JPH07280750A - Wavelength dispersion type x-ray spectroscope - Google Patents

Wavelength dispersion type x-ray spectroscope

Info

Publication number
JPH07280750A
JPH07280750A JP6074586A JP7458694A JPH07280750A JP H07280750 A JPH07280750 A JP H07280750A JP 6074586 A JP6074586 A JP 6074586A JP 7458694 A JP7458694 A JP 7458694A JP H07280750 A JPH07280750 A JP H07280750A
Authority
JP
Japan
Prior art keywords
ray
sample
laser light
light source
spectroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6074586A
Other languages
Japanese (ja)
Other versions
JP2728627B2 (en
Inventor
Kojin Furukawa
行人 古川
Kenichi Inoue
憲一 井上
Kazuji Yokoyama
和司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6074586A priority Critical patent/JP2728627B2/en
Publication of JPH07280750A publication Critical patent/JPH07280750A/en
Application granted granted Critical
Publication of JP2728627B2 publication Critical patent/JP2728627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To adjust the position of a specimen to a focusing point of an x-ray optical system with a relatively simple structure regarding a wavelength dispersion type x-ray spectroscope. CONSTITUTION:Laser light beams are so radiated from a first laser light source 2 and a second laser light source 4 as to make the light beam passage cross at the focusing point of an x-ray optical system. The position adjustment of a specimen 11 to the focusing point of the x-ray optical system is completed by moving the specimen 11 supported by a goniometer 14 to the point where the laser light beams cross mutually. After that, ion beam 1a is radiated from a radiation source 1 and spectroscopic analysis of the x-ray generated from the specimen 11 is carried out by a spectroscopic crystal 3 and the resulting spectral components are detected by a proportional counter 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,X線や荷電粒子ビーム
等の放射線を試料に照射し,この試料より発生するX線
から試料中の元素や原子の結合状態を分析する波長分散
型X線分光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength dispersion type X for irradiating a sample with radiation such as an X-ray or a charged particle beam and analyzing the bonding state of elements and atoms in the sample from the X-ray generated from the sample. The present invention relates to a line spectrometer.

【0002】[0002]

【従来の技術】一般に波長分散型X線分光装置では,試
料より発生する微弱なX線をできる限り効率よく分光す
るために,例えば図4に示すような湾曲形状の分光結晶
51(分光器)を備えたX線光学系が用いられる(例え
ば福島啓義著「電子線マイクロアナリシス」日刊工業新
聞刊P.63)。分光されるX線の波長λは,分光器と
して結晶格子を用いた場合, 2d・sinθ = n・λ …(1) で与えられる。ここで,dは結晶格子の間隔,θは試料
53からのX線の分光結晶51への入射角である。nは
整数(n=1,2,…)であるが,分光されるX線の強
度が最も強いn=1で用いられる場合が多い。分光され
たX線は,X線検出器52の方向へ出射角θで該分光結
晶51から反射する。同図(a)に示すように,分光結
晶51,試料53上のX線の発光点53a 及びX線検出
器52を同一円周上に配置すると,試料53から発生し
たX線は,分光結晶51表面のどの場所にも等しい角度
で入射し,更にX線検出器52の位置に集光され,当該
装置としての効率及び分解能が最大になる。この円周を
一般にローランド円と呼ばれている。
2. Description of the Related Art Generally, in a wavelength dispersive X-ray spectroscope, in order to disperse weak X-rays generated from a sample as efficiently as possible, for example, a curved dispersive crystal 51 (spectrometer) as shown in FIG. An X-ray optical system provided with is used (for example, Hiroyoshi Fukushima “Electron Beam Microanalysis” published by Nikkan Kogyo Shimbun P.63). The wavelength λ of the X-ray to be dispersed is given by 2d · sin θ = n · λ (1) when a crystal lattice is used as the spectroscope. Here, d is the crystal lattice spacing, and θ is the angle of incidence of X-rays from the sample 53 on the dispersive crystal 51. Although n is an integer (n = 1, 2, ...), it is often used when n = 1, which is the strongest intensity of the X-ray to be dispersed. The separated X-rays are reflected from the dispersive crystal 51 at an emission angle θ toward the X-ray detector 52. As shown in FIG. 3A, when the dispersive crystal 51, the X-ray emission point 53 a on the sample 53 and the X-ray detector 52 are arranged on the same circumference, the X-ray generated from the sample 53 The light enters the crystal 51 at an equal angle to any place on the surface and is focused on the position of the X-ray detector 52 to maximize the efficiency and resolution of the device. This circumference is generally called the Roland circle.

