JPH07277294A - Device and method for controlling orbit of three axis controlled geostationary satellite - Google Patents

Device and method for controlling orbit of three axis controlled geostationary satellite

Info

Publication number
JPH07277294A
JPH07277294A JP6065306A JP6530694A JPH07277294A JP H07277294 A JPH07277294 A JP H07277294A JP 6065306 A JP6065306 A JP 6065306A JP 6530694 A JP6530694 A JP 6530694A JP H07277294 A JPH07277294 A JP H07277294A
Authority
JP
Japan
Prior art keywords
geostationary satellite
orbit
center
solar
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6065306A
Other languages
Japanese (ja)
Other versions
JP2555972B2 (en
Inventor
Shinji Hagino
慎二 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6065306A priority Critical patent/JP2555972B2/en
Publication of JPH07277294A publication Critical patent/JPH07277294A/en
Application granted granted Critical
Publication of JP2555972B2 publication Critical patent/JP2555972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amount of gas jet fuel required to maintain the orbit of a geostationary satellite by utilizing sunlight radiation pressure, the amount of gas jet fuel being the greatest cause of restricting the life of a geostationary satellite on the orbit. CONSTITUTION:A three axis controlled geostationary satellite has sunlight reflectors 1 extended in the geocentric direction of the three axis controlled geostationary satellite and in the opposite direction, shafts 2 extending in the direction in which the center of gravity of the satellite 3 aligns with the geocenter and in the opposite direction to the geocenter from the center of gravity, and a controller for rotating the satellite about the shafts 2. The angle by which the reflectors 1 rotate about the rotating shafts 2 are controlled for sunlight 10 to impinge on the sunlight reflectors 1 only in those seasons when the direction 12 of the sun is perpendicular to the direction 11 of the north-bound node, and thereby thrusts for varying the inclination angle of the orbit can be obtained in front of and behind the north-bound node 7 and the descending node 9, and the amount of gas jet fuel required to maintain the orbit can be reduced on the orbit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三軸制御静止衛星の軌
道制御に関し、特に太陽光輻射を利用した軌道制御の方
法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to orbit control of a three-axis control geostationary satellite, and more particularly to a method and apparatus for orbit control using solar radiation.

【0002】[0002]

【従来の技術】従来の太陽光輻射圧を利用した衛星の軌
道制御方式は、太陽電池パドルを回転させ、太陽電池パ
ドルと太陽光との成す角(太陽角)を制御することによ
り太陽光輻射圧を制御して軌道制御を行うものであった
(例えば特開平4−325399)。
2. Description of the Related Art A conventional satellite orbit control system utilizing the solar radiation pressure controls the solar radiation by rotating the solar array paddle and controlling the angle between the solar array paddle and sunlight (sun angle). The pressure was controlled to control the orbit (for example, Japanese Patent Laid-Open No. 4-325399).

【0003】[0003]

【発明が解決しようとする課題】この従来の太陽電池パ
ドルへの太陽光輻射圧を利用した軌道制御方式では、軌
道制御を行う際に太陽電池パドルの太陽角を変える必要
があり、発生電力に制約を与えることになるという欠点
があった。また従来の方式を三軸の静止衛星の軌道制御
に適用する場合、太陽電池パドルの太陽追尾と衛星本体
の地球指向の必要上から、軌道面に垂直に回転軸を有し
ていることが通常である。この軌道面に垂直な回転軸ま
わりの制御では、軌道離心率を変化させるための軌道面
内の推力は制御可能であるが、静止衛星の軌道制御の推
薬の割り当てとして支配的な軌道傾斜角を変化させるた
めの軌道面に垂直な方向の推力を得ることはできない。
衛星の軌道面と地球の赤道面とのなく角が軌道傾斜角で
ある。この軌道傾斜角を制御することを軌道面制御また
は南北制御と呼ぶ。
In the conventional orbital control system utilizing the solar radiation pressure to the solar cell paddle, it is necessary to change the sun angle of the solar cell paddle when performing the orbital control. There was a drawback that it would give a constraint. When applying the conventional method to the orbit control of a three-axis geostationary satellite, it is usually necessary to have a rotation axis perpendicular to the orbit plane because of the need for solar tracking of the solar array paddle and earth orientation of the satellite body. Is. With this control around the axis of rotation perpendicular to the orbital plane, the thrust in the orbital plane to change the orbital eccentricity can be controlled, but the orbital inclination angle that is dominant as the allocation of propellant for orbital control of geostationary satellites It is not possible to obtain thrust in the direction perpendicular to the orbital plane to change the.
The angle between the orbital plane of the satellite and the equatorial plane of the earth is the orbital tilt angle. Controlling this inclination angle is called orbital control or north-south control.

