JPH07279699A - Variable cylinder controller of odd number multi-cylinder engine - Google Patents

Variable cylinder controller of odd number multi-cylinder engine

Info

Publication number
JPH07279699A
JPH07279699A JP7352894A JP7352894A JPH07279699A JP H07279699 A JPH07279699 A JP H07279699A JP 7352894 A JP7352894 A JP 7352894A JP 7352894 A JP7352894 A JP 7352894A JP H07279699 A JPH07279699 A JP H07279699A
Authority
JP
Japan
Prior art keywords
intake
cylinder
cutoff valve
passage
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352894A
Other languages
Japanese (ja)
Inventor
Takeo Shirabe
威夫 調
Eiichi Kamiyama
栄一 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7352894A priority Critical patent/JPH07279699A/en
Publication of JPH07279699A publication Critical patent/JPH07279699A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/182Number of cylinders five

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To enable operation stopping without necessitating any complicate control, so as to prevent generation of irregular engine vibration by connecting intake cutoff valves provided in respective intake passages to each other by a connecting member by phase, and driving the connecting member through a process of synchronizing it with the rotation of an engine by means of a driving means. CONSTITUTION:In a five-cylinder engine, intake cutoff valves 4 provided in intake pipes of respective cylinders are attached to a common shaft 4a providing the phase difference of 108 deg. between the cylinders, and they are driven through a toothed belt 6 wound around pulleys 4b, 5b by the reduction ratio of 1 to 4 in relation to a cam shaft 5a. Thereby, when a first cylinder is in a start point of the intake stroke, the intake cutout valve 4 of a second cylinder to be next ignited is made in the position of 1.25+108=119.25 deg. in relation to an axis of an intake pipe 3 counterclock and then rotated clockwise by 22.5 deg. during the intake stroke of the second cylinder, however, the peripheral end of the intake cutoff valve is approached to the wall part of the intake pipe 3, so as to shut the intake passage 3a, and the second cylinder is taken as the stop cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は奇数多気筒エンジンの可
変気筒制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to variable cylinder control of an odd multi-cylinder engine.

【0002】[0002]

【従来の技術】奇数多気筒エンジンにおいても可変気筒
制御の開発がおこなわれているが、奇数多気筒エンジン
の可変気筒制御においては、特定の気筒を休止させると
爆発間隔が不均等となり不規則なエンジン振動が発生す
るという問題が存在する。そこで、休止する気筒を固定
化せずに順番に変えて爆発間隔が均等となるようにして
上記の様な不規則なエンジン振動を発生させないで奇数
多気筒エンジンを可変気筒制御を行う方法が提案されて
おり、例えば、特開平5−195830号公報に開示さ
れたものがある。同公報によれば、各気筒の動弁機構に
可変気筒制御機構が組み込まれ、該動弁機構に組み込ま
れた可変気筒制御機構にそれぞれ電子制御された油圧が
供給される。
2. Description of the Related Art Variable cylinder control is being developed even in odd-numbered multi-cylinder engines. However, in variable cylinder control of odd-numbered multi-cylinder engines, when certain cylinders are deactivated, explosion intervals become uneven and irregular. There is a problem that engine vibration occurs. Therefore, a method of performing variable cylinder control on an odd-numbered multi-cylinder engine without changing the stationary cylinders in order and changing the order in order to make the explosion intervals even and without causing the above irregular engine vibration is proposed. For example, there is one disclosed in Japanese Patent Laid-Open No. 5-195830. According to the publication, a variable cylinder control mechanism is incorporated in the valve actuation mechanism of each cylinder, and electronically controlled hydraulic pressure is supplied to the variable cylinder control mechanism incorporated in the valve actuation mechanism.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記公報に
提案された方法では各気筒の動弁機構そのものに可変気
筒制御機構を組み込むことが必要で、従来の動弁機構を
そのまま使えないという問題点の他に、可変気筒制御機
構に供給する油圧を各気筒毎にそれぞれ制御する必要が
あるために制御が複雑になるという問題点がある。本発
明は上記問題に鑑み、複雑な制御を必要とせずに均等な
間隔で作動休止を繰り返し、不規則なエンジン振動を発
生させない奇数多気筒エンジンの可変気筒制御装置を提
供することを目的とする。
However, in the method proposed in the above publication, it is necessary to incorporate a variable cylinder control mechanism into the valve actuation mechanism of each cylinder, and the conventional valve actuation mechanism cannot be used as it is. In addition, there is a problem that the control becomes complicated because it is necessary to control the hydraulic pressure supplied to the variable cylinder control mechanism for each cylinder. In view of the above problems, an object of the present invention is to provide a variable cylinder control device for an odd-numbered multi-cylinder engine that does not require complicated control and repeats operation pauses at equal intervals to prevent irregular engine vibration. .

