃至3記載の反射型光センサ。
10. The reflection type photosensor according to claim 1, further comprising a light receiving element for monitoring the light emission output of the first and second light emitting elements.
【請求項11】 前記反射板はコーナーキューブ又はコ
ーナーキューブの集合体で構成されていることを特徴と
する請求項1乃至3記載の反射型光センサ。
11. The reflection-type photosensor according to claim 1, wherein the reflection plate is composed of a corner cube or an assembly of corner cubes.
【請求項12】 前記第1及び第2の発光素子はそれぞ
れ赤色光と赤外光の2つの波長の光を投光し、前記反射
板は赤外光を吸収するようにしたことを特徴とする請求
項1乃至3記載の反射型光センサ。
12. The first and second light emitting elements respectively project light of two wavelengths, red light and infrared light, and the reflection plate absorbs infrared light. The reflection type optical sensor according to claim 1.
【請求項13】 前記受光部は、前記第1及び第2の発
光素子が出射する波長帯域の光を透過し、その他の波長
帯域の光を反射もしくは吸収するフィルターを備えたこ
とを特徴とする請求項1乃至3記載の反射型光センサ。
13. The light receiving unit includes a filter that transmits light in a wavelength band emitted by the first and second light emitting elements and reflects or absorbs light in other wavelength bands. The reflective optical sensor according to claim 1.
JP10212794A 1994-04-14 1994-04-14 Reflection type optical sensor Withdrawn JPH07280951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10212794A JPH07280951A (en) 1994-04-14 1994-04-14 Reflection type optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10212794A JPH07280951A (en) 1994-04-14 1994-04-14 Reflection type optical sensor

Publications (1)

Publication Number Publication Date
JPH07280951A true JPH07280951A (en) 1995-10-27

Family

ID=14319125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10212794A Withdrawn JPH07280951A (en) 1994-04-14 1994-04-14 Reflection type optical sensor

Country Status (1)

Country Link
JP (1) JPH07280951A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265674A (en) * 2004-03-19 2005-09-29 Nikuni:Kk Fluid discrimination method and apparatus therefor
KR101491566B1 (en) * 2012-12-21 2015-02-12 대광소결금속 주식회사 Oilless bearing a manufacturing process system
JP2015102355A (en) * 2013-11-21 2015-06-04 アズビル株式会社 Particle detection device and particle detection method
JP2015102354A (en) * 2013-11-21 2015-06-04 アズビル株式会社 Particle detection device and particle detection method
WO2016035975A1 (en) * 2014-09-03 2016-03-10 레이트론(주) Filter pollution measurement device and filter pollution measurement method
WO2018139412A1 (en) * 2017-01-26 2018-08-02 日本電気株式会社 Detecting system and detecting method
WO2020195102A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Receiver, detection system, and detection method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265674A (en) * 2004-03-19 2005-09-29 Nikuni:Kk Fluid discrimination method and apparatus therefor
JP4485228B2 (en) * 2004-03-19 2010-06-16 株式会社ニクニ Fluid discrimination method and apparatus
KR101491566B1 (en) * 2012-12-21 2015-02-12 대광소결금속 주식회사 Oilless bearing a manufacturing process system
JP2015102355A (en) * 2013-11-21 2015-06-04 アズビル株式会社 Particle detection device and particle detection method
JP2015102354A (en) * 2013-11-21 2015-06-04 アズビル株式会社 Particle detection device and particle detection method
US9709507B2 (en) 2014-09-03 2017-07-18 Raytron Co., Ltd Apparatus and method for measuring contamination of filter
WO2016035975A1 (en) * 2014-09-03 2016-03-10 레이트론(주) Filter pollution measurement device and filter pollution measurement method
WO2018139412A1 (en) * 2017-01-26 2018-08-02 日本電気株式会社 Detecting system and detecting method
JPWO2018139412A1 (en) * 2017-01-26 2019-11-21 日本電気株式会社 Detection system and detection method
US10895529B2 (en) 2017-01-26 2021-01-19 Nec Corporation Detecting system and detecting method
WO2020195102A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Receiver, detection system, and detection method
JPWO2020195102A1 (en) * 2019-03-26 2020-10-01
US11885742B2 (en) 2019-03-26 2024-01-30 Nec Corporation Receiver, detection system, and detection method

Similar Documents

Publication Publication Date Title
KR101088360B1 (en) Optical wave guide having multiple independent optical path and ndir gas sensor using that
CN103487840B (en) Photoelectric sensor
US9746589B2 (en) Range finder and prism assembly thereof
JP2005504429A5 (en)
US11920979B2 (en) Optical measurement device including internal spectral reference
JP5870270B2 (en) Detector
JPH07280951A (en) Reflection type optical sensor
EP0959325A2 (en) Photoelectric switch, fiber-type photoelectric switch, and color discrimination sensor
US7869048B2 (en) Photoelectonic sensor
JP2009267126A (en) Photoelectric sensor
JP4114771B2 (en) Reflector and reflector reflective photoelectric switch
JP2780300B2 (en) Photodetector
US20030133480A1 (en) Semiconductor laser module
JP2002246636A (en) Coaxial recursive reflection type photoelectric switch
WO2020038420A1 (en) Optical receiver and optical module
JP2001216877A (en) Reflector reflection-type photoelectric sensor
JPH09288939A (en) Reflected light detecting device
KR102265045B1 (en) Optical gas sensor
CN211601732U (en) Double-light three-color optical system and sighting device thereof
TWI601990B (en) Spectroscopic device
JPH07208918A (en) Light receiver, and optical device provided with the receiver
TWI661239B (en) Fiber optic module
JP2001218106A (en) Imaging device
JPH08255533A (en) Photoelectric sensor, regression reflection type photoelectric sensor, regression reflection object detection method, color difference detection method, and light projection device
TWM521729U (en) Light splitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703