【0004】[0004]

【課題を解決するための手段】前述の課題を解決するた
めに本発明は次の手段を提供する。
In order to solve the above problems, the present invention provides the following means.

【0005】三軸制御静止衛星に設けられ、該三軸制
御静止衛星の軌道を制御する装置において、前記静止衛
星の本体の重心を通り、地心方向及び地心方向の逆方向
へ伸ばした回転軸と、該回転軸のうちの前記重心より地
心側及び重心より地心に対して反対側に伸びた部分に、
それぞれ取り付けられた第1及び第2の太陽光反射板
と、前記回転軸を回転させる反射板角度制御装置とを備
えることを特徴とする三軸制御静止衛星の軌通制御装
置。
A device for controlling the orbit of a three-axis controlled geostationary satellite, which is installed in a three-axis controlled geostationary satellite, passes through the center of gravity of the main body of the geostationary satellite, and extends in the direction of the earth's center and in the direction opposite to the direction of the earth's center. A shaft and a portion of the rotation shaft extending from the center of gravity to the earth center side and to the opposite side of the center of gravity from the earth center;
A track control device for a three-axis controlled geostationary satellite, comprising: first and second solar reflectors attached to each and a reflector angle controller for rotating the rotating shaft.

【0006】三軸制御静止衛星の軌道を制御する方法
において、該静止衛星本体の重心から地心方向及び該地
心とは反対の方向へ回転軸を伸ばし、該回転軸上の前記
重心に対して対称な2つの位置に第1及び第2の太陽光
反射板をそれぞれ取り付け、前記静止衛星が昇交点また
は降交点の近傍に位置するときに、太陽光に対する前記
太陽光反射板の角度を45゜以下にして、該太陽光反射
板が太陽光を反射することにより受ける太陽光反動推力
の軌道面垂直方向成分を利用して、該静止衛星の軌道傾
斜角を制御することを特徴とする三軸制御静止衛星軌道
制御方法。
In the method for controlling the orbit of a three-axis controlled geostationary satellite, the axis of rotation is extended from the center of gravity of the geostationary satellite body in the direction of the earth center and in a direction opposite to the earth center, and the center of gravity on the rotation axis is The first and second solar reflectors at two symmetrical positions, respectively, and when the geostationary satellite is located in the vicinity of an ascending or descending point, the angle of the solar reflector with respect to the sunlight is 45 degrees. Below 0 °, the orbital tilt angle of the geostationary satellite is controlled by utilizing the component of the solar reaction thrust in the direction perpendicular to the orbital plane that is received by the sunlight reflecting plate reflecting the sunlight. Axis control Geostationary satellite orbit control method.

【0007】前記太陽光反動推力の軌道面内方向成分
をガスジェットにより打ち消すことを特徴とする上記
に記載の三軸制御静止衛星軌道制御方法。
The three-axis control geostationary satellite orbit control method described above, characterized in that the in-orbit direction component of the solar reaction thrust is canceled by a gas jet.

【0008】[0008]

【作用】本発明では、太陽光反射板で太陽光を反射する
ことにより太陽光輻射圧をその太陽光反射板に受け、該
太陽光反射板に生じる太陽光反動推力のうち軌道面垂直
方向成分を利用して軌道傾斜角の制御をする。この軌道
面垂直方向推力の発生にガスジェットを利用しないの
で、本発明は衛星需命の延長に寄与する。
According to the present invention, the sunlight reflection pressure is received by the sunlight reflecting plate by reflecting the sunlight by the sunlight reflecting plate, and the component in the direction perpendicular to the orbital plane of the sunlight reaction thrust generated on the sunlight reflecting plate. Is used to control the inclination angle of the orbit. Since the gas jet is not used to generate the thrust in the direction perpendicular to the orbital plane, the present invention contributes to the extension of the life of the satellite.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の静止衛星の軌道制御装置
を示す概念図である。この実施例により静止衛星の軌道
面制御である南北制御がガスジェットを用いることなく
行える。この実施例を説明し、本発明の装置及び方法を
具体的に示す。
The present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing an orbit control device for a geostationary satellite according to an embodiment of the present invention. According to this embodiment, north-south control, which is orbital plane control of a geostationary satellite, can be performed without using a gas jet. This example is described to illustrate the apparatus and method of the present invention.