【0004】[0004]

【課題を解決するための手段】本発明の請求項1によれ
ば、各気筒の吸気通路内に配設した吸気遮断弁と、前記
各吸気遮断弁を連結する連結部材と、該連結部材を駆動
する駆動手段とからなり、前記連結部材は前記各気筒の
吸気通路内の吸気遮断弁を作動サイクルの位相差と同じ
位相差で連結し、前記駆動手段が吸気行程が到来する毎
に、吸気遮断弁が、吸気通路を遮断する位置と、吸気通
路を遮断しない位置を交互にとる様に連結部材をエンジ
ンの回転と同期して駆動することによって、減筒運転時
に均等な間隔で作動休止を繰り返すことを特徴とする奇
数多気筒エンジンの可変気筒制御装置が提供される。請
求項2によれば、さらに、吸気通路を遮断しない様に吸
気遮断弁を格納する格納部を設け全気筒運転時には前記
吸気遮断弁を前記格納部に格納することを特徴とする前
記請求項1に記載の奇数多気筒エンジンの可変気筒制御
装置が提供される。請求項3によれば、さらに、吸気遮
断弁の設けられた吸気通路をバイパスするバイパス通路
を配設し、全気筒運転時には前記バイパス通路を介して
吸気することを特徴とする前記請求項1に記載の奇数多
気筒エンジンの可変気筒制御装置が提供される。。請求
項4によれば、さらに、吸気遮断弁の位相を変えること
のできる位相可変手段を配設し、全気筒運転時には吸気
行程が到来する毎に常に吸気遮断弁が吸気の通路を遮断
することがない位置に前記吸気遮断弁の位相をずらすこ
とを特徴とする前記請求項1に記載の奇数多気筒エンジ
ンの可変気筒制御装置が提供される。
According to the first aspect of the present invention, the intake cutoff valve disposed in the intake passage of each cylinder, the connecting member connecting the intake cutoff valves, and the connecting member are provided. The connecting member connects the intake cutoff valve in the intake passage of each cylinder at the same phase difference as the phase difference of the operation cycle, and the connecting member connects the intake cutoff valve with the intake stroke each time the intake stroke arrives. The shut-off valve drives the connecting member in synchronization with the engine rotation so as to alternately take a position that shuts off the intake passage and a position that does not shut off the intake passage. A variable cylinder controller for an odd multi-cylinder engine characterized by repeating is provided. According to a second aspect of the present invention, the storage section for storing the intake cutoff valve is provided so as not to block the intake passage, and the intake cutoff valve is stored in the storage section during all cylinder operation. A variable cylinder controller for an odd multi-cylinder engine is provided. According to claim 3, further, a bypass passage is provided for bypassing the intake passage provided with the intake cutoff valve, and intake is performed through the bypass passage during all cylinder operation. A variable cylinder controller for the described odd multi-cylinder engine is provided. . According to claim 4, further, the phase varying means capable of changing the phase of the intake cutoff valve is provided so that the intake cutoff valve always cuts off the intake passage every time the intake stroke comes during all cylinder operation. The variable cylinder control device for an odd number multi-cylinder engine according to claim 1, wherein the phase of the intake cutoff valve is shifted to a position where there is no position.

【0005】[0005]

【作用】請求項1では、各吸気通路内に設けられた吸気
遮断弁が連結部材によって位相をもって連結され、連結
部材が駆動手段によってエンジンの回転に同期させて駆
動されるので個々の吸気遮断弁をそれぞれ独立的に制御
することなく一つの制御手段によって全気筒の吸気遮断
弁が制御される。請求項2では、さらに全気筒運転時に
は吸気遮断弁は吸気通路からずらして格納されるので吸
気遮断弁によって吸気通路が遮断される気筒なく全気筒
運転が行われる。請求項3では、さらに全気筒運転時に
は吸気遮断弁の設けられた吸気通路をバイパスするバイ
パス通路を介して吸気されるので吸気遮断弁によって吸
気通路が遮断される気筒なく全気筒運転が行われる。請
求項4では、さらに全気筒運転時には吸気遮断弁は吸気
行程で常に開弁する位置にくる様に位相がずらされた状
態で吸気されるので吸気遮断弁によって吸気通路が遮断
される気筒なく全気筒運転が行われる。
According to the present invention, the intake cutoff valves provided in the respective intake passages are connected in phase by the connecting members, and the connecting members are driven in synchronization with the rotation of the engine by the drive means, so that the individual intake cutoff valves are connected. The intake cutoff valves of all the cylinders are controlled by one control means without independently controlling each of the above. In the second aspect, the intake cutoff valve is stored while being shifted from the intake passage during the operation of all cylinders, so that the all-cylinder operation is performed without the cylinder whose intake passage is blocked by the intake cutoff valve. In the third aspect, when all cylinders are in operation, air is taken in through the bypass passage that bypasses the intake passage provided with the intake cutoff valve, so that all cylinder operation is performed without the cylinder in which the intake passage is blocked by the intake cutoff valve. Further, according to the present invention, when all the cylinders are operated, the intake cutoff valve is inhaled in a state in which the phase is shifted so that the intake cutoff valve always comes to a position where it is opened in the intake stroke, so that the intake passage is blocked by the intake cutoff valve. Cylinder operation is performed.