【0003】ところで,試料53の位置が同図(b)に
示すようにローランド円周上からずれた場合には,試料
53から発生したX線が分光結晶51表面の場所により
異なる角度で入射し,上記式(1)より明らかに異なる
波長が分光される。従って波長分解能が低下する。また
同時に集光能力も低下する。このことは,波長分散型X
線分光装置のX線光学系の焦点深度が浅いことを意味し
ている。この焦点深度は,元素分析の場合で数10μ
m,状態分析の場合で数μmである。そこで,従来は,
例えば上述の「電子線マイクロアナリシス」(P.5
1)や特公昭57−55184号公報に開示されている
ように,試料表面を観察して焦点の位置合せを行い得る
ように光学顕微鏡を設置したものが提案されている。即
ち,図5に示す如く,予め光学顕微鏡の焦点位置とX線
光学系の焦点位置が一致するように調整されている。従
って,試料表面をこの光学顕微鏡で観察しながら該試料
を調整してその焦点位置に移動させることにより,上記
試料は分光結晶(不図示)の焦点深度領域内にセットさ
れたことになり,正しく分析される。以上の説明はもっ
ぱら結晶X線分光器の場合について述べたが,人工多層
膜,回折格子等の回折型X線分光器についても一般に成
り立つ。
By the way, when the position of the sample 53 is deviated from the circumference of the Rowland as shown in FIG. 2B, the X-rays generated from the sample 53 are incident at different angles depending on the location of the surface of the dispersive crystal 51. , Clearly different wavelengths are separated from the above formula (1). Therefore, the wavelength resolution is reduced. At the same time, the light collecting ability also decreases. This is the wavelength dispersion type X
This means that the X-ray optical system of the line spectroscope has a shallow depth of focus. This depth of focus is several tens of μ in the case of elemental analysis
m, several μm in the case of state analysis. So, conventionally,
For example, the above-mentioned “electron beam microanalysis” (P. 5)
As disclosed in 1) and Japanese Patent Publication No. 57-55184, there is proposed one in which an optical microscope is installed so that the focal point can be aligned by observing the sample surface. That is, as shown in FIG. 5, the focus position of the optical microscope and the focus position of the X-ray optical system are adjusted in advance. Therefore, while observing the sample surface with this optical microscope and adjusting the sample to move it to the focal position, the sample is set in the depth of focus region of the dispersive crystal (not shown), and Be analyzed. Although the above description has been made mainly for the case of the crystal X-ray spectroscope, it is also generally applicable to the diffraction type X-ray spectroscope such as the artificial multilayer film and the diffraction grating.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな光学顕微鏡を設置するには,比較的大きな領域(立
体角)を確保する必要があり,特にイオンビーム励起型
等のX線分光装置では,試料の多面的分析を行うため
に,波長分散型X線分光装置以外にも反跳イオン分析
器,2次電子検出器,エネルギー分散型X線検出器等を
設置しなければならず,前記のような光学顕微鏡を設置
する余地がないのが現状である。そこで,本発明は,上
記事情に鑑みて創案されたものであり,X線光学系の焦
点位置への試料の位置調整を比較的簡単な構成の下に行
い得るようにして,コンパクト化,あるいは省スペース
化により他の検出機器等の設置をも可能とする波長分散
型X線分光装置の提供を目的とするものである。
However, in order to install such an optical microscope, it is necessary to secure a relatively large area (solid angle). Especially, in an ion beam excitation type X-ray spectrometer, In addition to the wavelength dispersive X-ray spectrometer, a recoil ion analyzer, secondary electron detector, energy dispersive X-ray detector, etc. must be installed in order to perform multifaceted analysis of the sample. At present, there is no room to install such an optical microscope. Therefore, the present invention was devised in view of the above circumstances, and made it possible to adjust the position of the sample to the focal position of the X-ray optical system with a relatively simple structure, thereby making it compact or It is an object of the present invention to provide a wavelength dispersive X-ray spectroscopic device that enables installation of other detection equipment and the like due to space saving.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,X線光学系の焦点位置に位置調整機構により位
置調整された試料に向けて放射線源から放射線を照射
し,上記試料からのX線を回折型の分光器にて分光した
後,X線検出器にて検出する波長分散型X線分光装置に
おいて,上記焦点位置で光路が交わるように異なる方向
から光線を照射する第1及び第2の光線照射手段を具備
し,上記位置調整機構を駆動して上記光路が交わる位置
に上記試料が位置するようにした点に係る波長分散型X
線分光装置である。尚,上記構成における光線は,レー
ザ光等の可視光の他,近紫外線,近赤外線,更にはイオ
ンビームやX線等の放射線をも含む概念である。
In order to achieve the above-mentioned object, the main means adopted by the present invention is to provide a sample whose position is adjusted by a position adjusting mechanism at the focal position of the X-ray optical system. In the wavelength-dispersive X-ray spectroscope that irradiates radiation from a radiation source toward the X-ray detector, disperses the X-rays from the sample with a diffraction type spectroscope, and then detects them with an X-ray detector. And a second light beam irradiating means for irradiating light beams from different directions so that the sample is located at a position where the optical path intersects by driving the position adjusting mechanism. Distributed X
It is a line spectrometer. The light rays in the above-described configuration are a concept including visible light such as laser light, near-ultraviolet rays, near-infrared rays, and also radiation such as ion beams and X-rays.

【0006】[0006]

【作用】本発明に係るX線分光装置においては,第1及
び第2の光線照射手段から照射される光線の光路がX線
光学系の焦点位置で交わるように予め設定されているの
で,上記光路が交わる位置に試料が位置するように位置
調整機構を操作することで,X線光学系の焦点位置に対
する試料の位置決めを簡便に実施することができる。
In the X-ray spectroscope according to the present invention, since the optical paths of the light rays emitted from the first and second light ray irradiation means are set in advance so that they intersect at the focal position of the X-ray optical system, By operating the position adjusting mechanism so that the sample is located at the position where the optical paths intersect, the sample can be easily positioned with respect to the focal position of the X-ray optical system.

