JPH0727527Y2 - Shielded wire - Google Patents

Shielded wire

Info

Publication number
JPH0727527Y2
JPH0727527Y2 JP1988049516U JP4951688U JPH0727527Y2 JP H0727527 Y2 JPH0727527 Y2 JP H0727527Y2 JP 1988049516 U JP1988049516 U JP 1988049516U JP 4951688 U JP4951688 U JP 4951688U JP H0727527 Y2 JPH0727527 Y2 JP H0727527Y2
Authority
JP
Japan
Prior art keywords
microns
diameter
conductor
thickness
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988049516U
Other languages
Japanese (ja)
Other versions
JPH01152412U (en
Inventor
宏 早味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1988049516U priority Critical patent/JPH0727527Y2/en
Priority to US07/334,863 priority patent/US4970112A/en
Publication of JPH01152412U publication Critical patent/JPH01152412U/ja
Application granted granted Critical
Publication of JPH0727527Y2 publication Critical patent/JPH0727527Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • H01B11/1839Construction of the insulation between the conductors of cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • Y10T428/249977Specified thickness of void-containing component [absolute or relative], numerical cell dimension or density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic

Description

【考案の詳細な説明】 「産業上の利用分野」 本考案は、スペースファクターが良く、低静電容量でし
かも耐電圧特性の優れたシールド電線に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a shielded wire having a good space factor, a low capacitance, and an excellent withstand voltage characteristic.

「従来の技術」 従来より発泡ポリエチレンを内部導体の絶縁層とするシ
ールド電線は、テレビジョンのアンテナとチューナー間
の信号伝送用、ビデオ信号伝送用、コンピュータ類の機
器間接続用などの信号伝送用の電線として幅広く使用さ
れている。
"Prior art" Conventionally, shielded wires using expanded polyethylene as the insulating layer of the inner conductor are used for signal transmission between television antenna and tuner, video signal transmission, computer equipment connection, etc. Widely used as electric wire.

上記の用途では、伝送する信号は通常周波数が1MHz以上
の高周波電流であり、しかも電圧値も微弱な場合があ
り、周囲の電磁界ノイズの影響を避けるために、外部導
体を設けた遮蔽構造にする場合が多い。
In the above applications, the signal to be transmitted is a high-frequency current with a normal frequency of 1 MHz or more, and the voltage value may be weak, so in order to avoid the influence of electromagnetic field noise around it, use a shield structure with an external conductor. Often.

ところが、遮蔽構造の電線は、内部導体と外部導体間に
絶縁物を介在せしめた構造であるため、構造上、内部導
体と外部導体間に静電容量が生じることが避けられな
い。
However, since the electric wire having the shielding structure has a structure in which an insulator is interposed between the inner conductor and the outer conductor, it is unavoidable that a capacitance is generated between the inner conductor and the outer conductor because of the structure.

この内部導体と外部導体間の静電容量は特に高周波電流
を伝送する場合に問題となり、伝送距離が長くなると伝
送信号の強度が減衰してしまう問題がある。
The electrostatic capacitance between the inner conductor and the outer conductor becomes a problem especially when transmitting a high frequency current, and there is a problem that the strength of a transmission signal is attenuated when the transmission distance becomes long.

この問題を解決するには、内部導体と外部導体間の絶縁
物の誘電率(比誘電率)を低下せしめれば良く、誘電率
を低下せしめ内部導体と外部導体間の静電容量を低下せ
しめる方法が種々検討されている。例えば、発泡ポリエ
チレンは、気孔率(材料中に存在する気泡の全体積/材
料全体の体積)を変化させることにより、誘電率を任意
に制御することが可能であって、内部導体と外部導体間
の絶縁物として好適な材料であり幅広く実用に供されて
いる。
To solve this problem, the dielectric constant (relative permittivity) of the insulator between the inner conductor and the outer conductor may be lowered, which lowers the dielectric constant and the electrostatic capacitance between the inner conductor and the outer conductor. Various methods have been studied. For example, in the case of expanded polyethylene, the dielectric constant can be arbitrarily controlled by changing the porosity (total volume of bubbles existing in the material / volume of the entire material). It is a material suitable as an insulating material and is widely used in practice.