【0006】[0006]

【実施例】以下添付図面を用いて本発明の実施例を説明
する。図1は、5気筒エンジンに適用した本発明の第1
実施例の構成を模式的に示した図である。図1におい
て、1はエアクリーナ、2はサージタンクであって、そ
の間には吸入空気量を制御するための吸気絞り弁1aが
配設されているがこれをサージタンク2の下流の各気筒
の吸気管に設けてもよい。3は吸気管であってサージタ
ンク2と各気筒の吸気ポートとの間を連結している。吸
気管3内には吸気通路3aが形成される。4は各気筒の
吸気管にそれぞれ設けられた吸気遮断弁であって共通の
軸4aに気筒間で位相差を設けて取り付けられており、
軸4aは軸4aに軸着されたプーリ4b、およびカム軸
5aに軸着されたプーリ5bを介して、歯付きベルト6
によってカム軸5aに対し、1/4の減速比で駆動され
る。カム軸5aはクランク軸7aに対して1/2の減速
比で駆動されているから、吸気遮断弁の軸4aはクラン
ク軸7aに対しては1/8の減速比で駆動されることに
なる。なお、前記各気筒の吸気遮断弁4が取り付けられ
ている共通の軸4aが請求項1における連結手段であっ
て、カム軸5aおよびプーリ4b、プーリ5bおよびそ
れらを連動させる歯付きベルト6が駆動手段の役を成し
ている。なお、本第1の実施例の様にカム軸を介して減
速するのではなくて直接クランク軸から1/8の減速比
で減速することも可能である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the present invention applied to a 5-cylinder engine.
It is the figure which showed the structure of the Example typically. In FIG. 1, reference numeral 1 is an air cleaner, 2 is a surge tank, and an intake throttle valve 1a for controlling the intake air amount is disposed between them. It may be provided on the tube. An intake pipe 3 connects the surge tank 2 and the intake port of each cylinder. An intake passage 3a is formed in the intake pipe 3. Reference numeral 4 denotes an intake cutoff valve provided in each intake pipe of each cylinder, which is attached to a common shaft 4a with a phase difference between the cylinders.
The shaft 4a is provided with a toothed belt 6 via a pulley 4b mounted on the shaft 4a and a pulley 5b mounted on the cam shaft 5a.
Is driven at a reduction ratio of 1/4 with respect to the cam shaft 5a. Since the camshaft 5a is driven at a reduction ratio of 1/2 with respect to the crankshaft 7a, the shaft 4a of the intake cutoff valve is driven at a reduction ratio of 1/8 with respect to the crankshaft 7a. . The common shaft 4a to which the intake cutoff valve 4 of each cylinder is attached is the connecting means in claim 1, and the cam shaft 5a, the pulley 4b, the pulley 5b and the toothed belt 6 for interlocking them are driven. It plays the role of means. Instead of decelerating through the camshaft as in the first embodiment, it is also possible to decelerate directly from the crankshaft with a deceleration ratio of 1/8.

【0007】図2は、軸4aに取り付けられた各気筒用
の吸気遮断弁の状態を抜き画きしたものであり、図3は
各気筒間の位相差を示したものである。この5気筒エン
ジンの全気筒運転時における点火は144度CA(クラ
ンク角)毎に行われ、その順序は、#1−#2−#4−
#5−#3気筒である。この点火の順における各気筒間
の吸気遮断弁の位相差はそれぞれ108度である。すな
わち、#1気筒の吸気遮断弁と#2気筒の吸気遮断弁の
位相差が108度であり、以下、#2気筒の吸気遮断弁
と#4気筒の吸気遮断弁の位相差が108度、#4気筒
の吸気遮断弁と#5気筒の吸気遮断弁の位相差が108
度、#5気筒の吸気遮断弁と#3気筒の吸気遮断弁の位
相差が108度、#3気筒の吸気遮断弁と#1気筒の吸
気遮断弁の位相差が108度である。
FIG. 2 is a schematic drawing showing the state of the intake cutoff valve for each cylinder attached to the shaft 4a, and FIG. 3 shows the phase difference between the cylinders. Ignition is performed every 144 degrees CA (crank angle) in all cylinders operation of this 5-cylinder engine, and the order is # 1- # 2- # 4-.
It is # 5- # 3 cylinder. The phase difference of the intake cutoff valves between the cylinders in the ignition order is 108 degrees. That is, the phase difference between the intake cutoff valve of the # 1 cylinder and the intake cutoff valve of the # 2 cylinder is 108 degrees, and the phase difference between the intake cutoff valve of the # 2 cylinder and the intake cutoff valve of the # 4 cylinder is 108 degrees. The phase difference between the intake cutoff valve of the # 4 cylinder and the intake cutoff valve of the # 5 cylinder is 108
The phase difference between the intake cutoff valve of the # 5 cylinder and the intake cutoff valve of the # 3 cylinder is 108 degrees, and the phase difference between the intake cutoff valve of the # 3 cylinder and the intake cutoff valve of the # 1 cylinder is 108 degrees.