【0007】[0007]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係るX線分光装置の概略
構成図,図2は上記X線分光装置により珪酸化亜鉛を分
析した結果を示すグラフ,図3は本発明の他の実施例に
係るX線分光装置の概略構成図である。先ず,本発明を
イオンビーム励起型のX線分光装置に適用した例を図1
に示す。即ち,本実施例に係るX線分光装置Aは,後述
する如くX線光学系の焦点位置に予め位置決めされた試
料11に向けて放射線源1からのイオンビーム1a を照
射し,上記試料11から発生したX線を分光結晶3によ
って分光し,目的とする波長のX線のみを比例計数管6
(X線検出器)に導き,検出するように構成されてい
る。尚,上記イオンビーム1a は大気中を透過しないこ
とから,上記試料11は真空中に置かれ,該試料11の
脱着のためにロードロック機構12が備えられている。
そして,このロードロック機構12を通して上記試料1
1が真空中のゴニオメータヘッド13上に載置される。
上記ゴニオメータヘッド13により支持された上記試料
11は,ゴニオメータ14(位置調整機構)により位置
調整されて,上述の焦点位置に位置決めされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a schematic configuration diagram of an X-ray spectroscope according to an embodiment of the present invention, FIG. 2 is a graph showing a result of analyzing zinc silicate by the X-ray spectroscope, and FIG. FIG. 3 is a schematic configuration diagram of an X-ray spectroscopic device according to the example of FIG. First, an example in which the present invention is applied to an ion beam excitation type X-ray spectrometer is shown in FIG.
Shown in. That is, the X-ray spectroscopic apparatus A according to the present embodiment irradiates the ion beam 1 a from the radiation source 1 toward the sample 11 which is pre-positioned at the focal position of the X-ray optical system as described later, and the sample 11 The X-ray generated from the X-ray is dispersed by the dispersive crystal 3, and only the X-ray of the target wavelength is proportional to the proportional counter 6
(X-ray detector) is configured to guide and detect. Since the ion beam 1 a does not pass through the atmosphere, the sample 11 is placed in a vacuum, and a load lock mechanism 12 is provided for attaching and detaching the sample 11.
Then, through the load lock mechanism 12, the sample 1
1 is placed on the goniometer head 13 in vacuum.
The position of the sample 11 supported by the goniometer head 13 is adjusted by a goniometer 14 (position adjusting mechanism), and the sample 11 is positioned at the focus position.

【0008】この場合,本実施例装置においては,上記
焦点位置で光路が交わるように,異なる方向から例えば
レーザ光を照射する第1のレーザ光源2(第1の光線照
射手段)及び第2のレーザ光源4(第2の光線照射手
段)を備えており,従って,上記光線が交わる位置に上
記ゴニオメータ14を駆動して上記試料11が位置する
ように位置調整するのみで,該試料11を上記X線光学
系の焦点位置に簡便に位置決めすることができる。上記
のように光線が交わる位置に試料11が位置するか否か
の観察は,当該装置のスペース内に配置された例えばC
CDカメラ5からの画像を通して行われる。以下に,上
記構成について詳述すると共に,当該装置の組立時ある
いはメンテナンス時に行うべき上記第1,第2のレーザ
光源2,4の位置調整手順についても説明する。上記比
例計数管6は,その内部にアルゴンガスが充填されてお
り,X線を入射させるX線入射窓8は,光学的に透明な
ステンレスメッシュによりサポートされた厚さ1μmの
高分子膜により構成されている。そして,上記X線入射
窓8と対向する位置には光学窓7が配設されており,上
記第1のレーザ光源2からのレーザ光が上記光学窓7及
びX線入射窓8を通して上記比例計数管6に対するX線
の光軸と同軸に上記分光結晶3に向けて出射される。こ
の場合,上記第1のレーザ光源2が第1の可視光源に相
当する。
In this case, in the apparatus of this embodiment, the first laser light source 2 (first light beam irradiating means) and the second laser light source 2 for irradiating, for example, laser light from different directions are arranged so that the optical paths intersect at the focal position. The laser light source 4 (second light beam irradiating means) is provided. Therefore, the sample 11 is simply adjusted by driving the goniometer 14 at a position where the light beams intersect to adjust the position of the sample 11. It can be easily positioned at the focal position of the X-ray optical system. As described above, the observation of whether or not the sample 11 is located at the position where the light beams intersect is performed by, for example, C placed in the space of the device.
It is performed through the image from the CD camera 5. In the following, the above-mentioned configuration will be described in detail, and the position adjustment procedure of the first and second laser light sources 2 and 4 to be performed at the time of assembling or maintenance of the device will also be described. The proportional counter 6 is filled with argon gas inside, and the X-ray entrance window 8 for entering X-rays is made of a polymer film with a thickness of 1 μm supported by an optically transparent stainless mesh. Has been done. An optical window 7 is disposed at a position facing the X-ray incident window 8 so that the laser light from the first laser light source 2 passes through the optical window 7 and the X-ray incident window 8 and the proportional counting is performed. The light is emitted toward the dispersive crystal 3 coaxially with the optical axis of the X-ray with respect to the tube 6. In this case, the first laser light source 2 corresponds to the first visible light source.

