JPH07276506A - Data processing method and photo-shaping device - Google Patents

Data processing method and photo-shaping device

Info

Publication number
JPH07276506A
JPH07276506A JP6068310A JP6831094A JPH07276506A JP H07276506 A JPH07276506 A JP H07276506A JP 6068310 A JP6068310 A JP 6068310A JP 6831094 A JP6831094 A JP 6831094A JP H07276506 A JPH07276506 A JP H07276506A
Authority
JP
Japan
Prior art keywords
patch
node
patches
nodes
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6068310A
Other languages
Japanese (ja)
Other versions
JP3477805B2 (en
Inventor
Masahiko Ozawa
雅彦 小澤
Masumi Moriya
真寿美 森谷
Norio Goto
典雄 後藤
Masakatsu Ookubo
賢勉 大久保
Toshiro Endo
敏朗 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06831094A priority Critical patent/JP3477805B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US08/637,623 priority patent/US5858297A/en
Priority to PCT/JP1994/001841 priority patent/WO1995012485A1/en
Priority to EP01112022A priority patent/EP1136235B1/en
Priority to EP94931198A priority patent/EP0727302B1/en
Priority to DE69432836T priority patent/DE69432836T2/en
Priority to DE69430703T priority patent/DE69430703T2/en
Publication of JPH07276506A publication Critical patent/JPH07276506A/en
Application granted granted Critical
Publication of JP3477805B2 publication Critical patent/JP3477805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To improve the dimensional accuracy of a photo-shaped matter by a method wherein a polygonal patch locating at the base of a shaped matter is judged by the positive or negative Z-component of a normal vector after the apices are rearranged and rewritten in nodes and finally correction is performed to the Z-distance of the node of a negative patch. CONSTITUTION:By specifying a surface shape data file, the apex coordinates of a patch and normal vectors are read and the total number of patches are counted. Next, node numbers are given to apex coordinates so as to memorize which nodes compose respective patches. Further, in order to detect overhanging, positive or negative Z-distance of normal vector is checked so as to be up a flag to a node constituting a negative patch. The above-mentioned procedure is repeated on all the patches. Next, all the nodes are checked so as to set the amounts of correction to the nodes, in which the flag is up, in order to add the amount of correction to the Z-distance of the node and to be rearranged as the new values of the coordinates, apex coordinates consisting of patches are rewritten. In this case, the normal vector of the patch is calculated with the corrected Z-distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ照射により紫外線
硬化樹脂を硬化させ立体形状モデルを作成する光造形方
法およびその装置に関わり、特にレーザ透過光による余
剰硬化による寸法偏差を補正することで寸法精度に優れ
た光造形物を提供するためのデータ処理方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereolithography method and apparatus for curing a UV-curable resin by laser irradiation to create a three-dimensional model, and particularly by correcting a dimension deviation due to excessive curing due to laser transmitted light. The present invention relates to a data processing method and apparatus for providing a stereolithography object with excellent accuracy.

【0002】[0002]

【従来の技術】従来、光造形方法および装置は、三次元
形状モデルデータを等高線データに変換し、等高線ごと
の断面形状に従い順次積層し立体モデルを作成する方法
が知られている。
2. Description of the Related Art Conventionally, as a stereolithography method and apparatus, there has been known a method of converting three-dimensional shape model data into contour line data and sequentially laminating the contour model data according to the sectional shape of each contour line to create a three-dimensional model.

【0003】精度向上策については、特公平5−339
00号公報、特公平5−33901号公報に記載されて
いる。
Regarding measures for improving accuracy, Japanese Patent Publication No. 5-339.
No. 00 and Japanese Patent Publication No. 5-33901.

【0004】また、RP&M・SLA特別セミナー:日
本3Dシステム主催:’92.10.29−30では、
樹脂層へのレーザ照射を一回走査した場合の硬化深さと
レーザが交差したときの硬化深さでは、交差した部分の
硬化深さの方が深くなる、と記載されている。
Also, at the RP & M / SLA Special Seminar: Japan 3D System Sponsor: '92 .10.29-30,
It is described that the curing depth in the case where the resin layer is scanned once by laser irradiation and the curing depth when the laser intersects is such that the curing depth of the intersecting portion is deeper.

【0005】[0005]

【発明が解決しようとする課題】光造形技術では水平な
板の底面あるいはオーバーハング部底面において、積層
時に硬化物を透過したレーザの漏れ光の累積で余剰硬化
してしまう問題がある。この問題は寸法偏差として現わ
れ、光造形の本質的な問題である。
In the stereolithography technique, there is a problem that the bottom surface of the horizontal plate or the bottom surface of the overhang portion is excessively hardened due to the accumulation of leakage light of the laser which has passed through the hardened material at the time of stacking. This problem appears as dimensional deviation and is an essential problem of stereolithography.