【0008】図4は、クランク角に対する吸気遮断弁4
の位置を示す図である。AO1 で示すのは、#1気筒の
ピストンが吸気行程の開始点、すなわち吸気TDCにあ
って、その作動を休止しない場合の吸気遮断弁4の位置
であって、吸気管3の中心軸線に対して、反時計回りに
11.25度の位置であり、AO2 で示すのは、#1気
筒のピストンが吸気行程の終了点、すなわち吸気BDC
にあって、その作動を休止しなかった場合の吸気遮断弁
4の位置であって、吸気管3の中心軸線に対して、時計
回りに11.25度の位置である。したがって、ピスト
ンが吸気TDCから吸気BDCまで移動し、クランク軸
7aが、180度回転した場合には、吸気遮断弁4はA
1 点からAO2 点まで、11.25度+11.25度
=22.50度回転することになる。これは、吸気遮断
弁の軸4aがクランク軸7aにたいして1/8の減速比
で回転されていることによる。
FIG. 4 shows the intake cutoff valve 4 with respect to the crank angle.
It is a figure which shows the position of. AO 1 is the position of the intake cutoff valve 4 when the piston of the # 1 cylinder is at the start point of the intake stroke, that is, at the intake TDC, and its operation is not stopped, and is on the central axis of the intake pipe 3. On the other hand, the position is 11.25 degrees counterclockwise, and AO 2 indicates that the piston of the # 1 cylinder is the end point of the intake stroke, that is, the intake BDC.
That is, the position of the intake cutoff valve 4 when the operation is not stopped, and the position is 11.25 degrees clockwise with respect to the central axis of the intake pipe 3. Therefore, when the piston moves from the intake air TDC to the intake air BDC and the crankshaft 7a rotates 180 degrees, the intake air cutoff valve 4 becomes A.
From point O 1 to point AO 2 , the rotation will be 11.25 ° + 11.25 ° = 22.50 °. This is because the shaft 4a of the intake cutoff valve is rotated at a speed reduction ratio of 1/8 with respect to the crankshaft 7a.

【0009】一方、AC1 で示すのは、#1気筒のピス
トンが吸気行程の開始点、すなわち吸気TDCにあっ
て、その作動を休止する場合の吸気遮断弁4の位置であ
って、吸気管3の中心軸線に対して、時計回りに78.
75度の位置であり、AC2 で示すのは、ある気筒のピ
ストンが吸気行程の終了点、すなわち吸気BDCにあっ
て、その作動を休止した場合の吸気遮断弁4の位置であ
って、吸気管3の中心軸線に対して、時計回りに10
1.25度の位置である。
On the other hand, AC 1 indicates the position of the intake cutoff valve 4 when the piston of the # 1 cylinder is at the start point of the intake stroke, that is, at the intake TDC and the operation is stopped. 78. clockwise with respect to the central axis of 3.
The position is 75 degrees, and AC 2 indicates the position of the intake cutoff valve 4 when the piston of a certain cylinder is at the end point of the intake stroke, that is, at the intake BDC and its operation is stopped. 10 clockwise with respect to the central axis of tube 3.
The position is 1.25 degrees.

【0010】吸気遮断弁4が、上記のAO1 点から、A
1 点に移るまでに11.25+78.75=90度回
転するが、この間クランク軸は、90度×8=720度
回転している。これは、4サイクル機関において、吸
気、圧縮、爆発、排気の4行程が終了する期間である、
したがって、作動を休止しない吸気行程の次にその気筒
にまわって来る吸気行程では、吸気遮断弁4が、吸気通
路3aを閉じる位置に来て作動を休止することになる。
また、その次の吸気行程では吸気遮断弁4が、吸気通路
3aを開いている位置に来ているので作動は休止されな
い。この様に、本実施例では、各気筒毎に吸気行程が1
回おきに作動休止される。
From the AO 1 point, the intake cutoff valve 4
By the time it moves to point C 1, it rotates 11.25 + 78.75 = 90 degrees, but during this period, the crankshaft rotates 90 degrees × 8 = 720 degrees. This is a period in which four strokes of intake, compression, explosion and exhaust are completed in a four-cycle engine,
Therefore, in the intake stroke that follows the cylinder after the intake stroke in which the operation is not stopped, the intake cutoff valve 4 comes to the position where the intake passage 3a is closed and stops the operation.
Further, in the next intake stroke, the intake cutoff valve 4 is at the position where the intake passage 3a is open, so the operation is not stopped. Thus, in this embodiment, the intake stroke is 1 for each cylinder.
It is deactivated every other time.

【0011】次に、図5は気筒間の吸気遮断弁4の作動
休止の順序を説明する図である。#1気筒が前記AO1
点にある時、次に点火を行う#2気筒の吸気遮断弁は、
前述の様に108度の位相差をもっているので、吸気管
3の軸線に対して、反時計回り11.25+108=1
19.25度の位置にあり、B(AO1 )で示されてい
る。一方、次に点火を行う第2気筒の吸気行程は、#1
気筒の吸気行程開始後144度CAだけクランク軸7a
が回転した時点で始まる、なぜなら、本実施例の5気筒
エンジンでは前述の様に、720度CAの間に5回点火
を行う、すなわち、144度CA毎に1回の割合で点火
を行うのであるから、各行程も144度CA毎に1回の
割合で行われるからである。
Next, FIG. 5 is a diagram for explaining the sequence of deactivating the intake cutoff valve 4 between the cylinders. # 1 cylinder is AO 1
When it is at the point, the intake cutoff valve of the # 2 cylinder that ignites next,
As described above, since there is a phase difference of 108 degrees, counterclockwise rotation with respect to the axis of the intake pipe 3 is 11.25 + 108 = 1.
It is located at 19.25 degrees and is designated B (AO 1 ). On the other hand, the intake stroke of the second cylinder for the next ignition is # 1.
Crankshaft 7a only 144 degrees CA after the start of the intake stroke of the cylinder
Is started at the time of rotation, because in the five-cylinder engine of the present embodiment, as described above, ignition is performed five times during 720 degrees CA, that is, ignition is performed once every 144 degrees CA. This is because each process is performed once every 144 degrees CA.