【0009】他方,上記第2のレーザ光源4は,上記第
1のレーザ光源2からのレーザ光とは異なる方向から照
射し得る位置に配設されている。引き続き,上記第1,
第2のレーザ光源2,4及び分光結晶3の調整手順につ
いて説明する。先ず,初期調整のために,イオンビーム
a を照射することにより可視光を発生する蛍光体を試
料として準備する。この場合,上記試料11の表面に蛍
光体を塗布して用いるようにしても良い。そして,上記
イオンビーム1a を照射すると,試料表面においては照
射された位置のみが発光することから,この発光点と上
記第1のレーザ光源2からレーザ光を照射したことによ
る上記試料上の発光点とが一致するように,上記比例計
数管6を台1のレーザ光源2と共に例えば矢印10方向
へ移動させて位置調整する。即ち,上記第1のレーザ光
源2から照射されたレーザ光は,上記分光結晶3表面で
反射されて上記試料表面を照射することになる。ここ
で,上記分光結晶3は,X線の寄生散乱を防止するため
にその表面が予め鏡面に仕上げられている。同様にし
て,上記第2のレーザ光源4からのレーザ光を照射し,
上記試料表面上の発光点で位置するように該第2のレー
ザ光源4の位置調整を行う。尚,上記のように発光点が
一致するか否かの確認は,上記CCDカメラ5からの画
像を通して行われる。
On the other hand, the second laser light source 4 is arranged at a position where the laser light from the first laser light source 2 can be irradiated from a different direction. Continuing,
The procedure for adjusting the second laser light sources 2 and 4 and the dispersive crystal 3 will be described. First, for initial adjustment, a phosphor that emits visible light by irradiating the ion beam 1 a is prepared as a sample. In this case, the surface of the sample 11 may be coated with a phosphor for use. When the ion beam 1 a is irradiated, only the irradiated position on the sample surface emits light. Therefore, the light emission point and the light emission on the sample due to the laser light irradiation from the first laser light source 2 are emitted. The proportional counter 6 is moved together with the laser light source 2 of the table 1 in the direction of arrow 10 so that the points coincide with each other, and the position is adjusted. That is, the laser light emitted from the first laser light source 2 is reflected by the surface of the dispersive crystal 3 and illuminates the sample surface. Here, the surface of the dispersive crystal 3 is mirror-finished in advance in order to prevent parasitic scattering of X-rays. Similarly, the laser light from the second laser light source 4 is irradiated,
The position of the second laser light source 4 is adjusted so that the second laser light source 4 is positioned at the light emitting point on the surface of the sample. It should be noted that the confirmation as to whether or not the light emitting points coincide with each other as described above is performed through the image from the CCD camera 5.

【0010】上記のようにして第1,第2のレーザ光源
2,4の上記X線光学系の焦点位置に対する位置決めが
行われる。更に,目的とするX線の分光に際し波長分解
能を最良とするために,上記分光結晶3が矢印9方向へ
回動調整されると共に,それに連動するアーム18上の
上記第1のレーザ光源2及び比例計数管6を移動する。
これによって,イオンビーム1a の照射点から分光結晶
3までの距離が調整される。尚ここで,上記分光結晶3
へのX線の入射角は,前記式(1)で与えられる角度を
中心に±1〜2度の範囲で操作するように調整すれば良
い。このように,X線の分光時には,常に第1のレーザ
光源2が試料11を照射する位置がイオンビーム1a
照射点と一致するように分光結晶3に対して比例計数管
6を移動させることができ,極めて容易にX線光学系で
の光軸,焦点位置の精度を維持しつつ調整することがで
きる。上記のように調整された当該装置において試料を
分析する場合には,先ず,試料11をロードロック機構
12を通して真空中のゴニオメータヘッド13上に載置
する。引き続き,上記第1,第2のレーザ光源2,4か
らレーザ光を上記試料11に照射し,試料11上におけ
る2つの発光点が一致するように,上記ゴニオメータ1
4をZ軸方向(イオンビーム1a の照射方向)に操作す
る。以上で上記試料11をX線光学系の焦点位置に位置
調整することができる。
The positioning of the first and second laser light sources 2 and 4 with respect to the focal position of the X-ray optical system is performed as described above. Further, in order to optimize the wavelength resolution in the intended X-ray spectroscopy, the dispersive crystal 3 is rotationally adjusted in the direction of the arrow 9, and the first laser light source 2 and the first laser light source 2 on the arm 18 interlocked therewith are adjusted. The proportional counter 6 is moved.
As a result , the distance from the irradiation point of the ion beam 1 a to the dispersive crystal 3 is adjusted. Here, the dispersive crystal 3
The incident angle of X-rays on the X-ray may be adjusted so as to operate within a range of ± 1 to 2 degrees centered on the angle given by the equation (1). Thus, during X-ray spectroscopy, the proportional counter 6 is moved with respect to the dispersive crystal 3 so that the position where the first laser light source 2 irradiates the sample 11 always coincides with the irradiation point of the ion beam 1 a . Therefore, it is possible to adjust extremely easily while maintaining the accuracy of the optical axis and the focus position in the X-ray optical system. When a sample is analyzed by the apparatus adjusted as described above, first, the sample 11 is placed on the goniometer head 13 in vacuum through the load lock mechanism 12. Subsequently, the sample 11 is irradiated with laser light from the first and second laser light sources 2 and 4 so that the two emission points on the sample 11 coincide with each other.
4 is operated in the Z-axis direction (the irradiation direction of the ion beam 1 a ). As described above, the position of the sample 11 can be adjusted to the focal position of the X-ray optical system.