【0006】上記従来技術はオーバーハング部底面のレ
ーザ透過光による余剰硬化厚さの補正について配慮され
ていなかった。このため該部の下部においては、レーザ
透過光により未硬化樹脂が硬化し設計厚さ以上となり、
寸法精度を低下させる問題があった。
The above-mentioned prior art does not consider the correction of the excess cured thickness by the laser transmitted light on the bottom surface of the overhang portion. Therefore, in the lower part of the portion, the uncured resin is hardened by the laser transmitted light and becomes the designed thickness or more,
There was a problem of reducing the dimensional accuracy.

【0007】さらに、造形物の寸法を設計値と揃えるに
は削るといった二次加工の工程が必要となるが、狭い隙
間では削ることが不可能な場合もあり、寸法偏差の補正
が必要であった。
Further, in order to make the dimensions of the modeled object equal to the design value, a secondary machining step such as shaving is required, but in some cases it is impossible to shave in a narrow gap, and it is necessary to correct the dimensional deviation. It was

【0008】寸法偏差の補正方法としては、三次元CA
Dにおいて設計寸法を修正するという方法があるが、C
ADでの寸法修正は容易ではなく、手間がかかるという
問題がある。
A three-dimensional CA is used as a method for correcting the dimensional deviation.
There is a method to modify the design dimension in D, but C
There is a problem that the dimension correction by AD is not easy and takes time.

【0009】本発明の目的は上記のような問題を解決
し、造形物およびオーバーハング部の底面を自動検出
し、光造形技術の本質的な寸法偏差を自動的に補正処理
する方法を提供することにある。
An object of the present invention is to solve the above problems and provide a method for automatically detecting the bottom surfaces of a modeled object and an overhang portion and automatically correcting the dimensional deviation which is an essential feature of the optical modeling technique. Especially.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、表面形状データを構成する多角形パッチのパッチ面
の法線ベクトルの向きを調べて、オーバーハングである
か否かを判別するとともにパッチを構成する頂点をノー
ドに置き換えて整理し、そのノードがオーバーハング部
底面に位置する多角形パッチを構成するノードであるか
を識別して、オーバーハング部底面に位置する多角形パ
ッチを構成するノードであるとき、そのノードをパッチ
面の傾きに従って所定規則により定まる移動量で移動さ
せて該多角形パッチの形状および位置を変更する。この
とき複数のパッチで共有されるノードにおいてはそれぞ
れパッチ面の傾きで定まる移動量の中から最大値で移動
するパッチ面の法線ベクトルの向きを調べることにより
そのパッチ面がいずれの方向に面しているかが判る。法
線ベクトルのZ軸成分が負であれば、そのパッチ面はZ
軸に対し下方向に向いている。すなわちZ軸方向を上下
方向に取ればそのパッチはオーバーハング底面部に位置
することが識別できる。パッチの向きの判別により、パ
ッチを構成する頂点を単に移動補正すると、複数のパッ
チに共有される頂点において移動量が異なる場合があ
り、形状が乱れる。このため多角形パッチの頂点をノー
ドとして整理し、そのノードがオーバーハング底面に位
置するかを前述した方法によりパッチの向きを調べるこ
とにより識別してノードを移動させる。その後再び各パ
ッチ頂点座標に戻すことにより形状の乱れなく補正する
ことができる。以上のような方法で自動的に表面形状デ
ータにおいて上記寸法偏差を補正しておき、該データを
基に造形を行なう。
In order to achieve the above object, the direction of the normal vector of the patch surface of the polygon patch forming the surface shape data is checked to determine whether it is an overhang or not. Arrange the vertices that make up the patch by replacing them with nodes, identify whether that node is the node that makes up the polygon patch located at the bottom of the overhang, and then configure the polygon patch located at the bottom of the overhang. If the node is a node that does, the shape and position of the polygon patch are changed by moving the node according to the inclination of the patch surface by a movement amount determined by a predetermined rule. At this time, in the node shared by multiple patches, by checking the direction of the normal vector of the patch surface that moves at the maximum value from the movement amount determined by the inclination of the patch surface, the direction I know what I'm doing. If the Z-axis component of the normal vector is negative, the patch surface is Z
Facing downwards to the axis. That is, if the Z-axis direction is taken in the vertical direction, it can be identified that the patch is located at the bottom of the overhang. If the vertices forming the patch are simply moved and corrected by determining the orientation of the patch, the vertices shared by a plurality of patches may have different amounts of movement, resulting in a disordered shape. Therefore, the vertices of the polygon patch are arranged as nodes, and whether the node is located on the bottom surface of the overhang is identified by checking the direction of the patch by the above-described method, and the node is moved. After that, by returning to the patch vertex coordinates again, the shape can be corrected without disturbance. The above-mentioned dimensional deviation is automatically corrected in the surface shape data by the method as described above, and modeling is performed based on the data.