【0010】衛星3は地球方向及びそれと反対の方向に
太陽光反射板1を伸ばしている。太陽光反射板1は回転
軸2に取り付けられている。回転軸2は衛星3の重心か
ら地心方向へ伸びる部分と、重心から地心とは反対の方
向へ伸びる部分とからなっている。回転軸2の角度は、
反射板角度制御装置(衛星3の内部に備えられている)
により制御される。
The satellite 3 extends the solar reflector 1 in the direction toward the earth and in the opposite direction. The solar reflector 1 is attached to the rotating shaft 2. The rotating shaft 2 is composed of a portion extending from the center of gravity of the satellite 3 toward the earth center and a portion extending from the center of gravity in a direction opposite to the earth center. The angle of the rotary shaft 2 is
Reflector angle control device (provided inside the satellite 3)
Controlled by.

【0011】静止衛星は、一つの軸を地球に指向してい
るのが通常である。そこで、衛星3が軌道運動している
間も回転軸2は地心方向を指向しつづけるため、反射板
1と太陽光線10の成す角13は軌道運動にともない変
化する。軌道4の昇交点7と地心とを結ぶ昇交点方向ベ
クトル11が太陽方向ベクトル12にほぼ垂直になる季
節を選んで、その季節だけに制御を行う。
Geostationary satellites typically have one axis pointing to the earth. Therefore, while the satellite 3 is in orbit, the rotary shaft 2 continues to point in the direction of the earth's center, so that the angle 13 formed by the reflector 1 and the sunbeam 10 changes with the orbital motion. A season in which the ascending-point direction vector 11 connecting the ascending-point 7 on the orbit 4 and the earth's center is almost perpendicular to the sun-direction vector 12 is selected, and control is performed only in that season.

【0012】衛星が昇交点7にある時の図1のA視矢を
図2に示す。太陽光反射板と、太陽方向の成す角13が
45゜以下の角度となるよう反射板角度制御装置により
回転軸2を制御し、太陽光反射板1をその角度に固定す
る。太陽光反射板1の表面両面には反射率1に近い鏡面
を用いることとすると、太陽光輻射の反動推力14は太
陽光反射板1に対しほぼ垂直方向に発生する。反動推力
14の内の軌道面垂直方向成分15が軌道面制御に利用
される。
FIG. 2 shows the arrow A in FIG. 1 when the satellite is at the ascending node 7. The rotation axis 2 is controlled by the reflector angle control device so that the angle 13 formed by the sun reflector and the sun direction is 45 ° or less, and the sun reflector 1 is fixed at that angle. If mirror surfaces close to a reflectance of 1 are used on both surfaces of the solar reflector 1, the reaction thrust 14 of the solar radiation is generated in a direction substantially perpendicular to the solar reflector 1. The orbital surface vertical component 15 of the reaction thrust 14 is used for orbital surface control.

【0013】昇交点7と降交点9の中間点である軌道位
置8におけるB矢視を図3、降交点位置9おけるC矢視
を図4にそれぞれ示す。
FIG. 3 shows the arrow B at the orbit position 8 which is the midpoint between the ascending intersection 7 and the descending intersection 9, and FIG. 4 shows the arrow C at the descending intersection 9.

【0014】図3に示す軌道位置8では、太陽光線方向
10は紙面垂直方向となり、太陽反射板1の面内方向と
なるから、太陽光反射板1には反動推力を生じない。
At the orbital position 8 shown in FIG. 3, the solar ray direction 10 is perpendicular to the plane of the drawing and the in-plane direction of the solar reflector 1, so that the solar reflector 1 does not generate a reaction thrust.