【0011】上記のようにして試料11の位置調整が終
了すると,上記第1,第2ののレーザ光源2,4の照射
を停止し,放射線源1からのイオンビーム1a の照射を
開始する。そして,前述の初期調整の場合と同様に分光
結晶3を矢印9方向へ回動させると共に,この動作に伴
って上記比例計数管6及び第1のレーザ光2を移動す
る。ここで,イオンビーム1a を照射すると元素毎に異
なった波長のX線が発生することから,分析しようとす
る元素のX線の波長に応じた角度を前記式(1)に従っ
て求め,この角度を中心として1〜2度の範囲内で分光
結晶3に対するX線の入射角及び反射角が一致するよう
に,上記分光結晶3を回動させると共に,アーム19上
の比例計数管6及び第1のレーザ光源2を移動させる。
例えば,酸素の定性分析(存在の有無)を行う場合,酸
素に特有のX線の波長は23.62Åであり,分光結晶
3として格子間隔40Åの人工多層膜を用いると,分光
結晶3に対するX線の入射角は,前記式(1)より,n
=1として17.2度という値が得られる。従って,こ
の入射角の値が16.2〜18.2度の範囲内となるよ
うに上記分光結晶3を回動させれば良い。図2に,当該
装置によって珪酸化亜鉛中の酸素を分析した結果を示
す。この場合,分析対象として酸素のX線(OKα)の
他に,亜鉛の発生するX線(ZnLα)が妨害X線とし
て観測されている(このX線は式(1)でn=2の場合
に観測されている)が,十分な波長分解能で分離できて
おり,当該装置においては,X線光学系での焦点位置調
整が十分な精度で行われていることを示している。
When the position adjustment of the sample 11 is completed as described above, the irradiation of the first and second laser light sources 2 and 4 is stopped and the irradiation of the ion beam 1 a from the radiation source 1 is started. . Then, as in the case of the above-described initial adjustment, the dispersive crystal 3 is rotated in the direction of the arrow 9, and the proportional counter 6 and the first laser beam 2 are moved in accordance with this operation. Here, when the ion beam 1 a is irradiated, X-rays having different wavelengths are generated for each element. Therefore, the angle corresponding to the wavelength of the X-rays of the element to be analyzed is obtained according to the above equation (1), and this angle The dispersive crystal 3 is rotated so that the incident angle and the reflected angle of the X-rays with respect to the dispersive crystal 3 coincide with each other within a range of 1 to 2 degrees around the The laser light source 2 is moved.
For example, when performing a qualitative analysis of oxygen (presence or absence of oxygen), the X-ray wavelength peculiar to oxygen is 23.62Å, and if an artificial multilayer film having a lattice spacing of 40Å is used as the dispersive crystal 3, X From the equation (1), the incident angle of the line is n
A value of 17.2 degrees is obtained when = 1. Therefore, the dispersive crystal 3 may be rotated so that the value of the incident angle is within the range of 16.2 to 18.2 degrees. Fig. 2 shows the results of analyzing oxygen in zinc silicate by the device. In this case, in addition to oxygen X-rays (OKα) as analysis targets, X-rays (ZnLα) generated by zinc are observed as interfering X-rays (this X-ray is in the case of n = 2 in equation (1)). However, in this apparatus, the focus position adjustment in the X-ray optical system is performed with sufficient accuracy.

【0012】尚,図1に示した本実施例に係るX線分光
装置Aにおいては,上記分光結晶3の他に,反跳イオン
分析器15,エネルギー分散型のX線分光器16,2次
電子検出器17等を具備しており,試料を多面的に分析
することができる。また,上記実施例に係るX線分光装
置においては,放射線源1を第2の光線照射手段として
用い,上記第2のレーザ光源4を省略して更なる装置の
簡素化を図ることも可能である。この場合,予めダミー
としての材料の表面に蛍光体を塗布し,イオンビーム1
a の照射による発光点と第1のレーザ光源2からのレー
ザ光による発光点とが一致するようにゴニオメータ14
を位置調整する。そして,この位置調整された位置に分
析対象となる試料を上記ダミーと交換して上記ゴニオメ
ータ14により位置調整し,改めて放射線源1からイオ
ンビーム1a を照射することにより,当該所定の分析を
可能とするものである。図3に,本発明の他の実施例に
係るX線分光装置Bを示す。この実施例に係るX線分光
装置Bは,放射線源20からの放射線27を試料11に
照射し,この試料11より発生するX線を分析するよう
にしたものである。即ち,該X線分光装置Bでは,放射
線源20より発生した放射線27がコリメータ21によ
って細いビームとされ,上記試料11に照射される。放
射線27を照射された試料11から発生するX線28を
分光結晶31で分光し,半導体検出器29(X線検出
器)に導く。上記分光結晶31としては,例えばシリコ
ンやゲルマニウム等の単結晶が用いられる。
Incidentally, the X-ray spectroscopy according to this embodiment shown in FIG.
In the device A, in addition to the analyzing crystal 3 described above, recoil ions
Analyzer 15, energy dispersive X-ray spectrometer 16, secondary
Equipped with an electronic detector 17, etc., to analyze samples in multiple directions
can do. Further, the X-ray spectroscopic apparatus according to the above embodiment
In this case, the radiation source 1 is used as the second light beam irradiation means.
The second laser light source 4 is omitted, and
It is also possible to achieve simplification. In this case, dummy beforehand
Ion beam 1 by coating the surface of the material as a phosphor
aAnd the laser from the first laser light source 2
Goniometer 14 so that the emission point by the light matches
Position. Then, the position is adjusted to the adjusted position.
Replace the sample to be analyzed with the dummy above and
The position of the radiation source 1 is adjusted again by the data source 14.
Beam 1aBy irradiating
It is possible. FIG. 3 shows another embodiment of the present invention.
The related X-ray spectroscopic apparatus B is shown. X-ray spectroscopy according to this example
The device B applies the radiation 27 from the radiation source 20 to the sample 11.
Irradiate and analyze the X-ray generated from this sample 11.
It is the one. That is, in the X-ray spectrometer B, the radiation
The radiation 27 generated from the radiation source 20 is reflected by the collimator 21.
The sample 11 is irradiated with a narrow beam. Release
X-rays 28 generated from the sample 11 irradiated with the rays 27
The semiconductor crystal 29 (X-ray detection)
Guide). As the dispersive crystal 31, for example, silicon
Single crystals of germanium and germanium are used.