【0011】[0011]

【作用】本発明において、光造形技術の本質的な寸法偏
差を表面形状データ上で、自動的に補正することが可能
となり、補正後の表面形状データを基に造形を行なうこ
とで光造形物の寸法精度が向上する。また、上記補正処
理は自動的に行なえるため、寸法偏差補正の効率が向上
する。さらに、削るといった二次加工の工程が省略され
る。
In the present invention, it becomes possible to automatically correct the dimensional deviation which is an essential feature of the stereolithography technique on the surface shape data, and by performing the shaping based on the corrected surface shape data, the stereolithography object is produced. Dimensional accuracy is improved. Further, since the above-mentioned correction processing can be automatically performed, the efficiency of dimensional deviation correction is improved. Further, a secondary processing step such as shaving is omitted.

【0012】[0012]

【実施例】以下、本発明の実施例を図面により説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の第一実施例を示すオーバ
ーハング部底面あるいは造形物底面の余剰硬化による寸
法偏差を隣接するオーバーハング部底面パッチの傾きの
内のある一つの傾き、ここでは造形方向軸に対して一番
大きな傾きに従って所定規則により定まる値にて表面形
状データを補正処理する場合のPAD図である。
FIG. 1 shows a first embodiment of the present invention, in which the dimensional deviation due to the excessive hardening of the bottom surface of the overhang portion or the bottom surface of the shaped article is one of the inclinations of the patches on the bottom surface of the adjacent overhang portion. FIG. 9 is a PAD diagram when the surface shape data is corrected with a value determined by a predetermined rule according to the largest inclination with respect to the modeling direction axis.

【0014】まず、補正処理を行なうための表面形状デ
ータファイルを指定する。表面形状データとは三次元形
状モデルの表面を少なくとも3頂点を有する多角形パッ
チの集合で表現したものであり、本実施例では三角形パ
ッチについて示す。表面形状データファイルのフォーマ
ットを図2に示す。法線ベクトルとパッチを構成する3
頂点の三次元座標が記載され、各パッチのデータ間は区
切りマークにて区別されている。次に、上記表面形状デ
ータファイルのパッチの3頂点の座標および法線ベクト
ルを順次読み込み、全パッチ数をカウントする。次に、
読み込んだ頂点座標にノード番号を付けていき、先に読
み込んだパッチの頂点座標と一致するものには同一のノ
ード番号を付ける。さらに、各パッチがいずれのノード
で構成されるかを記憶させる。次にオーバーハング部検
出のため、法線ベクトルについてそのZ成分の正負を調
べる。パッチがオーバーハング部底面あるいは造形物底
面に位置する、すなわちパッチ面が下に向いている場合
には、Z成分が負であることより自動検出が可能とな
る。該パッチを構成するノードに、オーバーハング部底
面に位置することを示すフラッグを立てる。これをすべ
てのパッチについて繰り返す。以上の操作は、パッチデ
ータを読み込みながら、随時行なっても全体としての処
理は同様である。
First, a surface shape data file for performing correction processing is designated. The surface shape data represents the surface of the three-dimensional shape model by a set of polygonal patches having at least three vertices, and this embodiment shows a triangular patch. The format of the surface shape data file is shown in FIG. Configure normal vector and patch 3
The three-dimensional coordinates of the vertices are described, and the data of each patch are distinguished by a delimiter mark. Next, the coordinates and normal vectors of the three vertices of the patches in the surface shape data file are sequentially read, and the total number of patches is counted. next,
A node number is added to the vertex coordinates that have been read, and the same node number is given to the one that matches the vertex coordinates of the patch that was previously read. Further, it stores which node each patch is composed of. Next, in order to detect the overhang portion, the positive / negative of the Z component of the normal vector is checked. When the patch is located on the bottom surface of the overhang portion or the bottom surface of the modeled object, that is, when the patch surface faces downward, the Z component is negative, so that automatic detection is possible. A flag indicating that the patch is located on the bottom surface of the overhang portion is set on the nodes constituting the patch. Repeat this for all patches. The above operation is the same as the entire processing even if it is performed at any time while reading the patch data.