例えば、未発泡のポリエチレンの誘電率(比誘電率)
は、およそ2.2乃至は2.3であるものが気孔率を50%に設
定すると誘電率(比誘電率)おおよそ1.3乃至は1.5に低
下せしめることが可能である。
For example, the dielectric constant (relative permittivity) of unfoamed polyethylene
Is about 2.2 to 2.3, but the porosity can be lowered to about 1.3 to 1.5 by setting the porosity to 50%.

ところが、昨今、特にコンピュータ類の機器間接続など
の用途では、多種類の信号を同時に伝送する必要がある
場合が多く、伝送信号の電気的な多重化にも限度がある
ため、例えば100種類以上もの多種類の信号を同時に並
行して伝送する必要があることが多い。
However, in recent years, particularly in applications such as computer-to-device connection, it is often necessary to transmit many types of signals at the same time, and there is a limit to the electrical multiplexing of transmission signals. It is often necessary to transmit many types of signals simultaneously in parallel.

このような場合、当然、信号伝送用の電線も100本以上
必要になるので、スペースファクターの観点から1本の
電線は出来るかぎり細径であることが望ましい。
In such a case, naturally, 100 or more electric wires for signal transmission are also required, so it is desirable that one electric wire has a diameter as small as possible from the viewpoint of the space factor.

しかし、これまで知られている発泡ポリエチレンを絶縁
層とするシールド電線は発泡ポリエチレン層の肉厚が通
常300ミクロン(0.3mm)以上のものが多く、300ミクロ
ン以下のものは知られていない。
However, the shielded electric wires using foamed polyethylene as an insulating layer, which have been known so far, often have a thickness of foamed polyethylene layer of usually 300 microns (0.3 mm) or more, and those of 300 microns or less are not known.

この場合、例えば内部導体の径が200ミクロンとすれ
ば、内部導体と絶縁層のみで径が800ミクロン(0.8mm)
となり、外部導体と絶縁シースを設ければ通常1.0mm以
上の径のものしか得られないことになる。
In this case, for example, if the diameter of the inner conductor is 200 microns, the diameter of only the inner conductor and the insulating layer is 800 microns (0.8mm).
Therefore, if an outer conductor and an insulating sheath are provided, normally only a diameter of 1.0 mm or more can be obtained.

導体径を半分の100ミクロンにしても内部導体と絶縁層
で700ミクロンになり、スペースファクター向上には大
きな効果は得られない。
Even if the conductor diameter is halved to 100 microns, the inner conductor and insulating layer will be 700 microns, which is not very effective in improving the space factor.

内部導体の絶縁層の肉厚を半分の150ミクロンに設定す
れば、導体が200ミクロンであっても内部導体と絶縁層
で500ミクロン径になり、内部導体の絶縁層の肉厚の低
減はスペースファクターの向上に効果的である。
If the thickness of the insulation layer of the inner conductor is set to half, which is 150 microns, the diameter of the inner conductor and the insulation layer will be 500 microns even if the conductor has a thickness of 200 microns. It is effective in improving the factor.

さらに、言うまでもないが、絶縁層の肉厚を100ミクロ
ン以下に設定すれば、導体径が200ミクロンであっても
内部導体と絶縁層で400ミクロン径以下にすることがで
き絶縁層の肉厚の薄肉化がスペースファクター向上に極
めて効果的であることが理解できる。
Furthermore, it goes without saying that if the thickness of the insulating layer is set to 100 microns or less, the internal conductor and the insulating layer can be 400 microns or less in diameter even if the conductor diameter is 200 microns. It can be understood that thinning is extremely effective in improving the space factor.

ところが、絶縁層、殊に発泡ポリエチレン絶縁層の肉厚
を薄肉化すると、耐電圧が低下する、外部からの衝撃に
よってピンホールなどの欠陥が生じ易くなるなどの不具
合点が発生するのである。
However, when the thickness of the insulating layer, particularly the foamed polyethylene insulating layer, is reduced, there arise problems such as a decrease in withstand voltage and a defect such as a pinhole which is likely to be caused by an external impact.

