JPH0727854B2 - Electron beam writer - Google Patents

Electron beam writer

Info

Publication number
JPH0727854B2
JPH0727854B2 JP59098677A JP9867784A JPH0727854B2 JP H0727854 B2 JPH0727854 B2 JP H0727854B2 JP 59098677 A JP59098677 A JP 59098677A JP 9867784 A JP9867784 A JP 9867784A JP H0727854 B2 JPH0727854 B2 JP H0727854B2
Authority
JP
Japan
Prior art keywords
electron
electron beam
lens
beam diameter
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59098677A
Other languages
Japanese (ja)
Other versions
JPS60244025A (en
Inventor
進 小笹
徳郎 斉藤
勝征 原田
明平 藤波
和己 岩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP59098677A priority Critical patent/JPH0727854B2/en
Priority to US06/735,184 priority patent/US4692579A/en
Publication of JPS60244025A publication Critical patent/JPS60244025A/en
Publication of JPH0727854B2 publication Critical patent/JPH0727854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • H01J2237/30488Raster scan
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31764Dividing into sub-patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子線により超微細図形を描画する電子線描
画装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to an electron beam drawing apparatus for drawing an ultrafine figure with an electron beam.

〔発明の背景〕[Background of the Invention]

電子線を集束偏向して基板上に照射し、任意の図形を描
画する電子線描画は、半導体集積回路素子の製造等に用
いられている。これを用いて0.2μmまたはそれ以下と
いつた超微細図形を描画する場合、照射するビームは収
差によるぼけを小さくする必要からビーム開き角が小さ
く制限されるため、電流の値が小さく描画に長時間を要
する欠点を生じる。
Electron beam drawing for focusing and deflecting an electron beam to irradiate it on a substrate and drawing an arbitrary figure is used for manufacturing a semiconductor integrated circuit device or the like. When using this to draw ultra-fine figures of 0.2 μm or less, the beam to be irradiated is limited to a small beam divergence angle because it is necessary to reduce blur due to aberration, so the current value is small and drawing is long. The drawback is time-consuming.

先行技術では問題を解消するため、図形に応じビームス
ポットを可変して描画の高速化をはかる点が特開昭58−
89579号公報に開示されている。
In the prior art, in order to solve the problem, the beam spot is changed according to the figure to speed up the drawing.
It is disclosed in Japanese Patent No. 89579.

しかしこの先行技術では、レンズ倍率の変更に伴って偏
向方向、焦点位置ずれに対し補正することが記載されて
いるが多大の時間と手間を要する問題を有していた。
However, although this prior art describes that the deflection direction and the focus position shift are corrected in accordance with the change of the lens magnification, it has a problem that it takes a lot of time and labor.

上記先行技術ではビーム径を変更するために電子銃のバ
イアス電圧を調整する以外に、レンズ条件を変えその際
偏向方向の再調整についても示されている。この作業は
一般に長時間を要し自動化が望ましいと記載されている
ものの具体的開示は示されていない。
In the above-mentioned prior art, besides adjusting the bias voltage of the electron gun in order to change the beam diameter, the lens condition is changed and readjustment of the deflection direction is also shown. This work is generally described as requiring a long time and automation is desirable, but no specific disclosure is given.

第2図(a)(b)を用いレンズ動作と図(c)(d)
で正方形を描画する際の偏向方向や偏向感度のずれの調
整について説明する。
Lens operations and figures (c) and (d) using FIGS.
The adjustment of the deviation of the deflection direction and the deflection sensitivity when drawing a square will be described.

図(a)のビーム径を標準とし、ビーム径を増大すると
図中(a)の物点位置Aをより対物レンズ側に近づくよ
うに集束レンズの励磁を弱める。この時対物レンズの焦
点位置が被露光物上から変化する。再度対物レンズの焦
点位置を被露光物上に合わすため対物レンズを強励磁し
て調整する。これにより集束レンズ、対物レンズ共に
(a)に比べ拡大系となりビーム径は増大する。
With the beam diameter in FIG. 10A as the standard, increasing the beam diameter weakens the excitation of the focusing lens so that the object point position A in FIG. At this time, the focal position of the objective lens changes from above the exposed object. Again, the objective lens is strongly excited and adjusted in order to bring the focus position of the objective lens onto the object to be exposed. As a result, both the focusing lens and the objective lens become an expanding system as compared with (a), and the beam diameter increases.