【0015】次に、全ノードのフラッグを調べ、上記フ
ラッグが立っているノードについて、補正量として余剰
硬化厚さαを設定する。余剰硬化厚さαについては後述
する。このときの補正量は各パッチ面の角度に従い所定
規則により定まる値とする。該パッチを構成するノード
全てに該パッチの傾きに従い所定規則により定まる値を
0で初期化する。該パッチの傾きに従う値をノードに設
定していく。また、各パッチに共有されるノードに対し
ては各パッチ面の傾きに従う値のうち再大のものを該ノ
ードに設定する。そのノードのZ座標に所定規則により
定まる補正量を加算し、補正後のZ座標値を各ノードの
新たな座標値として置き換える。置き換えたノードの新
座標をもってパッチを構成する頂点座標を書き直す。こ
こで、パッチの面傾きに変更が生じているので、該パッ
チの法線ベクトルを補正後のZ座標を用いて算出する。
補正後の頂点座標および法線ベクトルから、読み込んだ
データフォーマットと同じフォーマットで新たな表面形
状データファイルを作成する。
Next, the flags of all the nodes are checked, and the surplus hardening thickness α is set as a correction amount for the node having the flag. The surplus cured thickness α will be described later. The correction amount at this time is a value determined by a predetermined rule according to the angle of each patch surface. A value determined by a predetermined rule according to the inclination of the patch is initialized to 0 for all nodes constituting the patch. A value according to the inclination of the patch is set in the node. Further, for a node shared by each patch, a re-larger value among the values according to the inclination of each patch surface is set in the node. A correction amount determined by a predetermined rule is added to the Z coordinate of the node, and the corrected Z coordinate value is replaced as a new coordinate value of each node. Rewrite the vertex coordinates that make up the patch with the new coordinates of the replaced node. Here, since the surface inclination of the patch is changed, the normal vector of the patch is calculated using the corrected Z coordinate.
Create a new surface shape data file in the same format as the read data format from the corrected vertex coordinates and normal vector.

【0016】補正量の設定については、Z補正以前のど
の段階で行なっても全体としての処理は同様である。
Regarding the setting of the correction amount, the overall processing is the same regardless of which stage is performed before the Z correction.

【0017】ここで、まず何故パッチの頂点にノード番
号付けを行ない、Z座標の補正をノードにて処理するの
かを説明する。図3は上記表面形状データの三角形パッ
チの図である。図3(a)は隣り合う二つのパッチA,
B,C,Dについて示したもので、パッチAはオーバー
ハング部底面に位置しており、パッチBはオーバーハン
グ部ではない。各パッチの頂点をa1,a2,a3,b
1,b2,b3、とする。ここで、オーバーハング部底
面にあるパッチAの形状を変更する際に頂点a1,a
2,a3の座標値を移動した場合、三角形パッチAの形
状は変更されたものの、パッチBと離れてしまいパッチ
AとパッチBの関係が保たれず不正なデータとなってし
まう。通常の表面形状データのパッチは、少なくとも3
頂点で構成されているが、隣合うパッチがこれらの頂点
を共有しているという認識はない。図3(b)は三角形
パッチA,Bが共有する頂点をノードn1,n3に置き
換え、ノードn1,n2,n3を移動してパッチAの形
状を変更したものである。その結果、パッチBの形状も
同時に変更され、パッチA,Bは離れることなく両パッ
チの関係は保たれ正しいデータとなる。このように、モ
デルの表面を表す三角形パッチにおいて、隣合うパッチ
が共有する頂点をノードに置き換え、該ノードを移動さ
せることにより、両パッチが離れたり、交差することな
く位置を変更することができる。ここでは傾斜したオー
バーハング底面を例に示したが、水平な場合も同様であ
る。
First, the reason why node numbers are assigned to the vertices of the patch and the Z coordinate correction is processed by the nodes will be described. FIG. 3 is a diagram of the triangular patch of the surface shape data. FIG. 3A shows two adjacent patches A,
The patch A is located on the bottom surface of the overhang portion, and the patch B is not the overhang portion. The vertices of each patch are a1, a2, a3, b
1, b2, b3. Here, when changing the shape of the patch A on the bottom surface of the overhang portion, the vertices a1, a
When the coordinate values of 2 and a3 are moved, although the shape of the triangular patch A is changed, the triangular patch A is separated from the patch B, and the relationship between the patch A and the patch B is not maintained, resulting in incorrect data. Ordinary surface shape data patch is at least 3
Although composed of vertices, there is no realization that adjacent patches share these vertices. In FIG. 3B, the vertices shared by the triangular patches A and B are replaced with nodes n1 and n3, and the nodes n1, n2, and n3 are moved to change the shape of the patch A. As a result, the shape of the patch B is also changed at the same time, the patches A and B are not separated, and the relationship between both patches is maintained and correct data is obtained. In this way, in the triangular patch representing the surface of the model, by replacing the vertices shared by adjacent patches with nodes and moving the nodes, the positions of both patches can be changed without leaving or intersecting each other. . Here, an inclined overhang bottom surface is shown as an example, but the same applies to a horizontal case.