【0012】144度CAの角度だけクランク軸7aが
回転した時には、吸気遮断弁4は144÷8=18度だ
け回転している。したがって、#2気筒の吸気行程開始
時点では、#2気筒の吸気遮断弁は、BC1 で示される
様に吸気管3の軸線に対して、反時計回り119.25
−18=101.25度の位置にある。これは、吸気管
3の軸線に対して直角な軸に対して、反時計回り11.
25(=101.25−90)度の位置にあることを意
味する。#2気筒の吸気遮断弁は、この後、第2気筒の
吸気行程の間に、22.5度時計回りに回転するが、そ
の間、吸気遮断弁4の周端部は吸気管3の壁部に最も接
近しており、吸気通路3aを遮断し、#2気筒は作動を
休止する休止気筒となる。
When the crankshaft 7a rotates by an angle of 144 degrees CA, the intake cutoff valve 4 rotates by 144/8 = 18 degrees. Therefore, at the start of the intake stroke of the # 2 cylinder, the intake cutoff valve of the # 2 cylinder is rotated counterclockwise 119.25 with respect to the axis of the intake pipe 3 as indicated by BC 1.
It is located at -18 = 101.25 degrees. This is counterclockwise with respect to the axis perpendicular to the axis of the intake pipe 11.
It means that it is located at a position of 25 (= 101.25-90) degrees. The intake cutoff valve of the # 2 cylinder thereafter rotates clockwise by 22.5 degrees during the intake stroke of the second cylinder, and the peripheral end of the intake cutoff valve 4 is the wall of the intake pipe 3 during that time. Is closest to the cylinder, the intake passage 3a is cut off, and the cylinder # 2 is a deactivated cylinder that does not operate.

【0013】図6は#1気筒が吸気を始めようとする吸
気TDCを基準状態として144度CA毎に各気筒の吸
気遮断弁4の動きをを示した図であって、点火順序#1
−#2−#4−#5−#3気筒と同じ順番で吸気行程が
行われ、それが1つおきに休止される様子が示されてい
る。図6に示される様に、減筒運転時に吸気遮断弁4が
1気筒おきに閉弁されるので、爆発間隔が均等となり、
減筒運転時の不規則なエンジン振動が低減される。しか
も、クランク軸7aの回転により機械的に吸気通路3a
が開閉されるので複雑な制御は必要ない。
FIG. 6 is a diagram showing the movement of the intake cutoff valve 4 of each cylinder at every 144 ° CA with reference to the intake TDC at which the # 1 cylinder is about to start intake.
-# 2- # 4- # 5- # 3 It is shown that the intake strokes are performed in the same order as the cylinders, and the intake strokes are paused every other stroke. As shown in FIG. 6, since the intake cutoff valve 4 is closed every other cylinder during the reduced cylinder operation, the explosion intervals become uniform,
Irregular engine vibration during reduced cylinder operation is reduced. In addition, the intake passage 3a is mechanically driven by the rotation of the crankshaft 7a.
Since it is opened and closed, complicated control is not required.

【0014】さて、上記の様な吸気遮断弁をそのまま設
けると、必ず吸気行程にある気筒が1回おきに作動休止
されるので、そのままでは全気筒運転を行うことができ
ない。そこで、以下に示す様な方法を組み合わせること
によって全気筒運転を可能とする。図7は、本発明の第
2の実施例の構造を概略的に示すものであって、吸気管
3の内部に上記第1の実施例の様な吸気遮断弁を設ける
と共に、吸気遮断弁を格納する部分を設け、全気筒運転
時には該吸気遮断弁をずらして前記格納部分に格納し、
いずれの気筒の吸気通路も完全に絞られることがない様
にしたものである。同図において、8は吸気遮断弁格納
部であり、軸4aの一方の端部には軸4aを常時吸気絞
り作動位置に付勢するスプリング9が設けられ、他方の
端部には、油圧作動室10が設けられており油圧が供給
されるとスプリング9の付勢力に抗して軸4aを移動
し、吸気遮断弁を格納位置に移動する。よって、全気筒
運転時は前記油圧が油圧作動室10に供給されること
で、吸気遮断弁4が吸気遮断弁格納部8に格納され、十
分な吸入空気量(吸気通路面積)が確保される。
If the intake cutoff valve as described above is provided as it is, the cylinders in the intake stroke are always deactivated every other time, so that all cylinders cannot be operated as they are. Therefore, it is possible to operate all cylinders by combining the following methods. FIG. 7 schematically shows the structure of the second embodiment of the present invention, in which the intake cutoff valve as in the first embodiment is provided inside the intake pipe 3 and the intake cutoff valve is provided. A storage part is provided, and the intake cutoff valve is shifted and stored in the storage part during all cylinder operation,
The intake passage of any cylinder is designed so as not to be completely throttled. In the figure, reference numeral 8 denotes an intake cutoff valve storage portion, a spring 9 for constantly urging the shaft 4a to an intake throttle operating position is provided at one end of the shaft 4a, and a hydraulic operation is provided at the other end. When the chamber 10 is provided and hydraulic pressure is supplied, the shaft 4a is moved against the urging force of the spring 9 and the intake cutoff valve is moved to the retracted position. Therefore, during the operation of all cylinders, the hydraulic pressure is supplied to the hydraulic working chamber 10, whereby the intake cutoff valve 4 is stored in the intake cutoff valve storage portion 8 and a sufficient intake air amount (intake passage area) is secured. .

【0015】図8は、本発明の第3の実施例の構造を概
略的に示すものであって、吸気管3の内部に上記第1の
実施例の様な吸気遮断弁を設けると共に、各気筒毎に吸
気管3をバイパスする全気筒運転用のバイパス通路11
が設けられており、バイパス通路11と吸気管3の分岐
部には減筒運転時にバイパス通路11を遮断し、全気筒
運転時には吸気管3を遮断する切換弁12が設けられ、
該切換弁12は電子制御ユニット(図示しない)によっ
て制御され、全気筒運転時にはバイパス通路11は全開
とされる。よって、全気筒運転時はバイパス通路11の
みから吸気が供給されるため、吸気遮断弁4が通路抵抗
とならず、十分な吸入空気量(吸気通路面積)が確保さ
れる。
FIG. 8 schematically shows the structure of the third embodiment of the present invention, in which the intake cutoff valve as in the first embodiment is provided inside the intake pipe 3, and Bypass passage 11 for all cylinder operation that bypasses the intake pipe 3 for each cylinder
Is provided at the branch portion of the bypass passage 11 and the intake pipe 3 is provided with a switching valve 12 that shuts off the bypass passage 11 during reduced cylinder operation and shuts off the intake pipe 3 during all cylinder operation.
The switching valve 12 is controlled by an electronic control unit (not shown), and the bypass passage 11 is fully opened during operation of all cylinders. Therefore, since the intake air is supplied only from the bypass passage 11 during the operation of all cylinders, the intake cutoff valve 4 does not have a passage resistance, and a sufficient intake air amount (intake passage area) is secured.

【0016】図9は、本発明の第4の実施例の構造を概
略的に示したものであって、吸気管3の内部に上記第1
の実施例の様な吸気遮断弁を設けると共に、吸気遮断弁
の軸の位相を可変としておいて、全気筒運転時には、吸
気行程にある吸気遮断弁が常に全閉にならない様にする
ものである。同図において、13は油圧作動室であっ
て、位相可変手段としてのヘリカルスプライン14が組
み込まれていて油圧が供給されるとプーリ4bに対する
位相が変化する。本実施例においては全気筒運転時に油
圧が供給されると45度位相が変化する様にされてい
る。
FIG. 9 schematically shows the structure of the fourth embodiment of the present invention.
In addition to providing the intake cutoff valve as in the above embodiment, the phase of the axis of the intake cutoff valve is made variable so that the intake cutoff valve in the intake stroke is not always fully closed during all cylinder operation. . In the figure, 13 is a hydraulic working chamber, in which a helical spline 14 as a phase varying means is incorporated, and when hydraulic pressure is supplied, the phase with respect to the pulley 4b changes. In this embodiment, the phase is changed by 45 degrees when hydraulic pressure is supplied during all cylinder operation.

【0017】図10は、上述の様に、全気筒運転時に部
分気筒運転に対して45度位相をずらした場合の吸気遮
断弁の位置を示したものであって、同図に示される様
に、90度毎に現れる吸気行程の期間において、吸気遮
断弁と吸気管壁の間には隙間が保たれるので吸気通路が
閉じられた休止気筒がなくなり全気筒運転がおこなわれ
る。この様に、本第4の実施例では、第2実施例の如き
吸気遮断弁の格納部や、第3実施例の如きバイパス通路
を必要としないのでエンジンを大型化することなく全気
筒運転と減筒運転の切り換えが可能である。
FIG. 10 shows the position of the intake cutoff valve when the phase is shifted by 45 degrees with respect to the partial cylinder operation during the full cylinder operation as described above. As shown in FIG. During the intake stroke period that appears every 90 degrees, a gap is maintained between the intake cutoff valve and the intake pipe wall, so that the idle cylinder in which the intake passage is closed disappears and all cylinder operation is performed. As described above, the fourth embodiment does not require the storage portion for the intake cutoff valve as in the second embodiment or the bypass passage as in the third embodiment, so that the engine can be operated in all cylinders without increasing the size of the engine. It is possible to switch the reduced cylinder operation.