対物レンズの励磁変化に伴い偏向器の偏向の方向や、偏
向感度は図(b)と図(a)では全く異なってくる。
The deflection direction of the deflector and the deflection sensitivity are completely different between FIG. (B) and FIG. (A) according to the excitation change of the objective lens.

したがって偏向の校正を(一般に大変に長時間を必要と
する)やり直す必要が生じる。
Therefore, it becomes necessary to recalibrate the deflection (generally requiring a very long time).

偏向感度と偏向方向がどのように異なってくるかを概念
的に記述すると次のようになる。
A conceptual description of how the deflection sensitivity and the deflection direction differ is as follows.

即ち、例えば第2図(a)の状態で一辺がLの正方形を
描画するように偏向器の調整したとする。(同図C),
図(b)の状態(対物レンズが強励磁になっている)で
図(a)と同じ偏向信号を与えると、極端に書くと図
(d)の実線のようにLより小さな一辺1の回転した正
方形になる。これでは描画精度が向上しない。レンズが
図(b)の状態で図(c)のように一辺Lの正方形を描
画するためには、偏向器に図(a)とは異なる強い信号
を与えなければならない。これを式で書くと X′=(1+A1)X+B1Y+C1X2+D1XY+E1Y2+O1(3) Y′=A2X+(1+B2)Y+C2X2XY+E2Y2+O2(3) ここでA〜Eは係数、O(3)はX,Yの3次以上の補正
項である。
That is, for example, it is assumed that the deflector is adjusted so as to draw a square of which one side is L in the state of FIG. (Figure C),
When the same deflection signal as that shown in FIG. 7A is applied in the state of FIG. 9B (the objective lens is strongly excited), when written extremely, the rotation of one side 1 smaller than L as shown by the solid line in FIG. It becomes a square. This does not improve drawing accuracy. In order for the lens to draw a square with one side L as shown in FIG. 7C in the state shown in FIG. 7B, a strong signal different from that shown in FIG. When this is written by the formula, X ′ = (1 + A 1 ) X + B 1 Y + C 1 X 2 + D 1 XY + E 1 Y 2 + O 1 (3) Y ′ = A 2 X + (1 + B 2 ) Y + C 2 X 2 XY + E 2 Y 2 + O 2 (3) where A to E are coefficients, and O (3) is a correction term of the third or higher order of X and Y.

さて、偏向信号X,Yに対し、(a)状態では仮に全ての
係数が A=B=C=D=E=O、O1=O2=O で図(C)の一辺の正方形が描画できるが、(b)状態
では、Oでない係数を求めて上式に従って加えこんだ
X′,Y′なる信号を偏向器に与えなければならない。こ
れらの係数を求めるのに一般に長時間を要する。もし、
手計算で行うとすれば時間のオーダが必要となる。その
上、ビームの焦点が非点調整と同時に校正する必要が有
り更に複雑となり時間を要する。
Now, for the deflection signals X and Y, in the state (a), all the coefficients are A = B = C = D = E = O, O 1 = 0 2 = O, and the square on one side of FIG. However, in the state (b), it is necessary to obtain the non-O coefficient and apply the signals X ', Y'added according to the above equation to the deflector. Generally, it takes a long time to obtain these coefficients. if,
If it is done by hand, it requires an order of time. Moreover, the focus of the beam needs to be calibrated at the same time as the astigmatism adjustment, which is more complicated and time-consuming.

〔発明の目的〕[Object of the Invention]

本願発明は、上記のようなビーム変更に伴う径偏向方向
及び偏向感度のずれに対する調整時の欠点を除き、高精
度で高速の電子線描画を可能とする電子線描画装置を提
供することにある。
An object of the present invention is to provide an electron beam drawing apparatus capable of high-accuracy and high-speed electron beam drawing, except for the above-mentioned drawbacks when adjusting the deviation of the radial deflection direction and the deflection sensitivity due to beam change. .