【0015】図4に示す降交点位置9では、太陽光反動
推力の軌道面垂直方向成分15は図2の場合と逆向きに
作用しており、図2、図4共に軌道傾斜角を増大させる
方向に推力が発生している。なお図2、図4で生じる太
陽光反動推力14の軌道面内方向成分16はともに軌道
半径を変化させる方向に働く不必要成分であるから、ガ
スジェットによりキャンセルする必要がある。但し、反
動推力の軌道面垂直方向成分15の方が軌道面内方向成
分16よりも大きいから、本実施例の装置を用いない場
合に較べ、ガスジェット推薬の節約ができる。
At the descending point position 9 shown in FIG. 4, the component 15 of the solar reaction thrust in the direction perpendicular to the orbital plane acts in the opposite direction to that in FIG. 2, and the orbital inclination angle is increased in both FIGS. Thrust is generated in the direction. Since the in-orbit direction component 16 of the solar reaction thrust 14 generated in FIGS. 2 and 4 is an unnecessary component that acts in the direction of changing the orbital radius, it must be canceled by a gas jet. However, since the component 15 of the reaction thrust in the direction perpendicular to the raceway surface is larger than the component 16 in the direction of the raceway surface, the gas jet propellant can be saved as compared with the case where the device of the present embodiment is not used.

【0016】[0016]

【発明の効果】以上に実施例を挙げて説明したように本
発明では地心方向とその反対方向に伸ばし太陽光反射板
を有し、その太陽光反射板の回転軸は軌道面内にあるか
ら、軌道面に垂直な方向に太陽光輻射の反動推力を生じ
ることができ、軌道傾斜角の制御を行うことができる。
その際生じる軌道面内成分の反動推力は不要推力であ
り、ガスジェットでキャンセルする必要があるが、太陽
光と太陽光反射板の成す角度が45゜以下になるように
設定することにより、有効に利用できる推力成分が不要
推力成分より大きくなり、ガスジェットの推薬料を低減
できるという効果がある。
As described above with reference to the embodiments, the present invention has a solar reflector extending in the direction of the center of the earth and the opposite direction, and the rotation axis of the solar reflector is in the orbital plane. Therefore, the reaction thrust of the solar radiation can be generated in the direction perpendicular to the orbital plane, and the orbital inclination angle can be controlled.
The reaction thrust of the in-orbit component that occurs at that time is an unnecessary thrust and must be canceled by a gas jet, but it is effective by setting it so that the angle between the sunlight and the solar reflector is 45 ° or less. The thrust component that can be used for is larger than the unnecessary thrust component, which has the effect of reducing the propellant charge of the gas jet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概念図FIG. 1 is a conceptual diagram of an embodiment of the present invention.

【図2】図1のA矢視図FIG. 2 is a view on arrow A in FIG.

【図3】図1のB矢視図FIG. 3 is a view on arrow B of FIG.

【図4】図1のC矢視図FIG. 4 is a view on arrow C in FIG.

【符号の説明】[Explanation of symbols]

1 太陽光反射板 2 太陽光反射板回転軸 3 衛星本体 4 静止衛星軌道 5 地球 6 太陽 7 昇交点 8 昇交点と降交点の中間位置 9 降交点 10 太陽光線方向 11 昇交点方向ベクトル 12 太陽光方向ベクトル 13 反射板と太陽方向の成す角 14 太陽光反動推力 15 反動推力の軌道面垂直方向成分 16 反動推力の軌道面内方向成分 1 Solar reflector 2 Solar reflector Rotation axis 3 Satellite body 4 Geostationary satellite orbit 5 Earth 6 Sun 7 Ascending point 8 Intermediate position between ascending and descending points 9 descending point 10 Sunbeam direction 11 Ascending direction vector 12 Solar Direction vector 13 Angle between reflector and sun 14 Solar reaction thrust 15 Vertical component of reaction thrust in orbital plane 16 Inward orbital component of reaction thrust

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月20日[Submission date] May 20, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】この従来の太陽電池パ
ドルへの太陽光輻射圧を利用した軌道制御方式では、軌
道制御を行う際に太陽電池パドルの太陽角を変える必要
があり、発生電力に制約を与えることになるという欠点
があった。また従来の方式を三軸の静止衛星の軌道制御
に適用する場合、太陽電池パドルの太陽追尾と衛星本体
の地球指向の必要上から、軌道面に垂直に回転軸を有し
ていることが通常である。この軌道面に垂直な回転軸ま
わりの制御では、軌道離心率を変化させるための軌道面
内の推力は制御可能であるが、静止衛星の軌道制御の推
薬の割り当てとして支配的な軌道傾斜角を変化させるた
めの軌道面に垂直な方向の推力を得ることはできない。
衛星の軌道面と地球の赤道面とのなす角が軌道傾斜角で
ある。この軌道傾斜角を制御することを軌道面制御また
は南北制御と呼ぶ。
In the conventional orbit control method using the solar radiation pressure to the solar cell paddle, it is necessary to change the sun angle of the solar cell paddle when performing the orbit control, and the generated power is reduced. There was a drawback that it would give a constraint. In addition, when applying the conventional method to the orbit control of a three-axis geostationary satellite, it is usually necessary to have a rotation axis perpendicular to the orbit plane because of the need for solar tracking of the solar array paddle and earth orientation of the satellite body. Is. With this control around the axis of rotation perpendicular to the orbital plane, the thrust in the orbital plane to change the orbital eccentricity can be controlled, but the orbital inclination angle which is the dominant propellant allocation for geostationary satellite orbital control can be controlled. It is not possible to obtain thrust in the direction perpendicular to the orbital plane to change the.
The angle formed by the orbital plane of the satellite and the equatorial plane of the earth is the orbital inclination angle. Controlling this inclination angle is called orbital control or north-south control.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 三軸制御静止衛星に設けられ、該三軸制
御静止衛星の軌道を制御する装置において、前記静止衛
星の本体の重心を通り、地心方向及び地心方向の逆方向
へ伸ばした回転軸と、該回転軸のうちの前記重心より地
心側及び重心より地心に対して反対側に伸びた部分に、
それぞれ取り付けられた第1及び第2の太陽光反射板
と、前記回転軸を回転させる反射板角度制御装置とを備
えることを特徴とする三軸制御静止衛星の軌通制御装
置。
1. A device provided in a three-axis controlled geostationary satellite for controlling the orbit of the three-axis controlled geostationary satellite, which extends through the center of gravity of the main body of the geostationary satellite in the direction of the earth center and in the direction opposite to the earth center. A rotating shaft, and a portion of the rotating shaft extending from the center of gravity to the earth center side and to the opposite side of the center of gravity from the earth center,
A track control device for a three-axis controlled geostationary satellite, comprising: first and second solar reflectors attached to each and a reflector angle controller for rotating the rotating shaft.
【請求項2】 三軸制御静止衛星の軌道を制御する方法
において、該静止衛星本体の重心から地心方向及び該地
心とは反対の方向へ回転軸を伸ばし、該回転軸上の前記
重心に対して対称な2つの位置に第1及び第2の太陽光
反射板をそれぞれ取り付け、前記静止衛星が昇交点また
は降交点の近傍に位置するときに、太陽光に対する前記
太陽光反射板の角度を45゜以下にして、該太陽光反射
板が太陽光を反射することにより受ける太陽光反動推力
の軌道面垂直方向成分を利用して、該静止衛星の軌道傾
斜角を制御することを特徴とする三軸制御静止衛星軌道
制御方法。
2. A method for controlling the orbit of a three-axis controlled geostationary satellite, wherein a rotation axis is extended from a center of gravity of the geostationary satellite body in a direction toward the earth center and in a direction opposite to the earth center, and the center of gravity on the rotation axis. Angles of the solar reflector with respect to sunlight when the geostationary satellite is located near an ascending or descending point, with the first and second solar reflectors attached at two positions symmetric with respect to each other. Is set to 45 ° or less, and the orbital tilt angle of the geostationary satellite is controlled by utilizing the component of the solar reaction thrust that is received by the sunlight reflecting plate to reflect the sunlight. Three-axis control geostationary satellite orbit control method.
【請求項3】 前記太陽光反動推力の軌道面内方向成分
をガスジェットにより打ち消すことを特徴とする請求項
2に記載の三軸制御静止衛星軌道制御方法。
3. The three-axis control geostationary satellite orbit control method according to claim 2, wherein the in-orbit direction component of the solar reaction thrust is canceled by a gas jet.
JP6065306A 1994-04-01 1994-04-01 Orbit control device and method for three-axis controlled geostationary satellite Expired - Lifetime JP2555972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6065306A JP2555972B2 (en) 1994-04-01 1994-04-01 Orbit control device and method for three-axis controlled geostationary satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6065306A JP2555972B2 (en) 1994-04-01 1994-04-01 Orbit control device and method for three-axis controlled geostationary satellite