例えば、導体径が200ミクロン、肉厚が300ミクロンの発
泡低密度ポリエチレン層(発泡気泡径は300ミクロン未
満に制御)を絶縁層とする電線の直流耐電圧を測定する
と室温でおよそ3.4kVの耐電圧特性を有するのに対し、
導体径が200ミクロン、肉厚が100ミクロンの発泡低密度
ポリエチレン層(発泡気泡径100ミクロン未満に制御、
低密度ポリエチレンの種類は前記の300ミクロン肉厚の
ものと同じ)を絶縁層とする電線の直流耐電圧を測定す
ると室温でおよそ0.43kVの耐電圧特性しか得られないの
である。
For example, when measuring the DC withstand voltage of an electric wire with an insulating layer of a foamed low-density polyethylene layer with a conductor diameter of 200 microns and a wall thickness of 300 microns (foamed bubble diameter is controlled to be less than 300 microns), a withstand voltage of approximately 3.4kV at room temperature While it has voltage characteristics,
Foamed low-density polyethylene layer with conductor diameter of 200 microns and wall thickness of 100 microns (foamed bubble diameter controlled to less than 100 microns,
The type of low-density polyethylene is the same as the above-mentioned one having a thickness of 300 microns). When the DC withstand voltage of an electric wire having an insulating layer is measured, only a withstand voltage characteristic of about 0.43 kV can be obtained at room temperature.

「考案が解決しようとする課題」 以上説明したように、コンピュータなどの機器間接続用
の電線には発泡ポリエチレンを絶縁層とするシールド電
線が広く利用されているが、発泡ポリエチレン層を絶縁
層とする電線は絶縁層の肉厚が300ミクロン以下のもの
は知られておらず、スペースファクターの点で好ましく
ない。一方、発泡ポリエチレン絶縁層の肉厚を薄肉化す
るとスペースファクターの向上には非常に効果的である
半面、耐電圧特性の低下などを来たし、実用上の新たな
問題が発生するのである。
"Problems to be solved by the invention" As described above, shielded wires having expanded polyethylene as an insulating layer are widely used as wires for connecting devices such as computers. As for the electric wire to be used, it is not known that the thickness of the insulating layer is 300 μm or less, which is not preferable in terms of space factor. On the other hand, when the thickness of the foamed polyethylene insulating layer is made thin, it is very effective in improving the space factor, but on the other hand, the withstand voltage characteristic is deteriorated, which causes new problems in practical use.

よって、耐電圧の低下などの問題がなく、しかも絶縁層
の肉厚が薄肉化された発泡ポリエチレン電線のシールド
電線の開発が望まれている。
Therefore, there is a demand for the development of a shielded electric wire of a foamed polyethylene electric wire which has no problem such as a decrease in withstand voltage and has a thin insulating layer.

「課題を解決するための手段」 即ち本考案のシールド電線は、第1図に例示する如く、
内部導体(1)の絶縁層(2)が発泡ポリエチレンであ
って、当該発泡ポリエチレン層の肉厚が100ミクロン以
下であり、該発泡ポリエチレン層の独立気泡の最大径が
肉厚の1/2以下であることを特徴とするものである。な
お第1図中(3)は外部導体、(4)は絶縁シースであ
る。
"Means for Solving the Problem" That is, the shielded electric wire of the present invention is as shown in FIG.
The insulating layer (2) of the inner conductor (1) is foamed polyethylene, the thickness of the foamed polyethylene layer is 100 μm or less, and the maximum diameter of the closed cells of the foamed polyethylene layer is 1/2 or less of the wall thickness. It is characterized by being. In FIG. 1, (3) is an outer conductor and (4) is an insulating sheath.

以下に本考案を詳細に説明する。The present invention will be described in detail below.

前記の問題点につき本考案者は鋭意検討を重ねた結果、
発泡ポリエチレン絶縁層の肉厚が100ミクロン以下であ
っても、絶縁層内の発泡気泡径を肉厚の1/2以下に制御
してやれば、耐電圧の大幅な低下を来たすことなく、絶
縁層の誘電率を低下せしめることが可能であることを見
出し、かかる知見に基づき本考案を完成せしめるに至っ
た。
The inventors of the present invention have made extensive studies on the above problems, and as a result,
Even if the thickness of the foamed polyethylene insulation layer is 100 microns or less, if the diameter of the foamed bubbles in the insulation layer is controlled to 1/2 or less of the wall thickness, the insulation layer will not be significantly reduced in voltage resistance. The inventors have found that it is possible to reduce the dielectric constant, and have completed the present invention based on such findings.