【0018】次に、該ノードに与える値を該ノードを共
有するパッチの傾きが一番大きい値に設定する理由につ
いて説明する。パッチA,C,D処理によるパッチ傾き
に従う値をβ,β,γかつ、β<γとすると、図3
(b)に示すようにパッチ処理の順序がパッチC,D,
Aである場合ノードn2へのパッチ傾きに従う値はβ,
γ,βとなり、ノードn5ではβ,γとなり、n2,n
5のZ座標は異なりパッチは傾く弊害が生じる。図3
(c)は共有ノードn2,n5に対する傾きに従う値を
最大値に設定した場合の例である。パッチ処理の順番が
A,C,DまたはC,D,Aと異なっても、同一高さ上
にあるノードn2,n5に与えられるパッチ傾きに従う
値はいずれもγとなり、補正後のノードn2,n5のZ
座標は同一高さとなり形状の乱れは回避できる。
Next, the reason why the value given to the node is set to a value having the largest inclination of the patch sharing the node will be described. Assuming that the values according to the patch inclination by the patch A, C, and D processing are β, β, γ and β <γ, FIG.
As shown in (b), the order of patch processing is patch C, D,
If A, the value according to the patch slope to the node n2 is β,
γ, β, and β, γ at node n5, n2, n
The Z coordinate of 5 is different and the patch tilts, which is a problem. Figure 3
(C) is an example when the value according to the inclination with respect to the shared nodes n2 and n5 is set to the maximum value. Even if the order of patch processing is different from A, C, D or C, D, A, the values according to the patch inclination given to the nodes n2, n5 on the same height are both γ, and the corrected node n2, n5 z
Coordinates are at the same height, and shape distortion can be avoided.

【0019】以上のような処理方法で、造形物底面およ
びオーバーハング部底面を自動検出し、表面形状データ
上にて寸法偏差を効率良く補正することができ、このデ
ータを基に造形を行なうことにより寸法精度の高い光造
形品を得ることができる。
By the processing method as described above, the bottom surface of the modeled object and the bottom surface of the overhang portion can be automatically detected, and the dimensional deviation can be efficiently corrected on the surface shape data, and the modeling is performed based on this data. Thus, a stereolithography product with high dimensional accuracy can be obtained.

【0020】本実施例では三角形パッチについて示した
が、多角形パッチについても効果は同様である。
In this embodiment, the triangular patch is shown, but the same effect can be obtained with a polygon patch.

【0021】ここで、余剰硬化厚さについて説明する。
図4(a)に光造形で余剰硬化の原理を示す。余剰硬化
は造形物のオーバーハング部底面を透過したレーザーの
漏れ光が、オーバーハング部底面の未硬化樹脂を硬化す
ることで生じる。次に余剰硬化厚さαの求め方を図4
(b)を用いて説明する。
The surplus cured thickness will be described below.
FIG. 4A shows the principle of surplus curing by stereolithography. Excessive curing is caused by the leakage light of the laser which has passed through the bottom surface of the overhang portion of the molded article and cures the uncured resin on the bottom surface of the overhang portion. Next, how to obtain the surplus cured thickness α is shown in FIG.
An explanation will be given using (b).

【0022】積層ピッチをP 第1硬化層の上面からの深さをD 積層数をN 樹脂の光吸収係数をk とすると N層積層時の深さDでの透過光エネルギーEn(D,
N)は En(D,N)=EXP(−k(D+(N−1)P)/λ) である。
The stacking pitch is P, the depth from the upper surface of the first cured layer is D, and the number of stacks is N. The light absorption coefficient of the resin is k. The transmitted light energy En (D, D
N) is En (D, N) = EXP (−k (D + (N−1) P) / λ).

【0023】ここで、積層にともない第1層下部では何
回も透過光が照射されるから、その累積エネルギーをE
total(D,N)とすれば Etotal(D,N)=EXP(−kD/λ) +EXP(−k(D+P)/λ) + ・ ・ +EXP(−k(D+(n−1)P)/λ) ここで A=EXP(−kD/λ) B=EXP(−kP/λ) とすれば Etotal(D,N)=A(1+B+B^2+・・・+B^(n−1)) 両辺の対数をとると ln(Etotal(D,N))=−kD/λ+ln(C) ここに、c=(1−B^n)/(1−B) よって D=−λ/k(ln(Etotal(D,N)−ln
(C)) Dは第1層の上面からの深さであること、また、Etota
l(D,N)を臨界硬化パワー(照射パワーに対する
比)とすればN層積層したときの余剰硬化の厚さαは α=D−P(n−1) ・・・・・・・・・・(1) となる。
Here, since the transmitted light is irradiated many times in the lower part of the first layer due to the stacking, the accumulated energy is E
If total (D, N) is given, Etotal (D, N) = EXP (−kD / λ) + EXP (−k (D + P) / λ) + ... + EXP (−k (D + (n−1) P) / λ) If A = EXP (−kD / λ) B = EXP (−kP / λ), then Etotal (D, N) = A (1 + B + B ^ 2 + ... + B ^ (n-1)) on both sides Taking the logarithm, ln (Etotal (D, N)) =-kD / λ + ln (C) where c = (1-B ^ n) / (1-B) Therefore, D = -λ / k (ln (Etotal (D, N) -ln
(C)) D is the depth from the top surface of the first layer, and Etota
If l (D, N) is the critical curing power (ratio to the irradiation power), the surplus curing thickness α when N layers are stacked is α = DP (n-1) ...・ ・ It becomes (1).