【0018】[0018]

【発明の効果】本発明は、上記の様に構成され作用する
ので、請求項1の様にすることによって、個々の吸気遮
断弁をそれぞれ独立的に制御することなく一つの駆動手
段によって全気筒の吸気遮断弁が制御されるので複雑な
制御を必要としない。さらに、請求項2、3、4の様に
することによって、全気筒運転時には吸気遮断弁によっ
て吸気通路が遮断される気筒なく全気筒運転を行うこと
ができる。また、請求項4では、請求項2の如き吸気遮
断弁の格納部や、請求項3の如きバイパス通路を必要と
しないのでエンジンを大型化することなく全気筒運転と
減筒運転の切り換えが可能である。
Since the present invention is constructed and operates as described above, according to the first aspect of the present invention, all the cylinders can be operated by one driving means without independently controlling each intake cutoff valve. Since the intake cutoff valve is controlled, complicated control is not required. Further, according to the second, third, and fourth aspects, all cylinder operation can be performed without cylinders in which the intake passage is blocked by the intake cutoff valve during all cylinder operation. Further, in claim 4, since the storage part of the intake cutoff valve as in claim 2 and the bypass passage as in claim 3 are not required, it is possible to switch between all cylinder operation and reduced cylinder operation without increasing the size of the engine. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構造の概略図である。FIG. 1 is a schematic view of the structure of the first embodiment of the present invention.

【図2】吸気遮断弁のみを抜き画きした図である。FIG. 2 is a diagram in which only an intake cutoff valve is drawn out.

【図3】各気筒用の吸気遮断弁の間の位相差を示す図で
ある。
FIG. 3 is a diagram showing a phase difference between intake cutoff valves for each cylinder.

【図4】#1気筒の吸気行程における吸気遮断弁の位置
を示す図である。
FIG. 4 is a diagram showing a position of an intake cutoff valve in an intake stroke of a # 1 cylinder.

【図5】#1気筒用の吸気遮断弁と#2気筒用の吸気遮
断弁の位置関係を示す図である。
FIG. 5 is a diagram showing a positional relationship between an intake cutoff valve for a # 1 cylinder and an intake cutoff valve for a # 2 cylinder.

【図6】各気筒の吸気遮断弁の動きを144度毎に示し
た図である。
FIG. 6 is a diagram showing the movement of the intake cutoff valve of each cylinder for every 144 degrees.

【図7】本発明の第2の実施例の構造を概略的に示す図
である。
FIG. 7 is a diagram schematically showing the structure of a second embodiment of the present invention.

【図8】本発明の第3の実施例の構造を概略的に示す図
である。
FIG. 8 is a diagram schematically showing the structure of the third embodiment of the present invention.

【図9】本発明の第4の実施例の構造を概略的に示す図
である。
FIG. 9 is a diagram schematically showing the structure of the fourth embodiment of the present invention.

【図10】第4実施例において、45度位相をずらした
場合の吸気行程における吸気遮断弁の位置を示す図であ
る。
FIG. 10 is a diagram showing the position of the intake cutoff valve in the intake stroke when the phase is shifted by 45 degrees in the fourth embodiment.

【符号の説明】[Explanation of symbols]

1…エアクリーナ 1a…吸気絞り弁 2…サージタンク 3…吸気管 4…吸気遮断弁 4a…吸気遮断弁軸 4b…プーリ 5a…カム軸 5b…プーリ 6…歯付きベルト 7a…クランク軸 8…格納部分 9…スプリング 10…油圧作動室 11…バイパス通路 12…切換弁 13…油圧作動室 14…ヘリカルスプライン #1…1番気筒 #2…2番気筒 #3…3番気筒 #4…4番気筒 #5…5番気筒 DESCRIPTION OF SYMBOLS 1 ... Air cleaner 1a ... Intake throttle valve 2 ... Surge tank 3 ... Intake pipe 4 ... Intake shutoff valve 4a ... Intake shutoff valve shaft 4b ... Pulley 5a ... Cam shaft 5b ... Pulley 6 ... Toothed belt 7a ... Crankshaft 8 ... Storage part 9 ... Spring 10 ... Hydraulic operating chamber 11 ... Bypass passage 12 ... Switching valve 13 ... Hydraulic operating chamber 14 ... Helical spline # 1 ... No. 1 cylinder # 2 ... No. 2 cylinder # 3 ... No. 3 cylinder # 4 ... No. 4 cylinder # 5th cylinder # 5