本願発明は上記公知例では実現できなかっ高速描画をな
し得るため、物点位置を同じ位置でビーム径を可変でき
る描画装置を提供するものである。
The present invention provides a drawing apparatus that can change the beam diameter at the same object point position because high-speed drawing that cannot be realized by the above-mentioned known example can be achieved.

〔発明の概要〕[Outline of Invention]

上記目的を達成するために、本発明では、半導体集積回
路素子等の描画すべき図形のすべてが微細で高精度を必
要とするものではなく、多くの部分は緩い精度で充分な
場合が多い。したがってビーム径(及び電流)を図形に
応じて切換え、微細高精度のものは、小さいビーム径で
小さいピッチで描画し、それ以外は大きいビーム径で大
きいピツチで描画する如く構成したもので、全体として
の描画時間を大巾に短縮出来るものである。
In order to achieve the above object, in the present invention, not all graphics to be drawn, such as a semiconductor integrated circuit element, are fine and require high precision, and in many cases loose precision is sufficient. Therefore, the beam diameter (and current) is switched according to the figure. Fine and high-precision ones are designed to draw with a small beam diameter and a small pitch, and other than that, it is configured to draw with a large beam diameter and large pitch. The drawing time can be greatly shortened.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を説明する。第1図はビーム径
(および電流)を切換える一例を示すもので、1は電子
源で、超微細図形を描画する目的のためには、線源径が
小さく、輝度の大きい、電界放射陰極を用いることが好
ましい。2,3,4は電子レンズ、5は描画すべき基板であ
る。図の(a)はビーム径が小さい状態で、電子レンズ
は3および4のみを使用し、線源を縮小して基板上に投
影する。同図(b)はビーム径を大きくした状態で、電
子レンズは2,4を使用し拡大系としている。この場合、
電子レンズ4の物点の位置を同じとなるように電子レン
ズ2および3を設定することにより、電子レンズ4の使
用条件は同じとすることが出来る。すなわち、レンズ2
および3のどちらを使用するかを選ぶだけでビーム径を
変えることが出来る。この場合ビーム電流の変化は、倍
率の自乗となる。したがつて倍率比を1:2としておけ
ば、ビーム径(および電流)は1:4で変化する。
An embodiment of the present invention will be described below. FIG. 1 shows an example of switching the beam diameter (and current). Reference numeral 1 denotes an electron source. For the purpose of drawing an ultrafine figure, a field emission cathode having a small source diameter and high brightness is used. It is preferable to use. 2, 3 and 4 are electronic lenses, and 5 is a substrate to be drawn. In the state (a) of the drawing, the beam diameter is small, only the electron lenses 3 and 4 are used, and the source is reduced and projected onto the substrate. In the same figure (b), the beam diameter is made large, and the electron lens 2 and 4 are used as a magnifying system. in this case,
By setting the electron lenses 2 and 3 so that the positions of the object points of the electron lens 4 are the same, the usage conditions of the electron lens 4 can be made the same. That is, the lens 2
The beam diameter can be changed simply by selecting which of 3 and 3 is used. In this case, the change in beam current is the square of the magnification. Therefore, if the magnification ratio is set to 1: 2, the beam diameter (and current) will change at 1: 4.

電子ビーム電流を大きくした場合、描画のための偏向走
査のピツチを同じとすると走査の速度を大きくする必要
があるが、電子源として電界放射陰極を用いた場合大き
い電流密度のため必要な速度が非常に大きくなり、偏向
電気回路の応答性に問題が生じる。したがって、走査の
ピツチを荒くして走査の速度を等しくするように構成す
ることが好ましい。
When the electron beam current is increased, the scanning speed needs to be increased if the deflection scanning pitch for writing is the same, but when a field emission cathode is used as the electron source, the required speed is increased due to the large current density. It becomes very large and causes a problem in the response of the deflection electric circuit. Therefore, it is preferable to make the scanning pitch rough so as to make the scanning speed equal.