【0013】上記放射線源20とコリメータ21との間
及び分光結晶31と半導体検出器29との間には,それ
ぞれ軽金属元素薄膜の一例であるアルミニウムを蒸着し
た高分子薄膜24,25が配設されている。そして,各
高分子薄膜24,25に対応して,レーザ光源22(第
2の光線照射手段,第2の可視光源),レーザ光源23
(第1の光線照射手段,第1の可視光源)がそれぞれ配
設されており,レーザ光源22,23からのレーザ光2
6,35をX線光学系の光軸に導くように構成されてい
る。ここで,当該X線分光装置Bにおいても,上記X線
分光装置Aの場合と同様の手順にてレーザ光源22,2
3,分光結晶31及び半導体検出器29の位置調整が行
われ,上記レーザ光源23及び半導体検出器29は,上
記高分子薄膜25と共に上記分光結晶31の回動動作と
連動して揺動するアーム19上に支持されている。当該
装置においても,更に試料表面を観察するためのCCD
カメラ33や,放射線の無用な照射を防止するために,
放射線源20の前面にシャッタ34が配備されている。
Between the radiation source 20 and the collimator 21, and between the dispersive crystal 31 and the semiconductor detector 29, there are disposed polymer thin films 24 and 25, which are examples of light metal element thin films, on which aluminum is deposited. ing. The laser light source 22 (second light beam irradiation means, second visible light source) and the laser light source 23 are provided corresponding to the polymer thin films 24 and 25.
(First light irradiating means, first visible light source) are respectively provided, and laser light 2 from the laser light sources 22 and 23 is provided.
6, 35 are configured to be guided to the optical axis of the X-ray optical system. Here, also in the X-ray spectroscope B, the laser light sources 22, 2 are processed in the same procedure as in the case of the X-ray spectroscope A.
3, the position adjustment of the dispersive crystal 31 and the semiconductor detector 29 is performed, and the laser light source 23 and the semiconductor detector 29 swing together with the polymer thin film 25 to swing together with the swing operation of the dispersive crystal 31. 19 supported. Also in this device, a CCD for observing the sample surface
In order to prevent unnecessary irradiation of the camera 33 and radiation,
A shutter 34 is provided on the front surface of the radiation source 20.

【0014】そして,放射線による被爆を防止するた
め,装置全体は遮蔽箱30内に収容されており,大気中
での測定を可能とするものである。ここで,薄いアルミ
ニウムは,燐よりも重い元素が発生するX線を十分透過
させる。例えば,0.4μm厚のアルミニウムは燐が発
生するX線を16%,アルゴンが発生するX線を40%
透過する。これより重い元素では,更に透過率は増大す
ることから,分析に際しては十分な透過率があることが
わかる。また,高分子膜は,アルミニウムよりもX線の
吸収が少なく,分析への影響はない。従って,レーザ光
源22,23からレーザ光26,35を照射すると,こ
のレーザ光はそれぞれアルミニウムを蒸着した高分子薄
膜24,25で反射してX線光学系の光軸に沿って導入
される。更に,一方のレーザ光26は,コリメータ21
のスリットを通過して試料11に照射される。また,他
方のレーザ光35は,鏡面研磨された分光結晶31の表
面で反射され,試料11に照射される。両レーザ光2
6,35はX線光学系の焦点位置で交差するように前述
の如く予め調整されていることから,CCDカメラ33
で試料表面を観察しつつ,両レーザ光26,35が試料
表面を照射する位置が一致するように試料11の位置を
調整すると,X線光学系での試料11の焦点位置調整が
終了する。引き続き,測定に先立って,回転ステージ3
2を回動させて,前記式(1)に従って分光しようとす
るX線の波長に応じた角度に分光結晶31の向きを合わ
せ,対応する位置に,これと連動してアーム19で支持
された半導体検出器29を移動させる。尚このアーム1
9には,上記半導体検出器29と共に,レーザ光源2
3,高分子薄膜25も支持されている。
In order to prevent exposure to radiation, the entire device is housed in a shielding box 30 to enable measurement in the atmosphere. Here, thin aluminum sufficiently transmits X-rays generated by elements heavier than phosphorus. For example, 0.4 μm thick aluminum has 16% X-rays generated by phosphorus and 40% X-rays generated by argon.
To Penetrate. For elements heavier than this, the transmittance increases further, indicating that there is sufficient transmittance for analysis. Further, the polymer film absorbs less X-rays than aluminum and has no influence on the analysis. Therefore, when the laser light 26, 35 is emitted from the laser light sources 22, 23, the laser light is reflected by the polymer thin films 24, 25 on which aluminum is vapor-deposited and introduced along the optical axis of the X-ray optical system. Further, the one laser beam 26 is emitted from the collimator 21.
The sample 11 is irradiated with the light through the slit. The other laser beam 35 is reflected on the surface of the spectroscopic crystal 31 that has been mirror-polished, and irradiates the sample 11. Both laser light 2
Since the reference numerals 6 and 35 are adjusted in advance so as to intersect at the focal position of the X-ray optical system, the CCD camera 33
While observing the sample surface, the position of the sample 11 is adjusted so that the positions where the two laser beams 26 and 35 irradiate the sample surface coincide with each other, and the focus position adjustment of the sample 11 by the X-ray optical system is completed. Then, prior to the measurement, the rotary stage 3
2 is rotated to align the direction of the dispersive crystal 31 with an angle corresponding to the wavelength of the X-ray to be dispersed according to the above formula (1), and is supported by the arm 19 at a corresponding position in conjunction with this. The semiconductor detector 29 is moved. This arm 1
Reference numeral 9 indicates a laser light source 2 together with the semiconductor detector 29.
3, the polymer thin film 25 is also supported.