【0024】図5に積層厚さと寸法偏差の関係を示す。
このデータは水平なオーバーハング底面についての結果
である。これより、式(1)の計算結果は実測値とよく
一致していることがわかる。
FIG. 5 shows the relationship between laminated thickness and dimensional deviation.
This data is for a horizontal overhang bottom. From this, it can be seen that the calculation result of the equation (1) is in good agreement with the actually measured value.

【0025】図6(a)は半径r=3.0の穴をもつモ
デルの表面形状データに補正量を1とパッチの傾きに依
らず一定として上記補正を施したモデルデータの断面図
である。しかし、余剰硬化厚さはオーバーハング部底面
の傾きに依存するため、このデータを基に光造形を行な
うと、寸法偏差が一様ではなく図6(b)のようないび
つな光造形モデルとなってしまう。図6(c)はオーバ
ーハング部底面の傾きを比較した後に補正量を設定し、
上記補正を施したモデルデータの断面図であり、このデ
ータを基に光造形を行なうと、図6(d)のようなスム
ースな穴形状が作成され、寸法精度の良い光造形モデル
を得ることができる。
FIG. 6A is a cross-sectional view of model data obtained by performing the above correction on the surface shape data of a model having a hole of radius r = 3.0 with the correction amount being 1 and being constant irrespective of the inclination of the patch. . However, the surplus cured thickness depends on the inclination of the bottom surface of the overhang portion, and therefore, when stereolithography is performed based on this data, the dimensional deviation is not uniform, and the stereolithography model as shown in FIG. turn into. In FIG. 6C, the correction amount is set after comparing the inclination of the bottom surface of the overhang portion,
It is a cross-sectional view of the model data that has been subjected to the above correction. When stereolithography is performed based on this data, a smooth hole shape as shown in FIG. 6D is created, and a stereolithography model with good dimensional accuracy can be obtained. You can

【0026】ここでの補正量の設定はオーバーハング部
底面に位置するパッチの検出の後であれば、どの段階で
行なっても全体としての処理は同様である。
The setting of the correction amount here is the same as that of the whole process regardless of which stage the correction amount is set after the detection of the patch located on the bottom surface of the overhang portion.

【0027】以上のような処理方法で表面形状データに
補正を施し、造形を行なうことにより寸法精度の高い光
造形品を得ることができる。
By correcting the surface shape data and performing modeling by the above-described processing method, it is possible to obtain an optical modeling product with high dimensional accuracy.

【0028】図7は本発明の第二実施例を示すもので、
上記の表面形状データに補正処理を施して光造形を行な
う手順である。3次元CADで形状モデルを作成し、そ
れを光造形用表面形状データに変換し、該データにオー
バーハング部の自動検出および寸法偏差自動補正という
補正処理を施し、光造形を行なう。図8は直径の設計値
D=10.0の穴をもつモデルの断面図であり、図8
(a)は補正無しで、図8(b)は上記補正処理を施し
て造形したモデルの断面図である。このように、本発明
の手順に従い造形を行なうことにより、寸法精度の高い
光造形品を得ることができる。
FIG. 7 shows a second embodiment of the present invention.
This is a procedure of performing correction processing on the above surface shape data to perform stereolithography. A three-dimensional CAD is used to create a shape model, which is converted into surface shape data for stereolithography, and the data is subjected to correction processing such as automatic detection of overhangs and automatic correction of dimensional deviation to perform stereolithography. FIG. 8 is a cross-sectional view of a model having a hole with a design value D = 10.0 of the diameter.
FIG. 8A is a cross-sectional view of a model that has been modeled by performing the above-described correction process without correction. As described above, by performing the modeling according to the procedure of the present invention, it is possible to obtain an optical modeling product with high dimensional accuracy.

【0029】[0029]

【発明の効果】本発明によれば、造形物の底面およびオ
ーバーハング部の底面を自動検出し、該底面に生じる光
造形技術の本質的な寸法偏差を、表面形状データ上にて
補正することができ、寸法精度の高い光造形品を得られ
る効果がある。
According to the present invention, it is possible to automatically detect the bottom surface of a modeled object and the bottom surface of an overhang portion, and correct the essential dimensional deviation of the optical modeling technique generated on the bottom surface on the surface shape data. Therefore, there is an effect that a stereolithography product with high dimensional accuracy can be obtained.