高精度の描画装置は通常デイジタル偏向が行なわれてい
る。したがつて、最小偏向単位(LSB)の整数倍比に走
査ピツチを選び、ビーム電流比がその自乗となるように
構成すれば、走査速度は等しくすることが出来る。第3
図は上記のような方法で描画した図形の例を示すもの
で、同図(イ)は小さいビーム径で細かい走査ピツチで
描画した図形、同図(ロ)は大きいビーム径で荒い走査
ピツチで描画した図形である。図から分るように、大き
いビーム径で描画した場合、ビーム照射回数が少なく
(ビーム電流比の逆数)走査速度が同じであるから、描
画時間が短縮される。
A high-precision drawing device is usually subjected to digital deflection. Therefore, if the scanning pitch is selected as an integer multiple ratio of the minimum deflection unit (LSB) and the beam current ratio is the square of the scanning pitch, the scanning speeds can be made equal. Third
The figure shows an example of a figure drawn by the above method. The figure (a) is a figure drawn with a fine scanning pitch with a small beam diameter, and the figure (b) is a rough scanning pitch with a large beam diameter. It is a drawn figure. As can be seen from the figure, when writing with a large beam diameter, the number of beam irradiations is small (the reciprocal of the beam current ratio) and the scanning speed is the same, so the writing time is shortened.

以上、2段階の切換を例示したが、段数は図形の要求精
度により3段またはそれ以上にすることは容易で、第1
図の電子レンズ切換においては、2および3をそれぞれ
適当な励磁とすることにより、レンズ2のみ、およびレ
ンズ3のみで得られる倍率の間の任意の倍率を実現する
ことが出来る。
Although the two-stage switching is exemplified above, it is easy to set the number of stages to three or more depending on the required accuracy of the figure.
In the electronic lens switching shown in the figure, it is possible to realize an arbitrary magnification between the magnifications obtained by only the lens 2 and the lens 3 by appropriately exciting 2 and 3.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、精度の緩い図形を
高速で描画出来るので、全体としての描画時間を大巾に
短縮出来る。たとえば描画面積比で高精度図形を20%と
し、ビーム径比1:2(ビーム電流比1:4)の2段階で描画
した場合、全体を小さいビーム径で描画する従来の方法
に比較して、40%の時間で描画出来る。
As described above, according to the present invention, a graphic with low accuracy can be drawn at high speed, so that the drawing time as a whole can be greatly shortened. For example, if the drawing area ratio is 20% for high-precision figures, and the drawing is performed in two stages with a beam diameter ratio of 1: 2 (beam current ratio of 1: 4), compared to the conventional method of drawing with a small beam diameter , Can be drawn in 40% of the time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を説明する図、第2図は従来
公知例のレンズ動作と図形を描画した際の偏向方向及び
偏向感度を説明する図、第3図は本発明による描画図形
の一例を説明する図である。 1……電子源、2,3,4……電子レンズ、5……基板、6,
6′……絞り。
FIG. 1 is a diagram for explaining an embodiment of the present invention, FIG. 2 is a diagram for explaining a lens operation and a deflection direction and a deflection sensitivity when a figure is drawn in a conventionally known example, and FIG. 3 is a drawing according to the present invention. It is a figure explaining an example of a figure. 1 ... Electron source, 2,3,4 ... Electronic lens, 5 ... Substrate, 6,
6 ′ …… Aperture.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 徳郎 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 原田 勝征 神奈川県厚木市小野1839番地 日本電信電 話公社厚木電気通信研究所内 (72)発明者 藤波 明平 神奈川県厚木市小野1839番地 日本電信電 話公社厚木電気通信研究所内 (72)発明者 岩立 和己 神奈川県厚木市小野1839番地 日本電信電 話公社厚木電気通信研究所内 (56)参考文献 特開 昭54−89579(JP,A) 特開 昭48−49376(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tokuro Saito 1-280 Higashi Koigakubo, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Katsuyuki Harada 1839 Ono, Atsugi-shi, Kanagawa Nippon Telegraph and Telephone Public Corporation Atsugi Inside the Telecommunications Research Institute (72) Inventor Myouhei Fujinami 1839 Ono, Atsugi-shi, Kanagawa Nippon Telegraph and Telephone Public Corporation Atsugi Telecommunications Research Institute (72) Inventor Kazumi Iwatate 1839 Ono, Atsugi-shi, Kanagawa Nippon Telegraph and Telephone Public Corporation Atsugi Electric Communication Research Laboratory (56) References JP 54-89579 (JP, A) JP 48-49376 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子ビームを放射する電子源として電界放
射陰極を用い、該電子源から放射された電子ビームを複
数段の電子レンズを介して描画すべき基板上に投射する
ようにした電子線描画装置において、最終段の電子レン
ズの物点位置を保持した状態で他の2個の電子レンズの
励磁を切換えることによって基板上に投射される電子ビ
ームの径を複数段に切換える手段と、該投射電子ビーム
径の切換えに対応して描画走査ピッチをビーム径比に比
例して切換える手段とを付加してなることを特徴とする
電子線描画装置。
1. An electron beam in which a field emission cathode is used as an electron source for emitting an electron beam, and the electron beam emitted from the electron source is projected through a plurality of electron lenses onto a substrate to be drawn. In the drawing apparatus, means for switching the diameter of the electron beam projected on the substrate into a plurality of stages by switching the excitation of the other two electron lenses in a state where the object point position of the final stage electron lens is held, An electron beam drawing apparatus further comprising means for switching the drawing scanning pitch in proportion to the beam diameter ratio in response to the switching of the projected electron beam diameter.
JP59098677A 1984-05-18 1984-05-18 Electron beam writer Expired - Lifetime JPH0727854B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59098677A JPH0727854B2 (en) 1984-05-18 1984-05-18 Electron beam writer
US06/735,184 US4692579A (en) 1984-05-18 1985-05-17 Electron beam lithography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098677A JPH0727854B2 (en) 1984-05-18 1984-05-18 Electron beam writer