例えば、導体径を200ミクロン、絶縁層を発泡気泡の最
大径が30ミクロンに制御した肉厚90ミクロンの発泡低密
度ポリエチレン(低密度ポリエチレンの密度:0.919g/cm
3、融点107℃)で形成した電線の直流耐電圧を測定する
と室温でおよそ2.0kVの耐電圧特性が得られた。
For example, a foamed low-density polyethylene with a conductor diameter of 200 microns and an insulating layer with a maximum bubble diameter of 30 microns controlled to a thickness of 90 microns (density of low-density polyethylene: 0.919g / cm
3 , the DC withstand voltage of the wire formed with a melting point of 107 ° C) was measured, and a withstand voltage characteristic of about 2.0 kV was obtained at room temperature.

絶縁層である発泡ポリエチレン層に存在する発泡気泡の
径は電線の直流耐電圧に大きく関係しており、発泡ポリ
エチレン層に存在する発泡気泡径が小さくなると電線の
直流耐電圧が向上する傾向が認められ、特に発泡気泡径
の最大値を肉厚の1/2以下に設定すると急激に耐電圧が
向上する現象が認められた。
The diameter of the foam bubbles present in the polyethylene foam layer, which is the insulating layer, is greatly related to the DC withstand voltage of the wire.There is a tendency for the DC withstand voltage of the wire to improve as the diameter of the foam bubbles present in the polyethylene foam layer decreases. Especially, when the maximum value of the foamed cell diameter was set to 1/2 or less of the wall thickness, the phenomenon that the withstand voltage was rapidly improved was observed.

「実施例」 以下に本考案の実施例を述べる。[Examples] Examples of the present invention will be described below.

実施例1. 内部導体として外径が200ミクロンのすずめっき単線
(すずめっきの厚さ約10ミクロン)を使用し、その周囲
を肉厚が80ミクロンの発泡低密度ポリエチレン層(低密
度ポリエチレンの密度0.920g/cm3、融点112℃、発泡低
密度ポリエチレン内の気泡径は最大30ミクロンに制御)
で被覆し、その周囲に外径が50ミクロンのすずめっき導
体を横巻きした外部導体、さらにその周囲に肉厚100ミ
クロンの低密度ポリエチレン(低密度ポリエチレンの密
度0.923g/cm3、融点106℃)のシースを設けたシールド
電線を得た。
Example 1. A tin-plated single wire with an outer diameter of 200 μm (tin-plated thickness of about 10 μm) is used as an inner conductor, and a foamed low-density polyethylene layer with a wall thickness of 80 μm (the density of low-density polyethylene is used around it). 0.920g / cm 3 , melting point 112 ℃, bubble diameter in foamed low density polyethylene is controlled up to 30 microns)
An outer conductor covered with a tin-plated conductor with an outer diameter of 50 microns, and a low-density polyethylene with a wall thickness of 100 microns (a density of low-density polyethylene of 0.923 g / cm 3 , a melting point of 106 ° C). ) A shielded electric wire provided with a sheath was obtained.

このシールド電線の内部導体と外部導体間の静電容量を
測定した結果、平均96pF/m(1KHz,25℃)であった。
As a result of measuring the electrostatic capacitance between the inner conductor and the outer conductor of this shielded wire, the average was 96 pF / m (1 KHz, 25 ° C).

このシールド電線の直流耐電圧(内部導体に正極、外部
導体に負極を接続)を測定したところ平均2.2kVの値が
得られた。
The DC withstand voltage of this shielded wire (a positive electrode connected to the inner conductor and a negative electrode connected to the outer conductor) was measured, and an average value of 2.2 kV was obtained.

以下、第1表に実施例2〜7、第2表に比較例1〜7を
記載する。表中に使用したta導体のすずめっき厚は約10
ミクロンのものである。また、実施例2〜7、比較例1
〜7のシールド電線の静電容量および直流耐電圧は実施
例1と同様に肉厚100ミクロンの低密度ポリエチレン
(低密度ポリエチレンの密度0.923g/cm3,融点106℃)
のシースを設けた構造での測定値である。
Hereinafter, Examples 1 to 7 are shown in Table 1, and Comparative Examples 1 to 7 are shown in Table 2. The tin thickness of the ta conductor used in the table is about 10
It is of the micron type. Moreover, Examples 2 to 7 and Comparative Example 1
The capacitance and the DC withstand voltage of the shielded wires of Nos. 7 to 7 are the same as in Example 1 and are low-density polyethylene having a thickness of 100 microns (density of low-density polyethylene 0.923 g / cm 3 , melting point 106 ° C.)
It is the measurement value of the structure provided with the sheath of.