【0030】また、寸法偏差の補正は三次元CADに戻
って手で修正する必要がなく、自動的に短時間で処理で
きる効果がある。
Further, the correction of the dimensional deviation does not need to be manually corrected by returning to the three-dimensional CAD, and there is an effect that it can be automatically processed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面形状モデルにて補正する処理方法のPAD
図である。
FIG. 1 is a PAD of a processing method for correcting with a surface shape model.
It is a figure.

【図2】本発明の第一実施例における表面形状データの
フォーマットである。
FIG. 2 is a format of surface shape data in the first embodiment of the present invention.

【図3】本発明の第一実施例における三角形パッチとノ
ードを示す図である。
FIG. 3 is a diagram showing triangular patches and nodes according to the first embodiment of this invention.

【図4】本発明の第一実施例における余剰硬化厚さを示
す図である。
FIG. 4 is a diagram showing a surplus cured thickness in the first embodiment of the present invention.

【図5】本発明の第一実施例における積層厚さと寸法偏
差の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a laminated thickness and a dimensional deviation in the first embodiment of the present invention.

【図6】本発明の第一実施例における補正量をオーバー
ハング部底面の傾きに依存する値とした場合のモデルの
断面図である。
FIG. 6 is a cross-sectional view of a model when the correction amount in the first embodiment of the present invention is a value depending on the inclination of the bottom surface of the overhang portion.

【図7】本発明の第二実施例を示す表面形状データ補正
処理を施して光造形を行なう手順を示す図である。
FIG. 7 is a diagram showing a procedure for performing optical shaping by performing surface shape data correction processing according to the second embodiment of the present invention.

【図8】本発明の第二実施例の表面形状データ補正処理
の無い場合と処理をした時の造形モデルの断面図であ
る。
FIG. 8 is a cross-sectional view of a modeling model with and without surface shape data correction processing according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

a1,a2,a3,b1,b2,b3,c1,c2,c
3,d1,d2,d3…頂点、a…法線ベクトル、n
1,n2,n3,n4,n5,n6…ノード、Za…法
線ベクトルZ成分、α…余剰硬化厚さ、A,B,C,D
…パッチ、β,γ…パッチ傾きに依存する値。
a1, a2, a3, b1, b2, b3, c1, c2, c
3, d1, d2, d3 ... Vertex, a ... Normal vector, n
1, n2, n3, n4, n5, n6 ... node, Za ... normal vector Z component, α ... surplus hardening thickness, A, B, C, D
... patch, β, γ ... values depending on the patch inclination.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 賢勉 東京都千代田区神田駿河台四丁目6番地株 式会社日立製作所内 (72)発明者 遠藤 敏朗 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所AV機器事業部内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Kentsugu Okubo 4, 6 Kanda Surugadai, Chiyoda-ku, Tokyo Stock company Hitachi Ltd. (72) Inventor Toshiro Endo 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. AV Equipment Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】三次元形状モデルの表面を少なくとも3頂
点を有する多角形パッチの集合で表す表面形状データを
用いて立体形状モデルを造形するためのデータ処理にお
いて、パッチの頂点を整理してノードに置き換え、造形
物の底面あるいはオーバーハング部底面に位置する多角
形パッチを該パッチの法線ベクトルのZ成分の正負で判
定し、Z成分が負すなわちオーバーハング部底面に位置
するパッチについては、該パッチを構成するノードにオ
ーバーハング部底面に位置するというフラッグを立て、
全ノードを調べて該フラッグの立ったノードのZ座標値
に補正を施し、該ノードを頂点とする全ての多角形パッ
チの形状および位置を変更する、このときノードのZ座
標値に施す補正量をパッチの傾きに従って所定の値にす
るとともに、該ノードを共有する幾つかの該オーバーハ
ング部底面パッチの傾きの内の最大の傾きに従う最大の
補正量にて補正するあるいはさらにノードを各頂点の座
標にも度してパッチを座標で表現するよう復元するとい
う処理方法により表面形状モデルデータを補正すること
を特徴とするデータ処理方法。
1. A data processing for modeling a three-dimensional shape model using surface shape data representing a surface of a three-dimensional shape model as a set of polygonal patches having at least three vertices, the vertices of the patches are arranged and nodes are arranged. , The polygon patch located on the bottom surface of the modeled object or on the bottom surface of the overhang portion is determined by the positive / negative of the Z component of the normal vector of the patch, and the Z component is negative, that is, for the patch located on the bottom surface of the overhang portion, Set a flag that the node that constitutes the patch is located at the bottom of the overhang,
The amount of correction applied to the Z coordinate value of the node at this time by changing the shape and the position of all the polygonal patches having the node as a vertex by examining all the nodes and correcting the Z coordinate value of the node where the flag stands. Is set to a predetermined value according to the inclination of the patch, and is corrected with the maximum correction amount according to the maximum inclination of the inclinations of some of the overhanging part bottom surface patches that share the node. A data processing method characterized in that surface shape model data is corrected by a processing method in which a patch is restored so as to be expressed in coordinates depending on coordinates.
【請求項2】紫外線硬化樹脂にレーザを照射し硬化さ
せ、該硬化物を積層していくことで光造形モデルを作成
する光造形法およびその装置において、請求項1のデー
タ処理機能を有しプリ補正することを特徴とした光造形
装置。
2. A stereolithography method and apparatus for producing a stereolithography model by irradiating an ultraviolet curable resin with a laser to cure it and stacking the cured products, and having the data processing function of claim 1. Stereolithography device characterized by pre-correction.
JP06831094A 1993-11-02 1994-04-06 Data processing method and stereolithography apparatus Expired - Fee Related JP3477805B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP06831094A JP3477805B2 (en) 1994-04-06 1994-04-06 Data processing method and stereolithography apparatus
PCT/JP1994/001841 WO1995012485A1 (en) 1993-11-02 1994-11-01 Method of correcting thickness of excessive curing of photomolded article and apparatus therefor
EP01112022A EP1136235B1 (en) 1993-11-02 1994-11-01 Method and apparatus of correcting superfluous curing thickness of optical modeling product
EP94931198A EP0727302B1 (en) 1993-11-02 1994-11-01 Method of correcting thickness of excessive curing of photomolded article
US08/637,623 US5858297A (en) 1993-11-02 1994-11-01 Method and apparatus of correcting superfluous curing thickness of optical modeling product
DE69432836T DE69432836T2 (en) 1993-11-02 1994-11-01 METHOD AND DEVICE FOR CORRECTING THE EXCESSIVE CURED THICKNESS OF PHOTOMETRICALLY SHAPED OBJECTS
DE69430703T DE69430703T2 (en) 1993-11-02 1994-11-01 METHOD FOR CORRECTING THE THICKNESS OF EXCESSIVE CURING, PHOTOMETRICALLY SHAPED ITEMS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06831094A JP3477805B2 (en) 1994-04-06 1994-04-06 Data processing method and stereolithography apparatus