Publications (2)

Publication Number Publication Date
JPS60244025A JPS60244025A (en) 1985-12-03
JPH0727854B2 true JPH0727854B2 (en) 1995-03-29

Family

ID=14226140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098677A Expired - Lifetime JPH0727854B2 (en) 1984-05-18 1984-05-18 Electron beam writer

Country Status (1)

Country Link
JP (1) JPH0727854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404783B (en) * 2003-08-01 2005-12-14 Leica Microsys Lithography Ltd Dual-mode electron beam lithography machine
GB2404782B (en) * 2003-08-01 2005-12-07 Leica Microsys Lithography Ltd Pattern-writing equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489579A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron ray exposure system

Also Published As

Publication number Publication date
JPS60244025A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
JPH0336299B2 (en)
JPS5871545A (en) Variable forming beam electron optical system
JP2872420B2 (en) Method and apparatus for charged particle beam exposure
US5444257A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US5245194A (en) Electron beam exposure system having an electrostatic deflector wherein an electrostatic charge-up is eliminated
JP2002511197A (en) Shaped shadow projection for electron beam column
JPH0727854B2 (en) Electron beam writer
JP2006294962A (en) Electron beam lithography system and method therefor
JP2000173529A (en) Electron beam plotting method and device therefor
JPH08195345A (en) Electron beam drawing device
US3978338A (en) Illumination system in a scanning electron microscope
US20050035308A1 (en) Pattern writing equipment
JP3357874B2 (en) Electron beam writing apparatus and electron beam writing method
JP3155050B2 (en) Exposure method using charged particle beam
JPH0654643B2 (en) Lens for field emission electron gun
JP3201846B2 (en) Charged particle beam exposure system
KR20190138583A (en) Charged particle beam writing apparatus and charged particle beam writing method
JPH0669112A (en) Transparent mask plate
JPS61233937A (en) Image pickup tube
JP2002100317A (en) Electric charge beam device, electron beam device and electron beam drawing device
JP3101100B2 (en) Electron beam exposure system
JP2914926B2 (en) Charged particle beam exposure method
JPS62144323A (en) Charged beam exposure apparatus
JP3236162B2 (en) Charged particle beam exposure method and apparatus
JP3157968B2 (en) Charged particle beam exposure method