【0015】このようにして分光結晶31へのX線の入
射角を変化させると,X線光学系の焦点距離も変化する
ことから,分光結晶31と試料11との距離を調整する
ことができる。この時,再度レーザ光源22,23を動
作させて焦点位置の確認を行う。以上でX線光学系にお
ける調整が終了し,シャッタ34を開放して放射線27
を照射し,分光結晶31で分光されたX線の量を半導体
検出器29により測定する。このように本実施例におけ
るX線分光装置Bにおいても,前述のX線分光装置Aの
場合と同様,極めて簡便にX線光学系における焦点位置
調整を行うことができる。更に,試料11に対する半導
体検出器29の位置調整も簡便に行い得るものである。
When the incident angle of X-rays on the dispersive crystal 31 is changed in this manner, the focal length of the X-ray optical system also changes, so that the distance between the dispersive crystal 31 and the sample 11 can be adjusted. . At this time, the laser light sources 22 and 23 are operated again to confirm the focus position. With the above, the adjustment in the X-ray optical system is completed, the shutter 34 is opened, and the radiation 27
And the amount of X-rays dispersed by the dispersive crystal 31 is measured by the semiconductor detector 29. As described above, also in the X-ray spectroscopic apparatus B of the present embodiment, the focus position adjustment in the X-ray optical system can be performed very simply as in the case of the X-ray spectroscopic apparatus A described above. Further, the position of the semiconductor detector 29 with respect to the sample 11 can be easily adjusted.

【0016】[0016]

【発明の効果】本発明は,上記したように,X線光学系
の焦点位置に位置調整機構により位置調整された試料に
向けて放射線源から放射線を照射し,上記試料からのX
線を回折型の分光器にて分光した後,X線検出器にて検
出する波長分散型X線分光装置において,上記焦点位置
で光路が交わるように異なる方向から光線を照射する第
1及び第2の光線照射手段を具備し,上記位置調整機構
を駆動して上記光路が交わる位置に上記試料が位置する
ようにしたことを特徴とする波長分散型X線分光装置で
あるから,X線光学系の焦点位置への試料の位置調整を
比較的簡単な構成のもとに行い得るものである。更に上
記構成とすることにより,装置全体のコンパクト化,あ
るいは省スペース化により他の検出機等の設置をも可能
とする。
As described above, the present invention irradiates the sample whose position is adjusted by the position adjusting mechanism at the focal position of the X-ray optical system with the radiation from the radiation source to emit X-rays from the sample.
In a wavelength dispersive X-ray spectroscopic device in which rays are separated by a diffractive spectroscope and then detected by an X-ray detector, first and second light rays are emitted from different directions so that the optical paths intersect at the focal position. The X-ray optics is a wavelength dispersive X-ray spectroscope characterized in that the sample is positioned at a position where the optical paths intersect by driving the position adjusting mechanism by means of two light irradiating means. It is possible to adjust the position of the sample to the focal position of the system with a relatively simple structure. Further, with the above configuration, it is possible to install other detectors or the like by making the entire apparatus compact or saving space.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るX線分光装置の概略
構成図。
FIG. 1 is a schematic configuration diagram of an X-ray spectroscopic apparatus according to an embodiment of the present invention.

【図2】 上記X線分光装置により珪酸化亜鉛を分析し
た結果を示すグラフ。
FIG. 2 is a graph showing the results of analyzing zinc silicate by the above X-ray spectroscope.

【図3】 本発明の他の実施例に係るX線分光装置の概
略構成図。
FIG. 3 is a schematic configuration diagram of an X-ray spectroscopic device according to another embodiment of the present invention.

【図4】 波長分散型のX線分光装置の原理説明図。FIG. 4 is an explanatory view of the principle of a wavelength dispersion type X-ray spectrometer.

【図5】 従来の波長分散型X線分光装置における試料
位置調整機構を説明するための図。
FIG. 5 is a diagram for explaining a sample position adjusting mechanism in a conventional wavelength dispersive X-ray spectroscope.

【符号の説明】[Explanation of symbols]