Publications (2)

Publication Number Publication Date
JPH07276506A true JPH07276506A (en) 1995-10-24
JP3477805B2 JP3477805B2 (en) 2003-12-10

Family

ID=13370117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06831094A Expired - Fee Related JP3477805B2 (en) 1993-11-02 1994-04-06 Data processing method and stereolithography apparatus

Country Status (1)

Country Link
JP (1) JP3477805B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173252B2 (en) 1993-11-02 2001-06-04 株式会社日立製作所 Stereolithography method and stereolithography device

Also Published As

Publication number Publication date
JP3477805B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
US7809455B2 (en) Method of correcting die model data
US8845949B2 (en) Method for reducing differential shrinkage in stereolithography
Cheng et al. Multi‐objective optimization of part‐building orientation in stereolithography
JP3030853B2 (en) Method and apparatus for forming a three-dimensional object
US20050015173A1 (en) Rapid prototyping method and device using v-cad data
WO1991006378A1 (en) Improved stereolithographic construction techniques
WO1995012485A1 (en) Method of correcting thickness of excessive curing of photomolded article and apparatus therefor
JP2000141499A (en) Method for forming layer data for forming three- dimensional matter and apparatus for forming three- dimensional matter
CN108292131A (en) The control or associated improvement of the machine chain including increasing material manufacturing machine in being manufactured to workpiece
CN107775956A (en) A kind of method in the optimization profile scan path for increasing material manufacturing
Rahmati et al. Process Parameters optimization to improve dimensional accuracy of stereolithography parts
JP2000263650A (en) Stereo lithographic apparatus
JP3477805B2 (en) Data processing method and stereolithography apparatus
JP3173252B2 (en) Stereolithography method and stereolithography device
JP3485085B2 (en) Stereolithography shape data processing method, stereolithography method and stereolithography device
JP2004001531A (en) Method for processing stereo lithographic shape data, method and apparatus for stereo lithography
JPH09286058A (en) Formation of three-dimensional shape
Tyberg Local adaptive slicing for layered manufacturing
JP4405671B2 (en) Determination of resin hardened area in optical stereolithography
JPH05278123A (en) Laser scanning method for optical model
JPH05169551A (en) Method of forming three-dimensional image
JP3166133B2 (en) Optical shaping method and apparatus
Kalami et al. Virtual Surface Roughness Measurements From an ‘As-Built’Virtual CAD Model for Bead Based Deposition Additive Manufactured Components
WO2019009064A1 (en) Additive layer manufacturing method
Badillo et al. Evaluation of Reproduction of Geometrical Primitives Using Different 3D Printing Techniques

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees