JPH07279122A - Cable for bridge - Google Patents

Cable for bridge

Info

Publication number
JPH07279122A
JPH07279122A JP6863294A JP6863294A JPH07279122A JP H07279122 A JPH07279122 A JP H07279122A JP 6863294 A JP6863294 A JP 6863294A JP 6863294 A JP6863294 A JP 6863294A JP H07279122 A JPH07279122 A JP H07279122A
Authority
JP
Japan
Prior art keywords
cable
wind
drag coefficient
rain
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6863294A
Other languages
Japanese (ja)
Other versions
JP2936087B2 (en
Inventor
Yoshihisa Minami
良久 南
Masayuki Miki
雅之 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP6863294A priority Critical patent/JP2936087B2/en
Publication of JPH07279122A publication Critical patent/JPH07279122A/en
Application granted granted Critical
Publication of JP2936087B2 publication Critical patent/JP2936087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PURPOSE:To reduce a wind load and to enhance a damping function by covering the surface of a cable used for a cable stayed bridge etc., with plastics formed by dispersing many columnar or polyprisrratic small and shallow indentations. CONSTITUTION:The surface of a cable 1 consisting of a steel wire bundle is covered with plastics 2 forming many columnar or polyprismatic small and shallow indentations 3 on its surface. The arrangement of the indentations 3 may be any of a lattice shape, a zigzag shape, or a random arrangement. Yet, the opened edges of the indentations 3 are not gentle but formed in an edge shape. No water channel is evolved on the upper surface side and the lower surface side of the cable 1 due to the interaction of wind and rain; drag coefficient is decreased; and the evolvement of rain vibration is depressed. Thus a wind load is reduced, and the design of a tower is economically done.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、橋梁全般、特に斜張橋
に使用して好適な低抗力係数及び制振機能を有する橋梁
用ケーブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bridge cable having a low drag coefficient and a vibration damping function, which is suitable for use in bridges in general and cable-stayed bridges in particular.

【0002】[0002]

【従来の技術】従来の斜張橋用ケーブルは、鋼線束を被
覆する外被としてプラスチック製外被を用いたものに代
表されていて、その横断面形状は円形で、かつ表面は平
滑に仕上げられている。このような従来のケーブルは、
その横断面において力学的及び空気力学的に方向性を持
たず、また空力的安定性も他の断面形状に比べ有利とさ
れ、抗力係数を形状の面より改善する試みについては殆
ど成されていないのが実状である。
2. Description of the Related Art Conventional cables for cable-stayed bridges are typified by those in which a plastic jacket is used as a jacket for covering a steel wire bundle, and the cross-sectional shape is circular and the surface is finished smooth. Has been. Such a conventional cable is
It has no mechanical and aerodynamic directionality in its cross section, and is aerodynamically stable compared to other cross-sectional shapes, and few attempts have been made to improve the drag coefficient from the aspect of shape. Is the actual situation.

【0003】ところが、円断面形ケーブルを用いれば、
風と雨の相互作用による振動(以下、レインバイブレー
ションと称する)がケーブルに発生することが実際の橋
で確認されている。従来は制振対策として、例えば特開
平 6− 66344号公報に開示されているようなケーブル同
士を互いに連結させる制振ケーブルを設置したり、ケー
ブル定着部近傍に制振ダンパを設ける等のケーブルに付
加的装置を設置する方法、あるいはケーブル表面形状を
変化させることによりケーブル自体に空力ダンパとして
の性能を持たせる方法、例えばケーブル表面にその軸線
方向に平行に延びる凸条列を設ける平行突起形状とした
もの(特開昭63−197703号公報)等がある。
However, if a circular cross section cable is used,
It has been confirmed in actual bridges that vibration (hereinafter referred to as rain vibration) is generated in the cable due to the interaction between wind and rain. Conventionally, as a vibration control measure, for example, a cable such as disclosed in Japanese Unexamined Patent Publication No. 6-66344 is installed to connect a cable to each other, or a cable such as a vibration damper is provided near the cable fixing portion. A method of installing an additional device, or a method of making the cable itself have an aerodynamic damper performance by changing the surface shape of the cable, for example, a parallel protrusion shape in which a convex row extending parallel to the axial direction of the cable surface is provided. (Japanese Patent Laid-Open No. 63-197703) and the like.

【0004】[0004]

【発明が解決しようとする課題】近年、斜張橋について
は他の橋同様に長大化が進み、それに伴ってケーブルも
長尺,太径化しており、その結果、ケーブルに生じる橋
軸直角方向の風荷重が殊に比例的に増大し、橋塔の断面
決定に際し重要な要因となっている。したがって、ケー
ブルに生じる風荷重の低減、即ち、ケーブルの抗力係数
の低減が非常に重要な課題となってきている。
In recent years, cable-stayed bridges have become longer as well as other bridges, and along with that, the cables have become longer and thicker. The wind load on the bridge increases in a proportional manner, which is an important factor in determining the cross section of the bridge tower. Therefore, reduction of the wind load generated on the cable, that is, reduction of the drag coefficient of the cable has become a very important issue.

【0005】また、これまでのレインバイブレーション
対策は、ケーブル断面を前述のような平行突起形状とし
てケーブル自体に空力ダンパとしての機能を付加させた
ものでは、実験によれば抗力係数は同面積の円形断面の
ケーブルと比較して約1.2倍を示すことが確認されて
おり、さらに耐久性確保のための外被に対してその上層
にさらに突起形状をプラスチック被覆する必要が生じ
る。その結果、ケーブルは通常より15%程度太径とな
るため、風の受圧面積が増加し、風荷重の点でさらに不
利となる。
Further, in the conventional measures against rain vibration, in the case where the function of an aerodynamic damper is added to the cable itself by making the cross section of the cable into the shape of parallel protrusion as described above, according to the experiment, the drag coefficient is a circle of the same area. It has been confirmed that it shows about 1.2 times that of a cable having a cross section, and it becomes necessary to further cover the upper layer of the outer cover with plastic in order to secure durability. As a result, the diameter of the cable is about 15% larger than usual, so that the pressure receiving area of the wind increases, which is further disadvantageous in terms of wind load.

【0006】一方、制振ケーブルでは、ケーブル同士を
連結する構造のため美観を損ねる問題があり、さらには
別途、高所での工事が必要となるので工費および工期が
増大する経済的不利は免れ得ない。また、制振ダンパで
は、斜張橋ケーブルの長大化に伴って、取付け位置を桁
上からかなり離れた個所にしなければ効果が得られない
ため美観を損ねるし、制振ケーブルと同様に工費および
工期の増大が予想される。
On the other hand, the vibration damping cable has a problem that the structure is formed by connecting the cables to each other, which impairs the aesthetic appearance. Further, since the construction at a high place is additionally required, the economical disadvantage that the construction cost and the construction period increase is unavoidable. I don't get it. In addition, with the vibration damper, as the cable length of the cable-stayed bridge becomes longer, the effect cannot be obtained unless the mounting position is located far away from the girder, which is detrimental to aesthetics. The construction period is expected to increase.

【0007】本発明は、このような問題点の解消を図る
ために成されたものであり、本発明の目的は、抗力係数
を従来と同様のケーブル径で格段に低減し得て、同時に
レインバイブレーションの発生を有効に抑止することが
できる橋梁用ケーブルを工場側での施工による高経済性
の下で提供することにある。
The present invention has been made in order to solve such a problem, and an object of the present invention is to significantly reduce the drag coefficient with a cable diameter similar to that of the conventional one, and at the same time to improve the rain coefficient. The purpose of this is to provide a bridge cable that can effectively suppress the occurrence of vibrations with high economic efficiency due to construction at the factory side.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。すな
わち、本発明は、鋼線束及び該鋼線束を被覆するプラス
チック外被から成り、該プラスチック外被の外表面が、
小さく浅い窪みを分散して多数有する面に形成されてい
ることを特徴とする低抗力係数及び制振機能を有する橋
梁用ケーブルである。本発明はまた、小さく浅い窪み
が、円柱形状または多角柱形状に形成されることを特徴
とする低抗力係数及び制振機能を有する橋梁用ケーブル
である。
The present invention has the following constitution in order to achieve the above object. That is, the present invention comprises a steel wire bundle and a plastic jacket for covering the steel wire bundle, wherein the outer surface of the plastic jacket is
A cable for a bridge having a low drag coefficient and a vibration damping function, which is formed on a surface having a large number of small shallow depressions dispersed therein. The present invention is also a bridge cable having a low drag coefficient and a damping function, characterized in that the small and shallow depression is formed in a cylindrical shape or a polygonal prism shape.

【0009】[0009]

【作用】本発明に従えば、橋梁用ケーブルの外面が、プ
ラスチック外被の外表面に小さく浅い窪みが分散して多
数設けられる面に形成されている。従って、従来の平滑
円形断面のケーブルでは、風と雨の相互作用によりケー
ブルの下面側及び上面側のいずれにも水路が形成され易
いのに較べて、本発明に係るケーブルは、上面側に水路
が殆ど生じなく、また下面側についても水路が発生し難
くてこれが抗力係数及びレインバイブレーションに優れ
た効果をもたらすものと考えられる。これによって本発
明は、ケーブル外周表面を窪みを多数有する形状とする
ことにより、抗力係数を格段に低下させるとともに、レ
インバイブレーションの発生を抑えることが可能であ
る。さらに本発明は、小さく浅い窪みを、円柱形状また
は多角柱形状に形成させることによって、抗力係数の低
減及びレインバイブレーションの抑制により優れた効果
を奏する。
According to the present invention, the outer surface of the cable for bridge is formed on the outer surface of the plastic jacket with a large number of small shallow recesses dispersed therein. Therefore, in the conventional cable having a smooth circular cross section, a water channel is easily formed on both the lower surface side and the upper surface side of the cable due to the interaction of wind and rain, whereas the cable according to the present invention has a water channel on the upper surface side. Is hardly generated, and a water channel is unlikely to occur on the lower surface side, which is considered to bring about an excellent effect on the drag coefficient and rain vibration. Thus, in the present invention, by forming the outer peripheral surface of the cable into a shape having a large number of depressions, it is possible to significantly reduce the drag coefficient and suppress the occurrence of rain vibration. Further, according to the present invention, by forming the small and shallow depressions in the shape of a cylinder or a polygonal prism, the drag coefficient can be reduced and the rain vibration can be suppressed.

【0010】[0010]

【実施例】以下、本発明の実施例について添付図面を参
照しながら説明する。図1及び図2は、本発明の実施例
に係る橋梁用ケーブルの部分示外観図及びA−A線矢視
横断面図であり、また、図3は図2の拡大図、図4は図
3の部分示拡大図である。このケーブル1は、鋼線束及
び該鋼線束を被覆するプラスチック外被2によって、斜
線を施して示される本体が形成される。前記プラスチッ
ク外被2はその外表面に、小さく浅い窪み3が分散して
多数設けられている。この窪み3は、例えば円柱形状で
あって、口縁がなだらかではなくエッジ状に形成されて
いる。上記ケーブル1は、具体的には直径φ100〜2
00mmの本体において、本体中心に対する分周角15°
間隔(24分割、図3参照)に、直径φ10〜20mm
(ケーブル径の約10%)、深さ1〜3mmの窪み3が配
列して設けられるとともに、長手方向(軸線方向)にも
円周方向の分周角15°間隔と同じピッチで窪み3が配
列して設けられる。なお、窪み3としては図示例の正格
子状配列に限らなく、千鳥格子状配列や、また、ランダ
ム配列であっても良い。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 are a partial external view of a cable for a bridge according to an embodiment of the present invention and a transverse sectional view taken along the line AA, FIG. 3 is an enlarged view of FIG. 2, and FIG. 3 is an enlarged view showing a part of FIG. The cable 1 is formed by a steel wire bundle and a plastic jacket 2 covering the steel wire bundle to form a body shown by hatching. The plastic outer cover 2 has a large number of small shallow recesses 3 dispersed on the outer surface thereof. The recess 3 has, for example, a columnar shape, and the rim is formed in an edge shape instead of a gentle shape. Specifically, the cable 1 has a diameter of φ100 to 2
With a body of 00 mm, the dividing angle is 15 ° with respect to the center of the body
Diameter of 10 to 20 mm at intervals (24 divisions, see Fig. 3)
(Approximately 10% of the cable diameter), the recesses 3 having a depth of 1 to 3 mm are provided in an array, and the recesses 3 are also provided in the longitudinal direction (axial direction) at the same pitch as the circumferential dividing angle of 15 °. It is provided in an array. The depressions 3 are not limited to the regular lattice arrangement shown in the figure, but may be a staggered arrangement or a random arrangement.

【0011】このような実施例の橋梁用ケーブルは、窪
み3加工によるプラスチック外被2の断面欠損は僅少で
あることから、これを補償するための径の増加は殆ど必
要なく、従って、風の受圧面積は従来の同径の円形断面
ケーブルと殆ど同じであると考えて何等差し支えない。
In the bridge cable of such an embodiment, the cross-section loss of the plastic casing 2 due to the processing of the recess 3 is very small, so that it is almost unnecessary to increase the diameter for compensating for this, and therefore the windage It can be considered that the pressure receiving area is almost the same as that of the conventional circular cross-section cable having the same diameter.

【0012】本発明に係るケーブルが低抗力係数を有
し、かつ、制振機能に優れていることを明らかにするた
めに、ケーブル設計条件と実験結果の対照関係を示して
なる下記「表1」のように、本発明に係るケーブルの各
例A,Bについて、従来の同径の円形断面ケーブルCと
比較しながら種々の実験を重ねたところ、以下に述べる
ような結果が得られた。この場合の実験条件としては、
本発明に係るケーブルの各例A,Bは、いずれも直径が
同じ 100mmであって、「A」は直径10mm,深さ 1mmの窪
み3を円周に等分して24個配置したもの、「B」は直
径10mm,深さ 3mmの窪み3を円周に等分して24個配置
したものである。一方、従来のケーブルCは、直径が同
じ 100mmであって表面が平滑な円形断面ケーブルであ
る。
In order to clarify that the cable according to the present invention has a low drag coefficient and an excellent vibration damping function, the following Table 1 shows a contrasting relationship between cable design conditions and experimental results. As described above, various experiments were repeated for each of the cables A and B according to the present invention in comparison with the conventional circular cross-section cable C having the same diameter, and the following results were obtained. The experimental conditions in this case are:
Each of the examples A and B of the cable according to the present invention has the same diameter of 100 mm, and "A" has 24 recesses 3 having a diameter of 10 mm and a depth of 1 mm, which are equally divided into the circumference. "B" has 24 depressions 3 with a diameter of 10 mm and a depth of 3 mm, which are equally divided on the circumference. On the other hand, the conventional cable C is a circular cross section cable having the same diameter of 100 mm and a smooth surface.

【0013】橋梁用ケーブルの空力特性に関する静的試
験結果を示す後記の各グラフには、抗力係数(CD 、縦
軸)と風速に相当するレイノズル数(Re、横軸)との
関係、レインバイブレーション(2A/D、縦軸)と風
速(V/fD、横軸)との関係、空力ダンピング
(δa 、縦軸)と風速(V/fD、横軸)との関係がそ
れぞれ表されている。なお、Re数,CD 数および空力
ダンピングδa を求める式は、下記「数1」,「数2」
及び「数3」に示される通りである。この場合、空力ダ
ンピングとは、ケーブルにたとえ振動が発生しなくても
風速の増加に伴いこの値が下がることで空力的に不安定
であることを確認できる指標のことである。
The following graphs showing the static test results concerning the aerodynamic characteristics of the cable for bridge show the relationship between the drag coefficient (CD, vertical axis) and the Reynolds number corresponding to the wind speed (Re, horizontal axis), and the rain vibration. The relationship between (2 A / D, vertical axis) and wind speed (V / fD, horizontal axis) and the relationship between aerodynamic damping (δ a , vertical axis) and wind speed (V / fD, horizontal axis) are shown. . The formulas for obtaining the Re number, the CD number, and the aerodynamic damping δ a are shown in the following "Equation 1" and "Equation 2".
And as shown in “Equation 3”. In this case, aerodynamic damping is an index that can confirm that the cable is aerodynamically unstable because its value decreases as the wind speed increases, even if vibration does not occur.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【数1】●レイノズル数(Re); Re=V×h(θ)/μ 但し、V :風速(m/s) h(θ):風向角ごとの風方向からみた投影図形の高さ
(m) μ :動粘性係数(=1.46×10-5m/s)
[Equation 1] Rey Nozzle number (Re); Re = V × h (θ) / μ where V: wind speed (m / s) h (θ): height of the projected figure from the wind direction for each wind direction angle ( m) μ: Dynamic viscosity coefficient (= 1.46 × 10 -5 m / s)

【0016】[0016]

【数2】●抗力係数(CD ); CD =PD(θ) /{1/2×ρ×V2 ×A(θ) } 但し、PD(θ) :風向角ごとの抗力(kg) ρ :空気密度 (=0.125kg・s/m4) V :風速(m/s) A(θ) :風向角ごとの風方向からみた投影面積[Number 2] ● drag coefficient (CD); CD = PD ( θ) / {1/2 × ρ × V 2 × A (θ)} However, PD (θ): drag of each wind direction angle (kg) ρ: Air density (= 0.125kg ・ s / m 4 ) V: Wind speed (m / s) A (θ): Projected area viewed from the wind direction for each wind direction angle

【0017】[0017]

【数3】●空力ダンピングδa ; δa = δtotal − δs 但し、δtotal :設定風速の下で供試財を強制過振した
ときの対数減衰率 δs :無風時の対数減衰率
[Equation 3] ● Aerodynamic damping δ a ; δ a = δ total − δ s where δ total is the logarithmic decay rate when the sample is forcibly shaken under the set wind speed δ s : The logarithmic decay rate when there is no wind

【0018】それらの各例について、先ず抗力係数(C
D )の測定を行ったが、本発明各例A,Bでは、抗力係
数(CD )とレイノズル数(Re)との関係線図である
図5、図6の各(イ)にそれぞれ対応示されるように、
Re数が104 〜105 の範囲で格段に低い抗力係数値
を示している。また、円周方向の角度(迎角、横軸)を
変化させて風を当てたときの抗力係数の測定値がそれぞ
れ示される図5、図6の各(ロ)から明らかなように、
迎角を変化させて風を当てても抗力係数値は殆ど変化せ
ず、従って、本発明各例A,Bは窪み3を設けるにもか
かわらず、空力的に非常に安定した形状であると言うこ
とができる。
For each of these examples, first the drag coefficient (C
D) was measured, but in each of the examples A and B of the present invention, it corresponds to each of (a) in FIG. 5 and FIG. 6, which is a relational diagram between the drag coefficient (CD) and the Reynolds number (Re). So that
The Re coefficient shows a remarkably low drag coefficient value in the range of 10 4 to 10 5 . Further, as is clear from each (b) of FIG. 5 and FIG. 6, in which the measured values of the drag coefficient when the wind is applied while changing the angle in the circumferential direction (angle of attack, horizontal axis) are shown,
Even if the angle of attack is changed and wind is applied, the drag coefficient value hardly changes. Therefore, each of the examples A and B of the present invention has a very aerodynamically stable shape despite having the depression 3. Can say

【0019】このような本発明各例A,Bに対して、従
来例Cについては図11から明らかなように、Re数が
104 〜105 の範囲で常に高い抗力係数値を示してい
ることが判る。
In contrast to the examples A and B of the present invention as described above, as is apparent from FIG. 11, the conventional example C always exhibits a high drag coefficient value in the Re number range of 10 4 to 10 5 . I understand.

【0020】一方、図12には斜張橋ケーブルの場合で
レインバイブレーションが最も発生し易い風向条件の一
つとされている水平偏角(α)48°、立上角(β)2
7°での従来例Cにおけるケーブルの風と雨の影響によ
る振動特性実験の結果が示される。この図において、縦
軸は振動:2A/D、横軸は風速:V/fDをそれぞれ
表していて(但し、Dは直径、Aは振動の振幅、Vは風
速)、(イ)は雨量:0リットル/min、(ロ)は雨量:
1.6リットル/min、(ハ)は雨量:3リットル/min、
(ニ)は雨量:6,リットル/minの場合である。なお、
水平偏角(α)及び立上角(β)に関しては、図13の
ケーブル模型姿勢(正姿勢)図に示される通りである。
この図12に示す通り、円形断面ケーブルでは雨量:
6,リットル/minの場合を除いて、殆どの風速条件下で
レインバイブレーションが発生していることが判る。
On the other hand, FIG. 12 shows a horizontal deflection angle (α) of 48 ° and a rising angle (β) of 2, which are one of the wind direction conditions in which rain vibration is most likely to occur in a cable-stayed bridge cable.
The result of the vibration characteristic experiment under the influence of wind and rain of the cable in Conventional Example C at 7 ° is shown. In this figure, the vertical axis represents vibration: 2 A / D, and the horizontal axis represents wind speed: V / fD (where D is diameter, A is vibration amplitude, V is wind speed), and (a) is rainfall: 0 liters / min, (b) is the rainfall:
1.6 l / min, (c) Rainfall: 3 l / min,
(D) is the case of rainfall: 6, l / min. In addition,
The horizontal declination (α) and the rising angle (β) are as shown in the cable model posture (normal posture) diagram of FIG. 13.
As shown in FIG. 12, the amount of rainfall in the circular cross section cable:
It can be seen that rain vibration occurs under most wind speed conditions except at 6 liters / min.

【0021】上記の従来例Cに対して、図7、図8には
本発明各例中のA,Bの2例について図12図示の比較
例と同条件での実験結果が示される。それら図7、図8
から明らかなように、風と雨とがどの条件でも本発明に
係るケーブルは全く振動しなくて、非常に優れたレイン
バイブレーション抑止効果が奏されることが立証され
る。
In contrast to the above-mentioned conventional example C, FIGS. 7 and 8 show the experimental results under the same conditions as the comparative example shown in FIG. 12 for two examples A and B in each example of the present invention. Figures 7 and 8
As is clear from the above, it is proved that the cable according to the present invention does not vibrate at all under any conditions of wind and rain, and a very excellent effect of suppressing rain vibration is exerted.

【0022】さらに、図9、図10には本発明各例中の
A,Bの2例についての風速:V/fD(横軸)と空力
ダンピング:δa (縦軸)との関係が、雨量をパラメー
タとしてグラフ示されるが、この両図から明らかなよう
に、どの雨量条件でも風速の増加に伴って空力ダンピン
グは上昇傾向にあるので、空力的に非常に安定している
ことが確認できる。
Further, FIG. 9 and FIG. 10 show the relationship between the wind speed: V / fD (horizontal axis) and the aerodynamic damping: δ a (vertical axis) for the two examples A and B of the present invention. The rainfall is shown as a parameter in the graph, but as is clear from these figures, it can be confirmed that the aerodynamic damping is tending to increase with increasing wind speed under any rainfall condition, so it is very stable aerodynamically. .