1,20…放射線源 1a …イオンビーム 2…第1のレーザ光源(第1の光線照射手段) 3,31…分光結晶(分光器) 4…第2のレーザ光源(第2の光線照射手段) 6…比例計数管(X線検出器) 11…試料 14…ゴニオメータ(位置調整機構) 22…レーザ光源(第2の光線照射手段,第2の可視光
源) 23…レーザ光源(第1の光線照射手段,第1の可視光
源) 24,25…高分子薄膜 26,35…レーザ光 27…放射線 28…X線 29…半導体検出器(X線検出器) A,B…X線分光装置
1, 20 ... Radiation source 1 a ... Ion beam 2 ... First laser light source (first light beam irradiation means) 3, 31 ... Spectroscopic crystal (spectrometer) 4 ... Second laser light source (second light beam irradiation means) ) 6 ... Proportional counter (X-ray detector) 11 ... Sample 14 ... Goniometer (position adjustment mechanism) 22 ... Laser light source (second light beam irradiation means, second visible light source) 23 ... Laser light source (first light beam) Irradiation means, first visible light source) 24, 25 ... Polymer thin film 26, 35 ... Laser light 27 ... Radiation 28 ... X-ray 29 ... Semiconductor detector (X-ray detector) A, B ... X-ray spectroscopic device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 X線光学系の焦点位置に位置調整機構に
より位置調整された試料に向けて放射線源から放射線を
照射し,上記試料からのX線を回折型の分光器にて分光
した後,X線検出器にて検出する波長分散型X線分光装
置において,上記焦点位置で光路が交わるように異なる
方向から光線を照射する第1及び第2の光線照射手段を
具備し,上記位置調整機構を駆動して上記光路が交わる
位置に上記試料が位置するようにしたことを特徴とする
波長分散型X線分光装置。
1. A radiation source irradiates a sample whose position is adjusted by a position adjusting mechanism at a focal position of an X-ray optical system, and X-rays from the sample are dispersed by a diffraction type spectroscope. , A wavelength dispersive X-ray spectroscopic device for detecting with an X-ray detector is provided with first and second light beam irradiation means for irradiating light beams from different directions so that the optical paths intersect at the focal position, and the position adjustment is performed. A wavelength dispersive X-ray spectroscopic device characterized in that the sample is located at a position where the optical paths intersect by driving a mechanism.
【請求項2】 上記第1の光線照射手段が上記X線検出
器に対するX線の光軸と同軸に該X線検出器側から上記
分光器に向けて可視光を入射する第1の可視光源である
請求項1記載の波長分散型X線分光装置。
2. A first visible light source, wherein the first light beam irradiation means makes visible light incident from the X-ray detector side toward the spectroscope coaxially with the optical axis of X-rays to the X-ray detector. The wavelength dispersive X-ray spectrometer according to claim 1.
【請求項3】 上記放射線源を上記第2の光線照射手段
として用いる請求項1又は2記載の波長分散型X線分光
装置。
3. The wavelength dispersive X-ray spectroscope according to claim 1, wherein the radiation source is used as the second light beam irradiation means.
【請求項4】 上記第2の光線照射手段が上記放射線源
からの放射線の光軸と同軸に可視光を入射する第2の可
視光源である請求項1又は2記載の波長分散型X線分光
装置。
4. The wavelength dispersive X-ray spectroscope according to claim 1, wherein the second light beam irradiation means is a second visible light source that makes visible light incident coaxially with the optical axis of the radiation from the radiation source. apparatus.
【請求項5】 上記第1及び/又は第2の可視光源がレ
ーザ光源である請求項2,3又は4のいずれかに記載の
波長分散型X線分光装置。
5. The wavelength dispersive X-ray spectroscopic apparatus according to claim 2, wherein the first and / or second visible light source is a laser light source.
JP6074586A 1994-04-13 1994-04-13 Wavelength dispersive X-ray spectrometer Expired - Lifetime JP2728627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6074586A JP2728627B2 (en) 1994-04-13 1994-04-13 Wavelength dispersive X-ray spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6074586A JP2728627B2 (en) 1994-04-13 1994-04-13 Wavelength dispersive X-ray spectrometer

Publications (2)

Publication Number Publication Date
JPH07280750A true JPH07280750A (en) 1995-10-27
JP2728627B2 JP2728627B2 (en) 1998-03-18

Family

ID=13551420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6074586A Expired - Lifetime JP2728627B2 (en) 1994-04-13 1994-04-13 Wavelength dispersive X-ray spectrometer

Country Status (1)

Country Link
JP (1) JP2728627B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345163A (en) * 2004-06-01 2005-12-15 Jfe Steel Kk Film thickness measurement method for surface layer oxide film of zinc base plated sheet iron
WO2007034572A1 (en) * 2005-09-26 2007-03-29 Jfe Steel Corporation Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
JP2008032749A (en) * 2001-06-19 2008-02-14 X-Ray Optical Systems Inc X-ray fluorescence spectroscopy system and x-ray fluorescence spectroscopy method
CN109827976A (en) * 2019-03-14 2019-05-31 中国科学院上海应用物理研究所 A kind of optical system of online observation and adjusting X-ray beam and sample

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032749A (en) * 2001-06-19 2008-02-14 X-Ray Optical Systems Inc X-ray fluorescence spectroscopy system and x-ray fluorescence spectroscopy method
JP2005345163A (en) * 2004-06-01 2005-12-15 Jfe Steel Kk Film thickness measurement method for surface layer oxide film of zinc base plated sheet iron
WO2007034572A1 (en) * 2005-09-26 2007-03-29 Jfe Steel Corporation Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
CN109827976A (en) * 2019-03-14 2019-05-31 中国科学院上海应用物理研究所 A kind of optical system of online observation and adjusting X-ray beam and sample
CN109827976B (en) * 2019-03-14 2024-01-05 中国科学院上海应用物理研究所 Optical system for on-line observation and adjustment of X-ray beam and sample

Also Published As

Publication number Publication date
JP2728627B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP3135920B2 (en) Surface analysis method and device
US5450463A (en) X-ray microscope
US5497008A (en) Use of a Kumakhov lens in analytic instruments
JP2742415B2 (en) X-ray analyzer
US7003075B2 (en) Optical measuring device
US6885726B2 (en) Fluorescent X-ray analysis apparatus
EP3790025B1 (en) X-ray analyzer
JP2005106815A (en) Optical alignment of x-ray microanalyzer
US6442236B1 (en) X-ray analysis
US3663812A (en) X-ray spectrographic means having fixed analyzing and detecting means
US6529578B1 (en) X-ray condenser and x-ray apparatus
JP3003708B2 (en) Surface analyzer
JP2002189004A (en) X-ray analyzer
JP2000504422A (en) X-ray analyzer having two collimator masks
JPH07280750A (en) Wavelength dispersion type x-ray spectroscope
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
JP3197104B2 (en) X-ray analyzer
JP3339267B2 (en) X-ray analysis method and X-ray analyzer
JPH0361841A (en) Attachment for measuring x-ray absorption spectrum
JP3860641B2 (en) X-ray fluorescence analyzer
JP2991253B2 (en) X-ray fluorescence spectroscopy method and apparatus
WO2022118585A1 (en) Total internal reflection fluorescent x-ray analyzer
JPH0361840A (en) Measuring apparatus for x-ray absorption spectrum
JPH06160312A (en) X-ray evaluation apparatus
JPH0560702A (en) Method and device for picking up sectional image using x rays