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各気筒の吸気通路内に配設した吸気遮断
弁と、前記各吸気遮断弁を連結する連結部材と、該連結
部材を駆動する駆動手段とからなり、 前記連結部材は前記各気筒の吸気通路内の吸気遮断弁を
作動サイクルの位相差と同じ位相差で連結し、 前記駆動手段が吸気行程が到来する毎に、吸気遮断弁
が、吸気通路を遮断する位置と、吸気通路を遮断しない
位置を交互にとる様に連結部材をエンジンの回転と同期
して駆動することによって、 減筒運転時に均等な間隔で作動休止を繰り返すことを特
徴とする奇数多気筒エンジンの可変気筒制御装置。
1. An intake cutoff valve disposed in an intake passage of each cylinder, a connecting member for connecting the intake cutoff valves, and a drive unit for driving the connecting member, wherein the connecting member includes The intake cutoff valve in the intake passage of the cylinder is connected with the same phase difference as the phase difference of the operation cycle, and the intake cutoff valve closes the intake passage each time the drive means reaches the intake stroke, and the intake passage Variable cylinder control for odd-numbered multi-cylinder engines characterized by repeating operation pauses at even intervals during reduced-cylinder operation by driving the connecting members in synchronization with the engine rotation so that the positions that do not shut off are alternated. apparatus.
【請求項2】 吸気通路を遮断しない様に吸気遮断弁を
格納する格納部を設け全気筒運転時には前記吸気遮断弁
を前記格納部に格納することを特徴とする前記請求項1
に記載の奇数多気筒エンジンの可変気筒制御装置。
2. The storage unit for storing an intake cutoff valve so as not to block the intake passage, and the intake cutoff valve is stored in the storage unit during operation of all cylinders.
A variable cylinder control device for an odd-numbered multi-cylinder engine described in.
【請求項3】 吸気遮断弁の設けられた吸気通路をバイ
パスするバイパス通路を配設し、全気筒運転時には前記
バイパス通路を介して吸気することを特徴とする前記請
求項1に記載の奇数多気筒エンジンの可変気筒制御装
置。
3. The odd number multiple according to claim 1, wherein a bypass passage for bypassing the intake passage provided with an intake cutoff valve is provided, and intake is performed through the bypass passage during all cylinder operation. Variable cylinder control device for cylinder engine.
【請求項4】 吸気遮断弁の位相を変えることのできる
位相可変手段を配設し、全気筒運転時には吸気行程が到
来する毎に常に吸気遮断弁が吸気の通路を遮断すること
がない位置に前記吸気遮断弁の位相をずらすことを特徴
とする前記請求項1に記載の奇数多気筒エンジンの可変
気筒制御装置。
4. A phase varying means for changing the phase of the intake cutoff valve is provided so that the intake cutoff valve does not always cut off the intake passage each time the intake stroke arrives during operation of all cylinders. 2. The variable cylinder control device for an odd multi-cylinder engine according to claim 1, wherein the phase of the intake cutoff valve is shifted.
JP7352894A 1994-04-12 1994-04-12 Variable cylinder controller of odd number multi-cylinder engine Pending JPH07279699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352894A JPH07279699A (en) 1994-04-12 1994-04-12 Variable cylinder controller of odd number multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352894A JPH07279699A (en) 1994-04-12 1994-04-12 Variable cylinder controller of odd number multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPH07279699A true JPH07279699A (en) 1995-10-27

Family

ID=13520834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352894A Pending JPH07279699A (en) 1994-04-12 1994-04-12 Variable cylinder controller of odd number multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPH07279699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037362A1 (en) * 2010-09-07 2012-03-08 Ford Global Technologies, Llc. Multi-cylinder internal combustion engine and method for operating a multi-cylinder internal combustion engine
CN111022195A (en) * 2019-12-13 2020-04-17 中汽研汽车检验中心(天津)有限公司 Cylinder deactivation method for oil saving of in-line 5-cylinder internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037362A1 (en) * 2010-09-07 2012-03-08 Ford Global Technologies, Llc. Multi-cylinder internal combustion engine and method for operating a multi-cylinder internal combustion engine
US8944026B2 (en) 2010-09-07 2015-02-03 Ford Global Technologies, Llc Multi-cylinder internal combustion engine and method for operating a multi-cylinder internal combustion engine
US9556804B2 (en) 2010-09-07 2017-01-31 Ford Global Technologies, Llc Multi-cylinder internal combustion engine and method for operating a multi-cylinder internal combustion engine
CN111022195A (en) * 2019-12-13 2020-04-17 中汽研汽车检验中心(天津)有限公司 Cylinder deactivation method for oil saving of in-line 5-cylinder internal combustion engine

Similar Documents

Publication Publication Date Title
CN101278113B (en) Control device and method for internal combustion engine
WO2005119019A1 (en) Valve gear for multi-cylinder internal combustion engine
JPH086568B2 (en) Engine valve operation control device
EP1982066A2 (en) Control apparatus and control method of an internal combustion engine
WO2007052435A1 (en) Valve timing control device and control method for internal combustion engine
US7063059B2 (en) Piston engine with selectable firing order
US10578033B2 (en) Control unit for internal combustion engine
JP2004183613A (en) Stop controlling device of internal combustion engine
JPH07279699A (en) Variable cylinder controller of odd number multi-cylinder engine
JP2006132385A (en) Control device for variable cylinder internal combustion engine
JP2000038937A (en) Variable compression ratio device for internal combustion engine
JP2004346770A (en) Device and method for starting internal combustion engine, and its power system
JPH03202602A (en) Intake device for multiple valve type engine
JP6292199B2 (en) Multi-cylinder direct injection engine stop control device
JP4702143B2 (en) Engine starter
EP3103986B1 (en) A four-stroke internal combustion engine including variable compression ratio and a vehicle
RU2011853C1 (en) Gas distributing mechanism for four-stroke internal combustion engine
JP2010229911A (en) Control device for variable valve train
JPH0380971B2 (en)
JPH07238840A (en) Variable cycle engine
JP2005048729A (en) Inter-cylinder phase difference variable device of internal combustion engine and variable cylinder device
JP2021161876A (en) Device for controlling internal combustion engine
JPH04314927A (en) Operation method for two/four-cycle engine
GB2139283A (en) A multi-cylinder IC engine operable with at least one ineffective cylinder
JPH0392546A (en) Controller of variable cycle engine