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、橋梁
用ケーブルにおけるプラスチック外被の外表面を、小さ
く浅い窪みを分散して多数有する面に形成させてなる構
成としたことにより、抗力係数の低減化、即ち、従来の
同径での円断面ケーブルに比して風荷重を格段に低減で
き、特に斜張橋の塔の経済設計に関して非常に有効であ
る。本発明はこれと併せて、風と雨の相互作用によるケ
ーブルの振動(レインバイブレーション)の発生を抑止
でき、また、風速の増加に伴って空力ダンピングは上昇
することから、空力的にも非常に安定するという格別の
効果が奏される。本発明はさらに、小さく浅い窪みを、
円柱または多角柱形状に形成させることによって、抗力
係数の低減及びレインバイブレーションの抑制に対して
より一層の効果が発揮されるものである。
As described above, according to the present invention, since the outer surface of the plastic jacket of the cable for a bridge is formed as a surface having a large number of small shallow depressions dispersed therein, the drag force is reduced. The reduction of the coefficient, that is, the wind load can be significantly reduced as compared with the conventional circular cross-section cable with the same diameter, and it is very effective especially for the economical design of the tower of the cable-stayed bridge. In addition to this, the present invention can suppress the generation of cable vibration (rain vibration) due to the interaction between wind and rain, and since the aerodynamic damping increases as the wind speed increases, it is extremely aerodynamic. The special effect of being stable is exhibited. The present invention further comprises a small shallow depression,
By forming it in the shape of a cylinder or a polygonal prism, the effect of reducing the drag coefficient and suppressing the rain vibration is further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る橋梁用ケーブルの部分省
略示外観図である。
FIG. 1 is a partially omitted external view of a bridge cable according to an embodiment of the present invention.

【図2】図1のA−A線矢視横断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG.

【図3】図2の拡大図である。FIG. 3 is an enlarged view of FIG.

【図4】図3の部分示拡大図である。FIG. 4 is an enlarged view showing a part of FIG.

【図5】本発明の第1実施例Aにおける抗力係数の測定
結果が示されるグラフである。
FIG. 5 is a graph showing a measurement result of a drag coefficient in the first embodiment A of the present invention.

【図6】本発明の第2実施例Bにおける抗力係数の測定
結果が示されるグラフである。
FIG. 6 is a graph showing measurement results of drag coefficient in the second embodiment B of the present invention.

【図7】本発明の第1実施例Aにおけるレインバイブレ
ーションが示されるグラフである。
FIG. 7 is a graph showing rain vibration in the first embodiment A of the present invention.

【図8】本発明の第2実施例Bにおけるレインバイブレ
ーションが示されるグラフである。
FIG. 8 is a graph showing rain vibration in the second embodiment B of the present invention.

【図9】本発明の第1実施例Aにおける空力ダンピング
が示されるグラフである。
FIG. 9 is a graph showing aerodynamic damping in the first embodiment A of the present invention.

【図10】本発明の第2実施例Bにおける空力ダンピン
グが示されるグラフである。
FIG. 10 is a graph showing aerodynamic damping in the second embodiment B of the present invention.

【図11】比較例である従来例Cの抗力係数が示される
グラフである。
FIG. 11 is a graph showing the drag coefficient of Conventional Example C, which is a comparative example.

【図12】比較例である従来例Cのレインバイブレーシ
ョンが示されるグラフである。
FIG. 12 is a graph showing a rain vibration of a comparative example C which is a comparative example.

【図13】斜張橋ケーブルの模型姿勢(正姿勢)図であ
る。
FIG. 13 is a model posture (normal posture) view of the cable stayed bridge cable.