Publications (2)

Publication Number Publication Date
JPH07277294A true JPH07277294A (en) 1995-10-24
JP2555972B2 JP2555972B2 (en) 1996-11-20

Family

ID=13283099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6065306A Expired - Lifetime JP2555972B2 (en) 1994-04-01 1994-04-01 Orbit control device and method for three-axis controlled geostationary satellite

Country Status (1)

Country Link
JP (1) JP2555972B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487460A (en) * 2017-06-30 2017-12-19 上海卫星工程研究所 Adapt to remote sensing satellite configuration method during a variety of southbound node places
CN109110160A (en) * 2018-08-28 2019-01-01 航天东方红卫星有限公司 Double offset passive control methods when a kind of sun-synchronous orbit southbound node place
CN112797326A (en) * 2020-12-25 2021-05-14 梁飞燕 Park water floating lamp for city lighting engineering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487460A (en) * 2017-06-30 2017-12-19 上海卫星工程研究所 Adapt to remote sensing satellite configuration method during a variety of southbound node places
CN109110160A (en) * 2018-08-28 2019-01-01 航天东方红卫星有限公司 Double offset passive control methods when a kind of sun-synchronous orbit southbound node place
CN112797326A (en) * 2020-12-25 2021-05-14 梁飞燕 Park water floating lamp for city lighting engineering
CN112797326B (en) * 2020-12-25 2023-04-14 广东传世建设工程有限公司 Park water floating lamp for city lighting engineering

Also Published As

Publication number Publication date
JP2555972B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US6032904A (en) Multiple usage thruster mounting configuration
US4759517A (en) Station-keeping using solar sailing
JP4061652B2 (en) Attitude control method for satellites in elliptical orbit using solar radiation energy
US5813633A (en) Method and apparatus for stationkeeping a satellite offset by pitch rotation
US7510148B2 (en) Dynamic yaw steering method for spacecrafts
JP3220142B2 (en) Method of controlling pitch attitude of satellite by pressure of solar radiation, and satellite for performing the method
US6015116A (en) Fuel efficient methods for satellite stationkeeping and momentum dumping
US6637701B1 (en) Gimbaled ion thruster arrangement for high efficiency stationkeeping
US5020746A (en) Method for satellite station keeping
US9114890B1 (en) Thruster orbit control method and configuration
US6305646B1 (en) Eccentricity control strategy for inclined geosynchronous orbits
JPH02262500A (en) Satellite control system
JP2001001999A (en) Actual orbital climb system of geostationary satellite and method thereof
EP1227037B1 (en) Thruster systems for spacecraft station changing, station keeping and momentum dumping
EP3112272B1 (en) Efficient stationkeeping design for mixed fuel systems
US6042058A (en) Stationkeeping and momentum-dumping thruster systems and methods
US5895014A (en) Satellite solar array and method of biasing to reduce seasonal output power fluctuations
US6070833A (en) Methods for reducing solar array power variations while managing the system influences of operating with off-pointed solar wings
JP3043671B2 (en) How to place satellites in the same location
JP2555972B2 (en) Orbit control device and method for three-axis controlled geostationary satellite
JP2001063700A (en) Orbit control method for artificial satellite, control method for beam irradiation territory, and artificial satellite system
EP0959001A1 (en) Method and apparatus for performing two axis solar array tracking in a geostationary satellite
JP3536066B2 (en) Artificial satellite
JPH05213288A (en) Solar battery paddle system for space navigating body
JP3626052B2 (en) Satellite orbit configuration method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960709