【符号の説明】[Explanation of symbols]

1…ケーブル、 2…プラスチック外被、 3…窪み、 1 ... Cable, 2 ... Plastic jacket, 3 ... Dimple,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼線束及び該鋼線束を被覆するプラスチ
ック外被から成り、該プラスチック外被の外表面が、小
さく浅い窪みを分散して多数有する面に形成されている
ことを特徴とする低抗力係数及び制振機能を有する橋梁
用ケーブル。
1. A low characterized in that it comprises a steel wire bundle and a plastic jacket for covering the steel wire bundle, and the outer surface of the plastic jacket is formed on a surface having a large number of small shallow recesses dispersed therein. Bridge cable with drag coefficient and damping function.
【請求項2】 小さく浅い窪みが、円柱形状または多角
柱形状に形成される請求項1記載の低抗力係数及び制振
機能を有するケーブル。
2. The cable having a low drag coefficient and a vibration damping function according to claim 1, wherein the small shallow depression is formed in a cylindrical shape or a polygonal prism shape.
JP6863294A 1994-04-06 1994-04-06 Bridge cables Expired - Fee Related JP2936087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6863294A JP2936087B2 (en) 1994-04-06 1994-04-06 Bridge cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6863294A JP2936087B2 (en) 1994-04-06 1994-04-06 Bridge cables

Publications (2)

Publication Number Publication Date
JPH07279122A true JPH07279122A (en) 1995-10-24
JP2936087B2 JP2936087B2 (en) 1999-08-23

Family

ID=13379318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6863294A Expired - Fee Related JP2936087B2 (en) 1994-04-06 1994-04-06 Bridge cables

Country Status (1)

Country Link
JP (1) JP2936087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560807B1 (en) * 1999-09-15 2003-05-13 Freyssinet International (Stup) Cable with parallel wires for building work structure, anchoring for said cable, and anchoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560807B1 (en) * 1999-09-15 2003-05-13 Freyssinet International (Stup) Cable with parallel wires for building work structure, anchoring for said cable, and anchoring method
US6658684B2 (en) 1999-09-15 2003-12-09 Freyssinet International (Stup) Cable with parallel wires for building work structure, anchoring for said cable and anchoring method

Also Published As

Publication number Publication date
JP2936087B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
CA1083616A (en) Vibration damper
EP0627868B1 (en) Loudspeaker driver surrounding
JPH07279122A (en) Cable for bridge
JP2923186B2 (en) Damping cable
US11300097B2 (en) Wind turbine blade apparatus and wind turbine blade attachment member
JP4828148B2 (en) Structure of rotary press-fitted winged pile
JP2898205B2 (en) Damping cable
JP2922079B2 (en) Damping cable
JP2847907B2 (en) Overhead power transmission line and its overhead wire method
JPH0835207A (en) Damping structure of diagonal suspension bridge cable
JPH0487211A (en) Aerial cable of low wind noise and low corona noise
JP2016079792A (en) Cover member, wind noise reduction structure, and handrail provided with the same
JP2942438B2 (en) Low noise electric wire
JPH0877830A (en) Low noise overhead electric wire
JP2583300B2 (en) Low corona low wind noise wire
JP3118185B2 (en) Long suspension bridge with cable system
JPH0642328B2 (en) Overhead power line
JP2585927Y2 (en) Low wind noise low AN electric wire
JP2006196345A (en) Salt damage preventing equipment of insulator for wiring
JP2959884B2 (en) Low wind noise type stranded conductor
JPH0841823A (en) External coating protection pipe for cable
JPH09233663A (en) Mounting construction for galloping prevention ring
JP2895487B2 (en) Low wind noise overhead electric wire
JPS61245409A (en) Low noise wire
JPH08182107A (en) Supporting part for current collector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990518

LAPS Cancellation because of no payment of annual fees