「考案の効果」 以上説明したように本考案によれば、内部導体と外部導
体間の静電容量が小さく、しかも耐電圧特性の優れたス
ペースファクターの良いシールド電線が得られ、コンピ
ュータなどの機器間接続用などの電線として利用価値は
非常に大きいものがある。
[Advantage of the Invention] As described above, according to the present invention, a shielded wire having a small capacitance between the inner conductor and the outer conductor and excellent withstand voltage characteristics and a good space factor can be obtained. There are some electric wires that have a very high utility value as wires for inter-connection.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案のシールド電線の断面構造の一例を示し
たものであり、(1)は内部導体、(2)は肉厚が100
ミクロン以下でありかつ気泡径の最大値が肉厚の1/2以
下に制御された発泡ポリエチレン層、(3)は外部導
体、(4)は絶縁シースである。
FIG. 1 shows an example of the cross-sectional structure of the shielded electric wire of the present invention. (1) is an inner conductor, (2) is a wall thickness of 100.
A foamed polyethylene layer having a micron diameter or less and a maximum bubble diameter controlled to ½ or less of the wall thickness, (3) an outer conductor, and (4) an insulating sheath.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】内部導体の絶縁層が発泡ポリエチレンであ
って、当該発泡ポリエチレン層の肉厚が100ミクロン以
下であり、該発泡ポリエチレン層の独立気泡の最大径が
肉厚の1/2以下であるシールド電線。
1. The insulating layer of the inner conductor is foamed polyethylene, the thickness of the foamed polyethylene layer is 100 μm or less, and the maximum diameter of the closed cells of the foamed polyethylene layer is 1/2 or less of the wall thickness. There is a shielded electric wire.
JP1988049516U 1988-04-13 1988-04-13 Shielded wire Expired - Lifetime JPH0727527Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1988049516U JPH0727527Y2 (en) 1988-04-13 1988-04-13 Shielded wire
US07/334,863 US4970112A (en) 1988-04-13 1989-04-06 Shielded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988049516U JPH0727527Y2 (en) 1988-04-13 1988-04-13 Shielded wire

Publications (2)

Publication Number Publication Date
JPH01152412U JPH01152412U (en) 1989-10-20
JPH0727527Y2 true JPH0727527Y2 (en) 1995-06-21

Family

ID=12833302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988049516U Expired - Lifetime JPH0727527Y2 (en) 1988-04-13 1988-04-13 Shielded wire

Country Status (2)

Country Link
US (1) US4970112A (en)
JP (1) JPH0727527Y2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2274736A (en) * 1993-01-28 1994-08-03 Intravascular Res Ltd A micro-coaxial cable
US5814768A (en) * 1996-06-03 1998-09-29 Commscope, Inc. Twisted pairs communications cable
JP2001148205A (en) 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing
US6770819B2 (en) * 2002-02-12 2004-08-03 Commscope, Properties Llc Communications cables with oppositely twinned and bunched insulated conductors
US7706424B2 (en) * 2005-09-29 2010-04-27 Cymer, Inc. Gas discharge laser system electrodes and power supply for delivering electrical energy to same
KR100842985B1 (en) * 2006-07-21 2008-07-01 엘에스전선 주식회사 Micro Coaxial cable
KR100820498B1 (en) * 2007-02-07 2008-04-08 엘에스전선 주식회사 Micro coaxial cable for high bending performance
JP2013176212A (en) * 2012-02-24 2013-09-05 Yazaki Corp Routing structure for electric wire and electric wire with exterior member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352701A (en) * 1973-08-21 1982-10-05 Sumitomo Electric Industries, Ltd. Process for the production of highly expanded polyolefin insulated wires and cables
JPS5484288A (en) * 1977-12-16 1979-07-05 Sumitomo Electric Ind Ltd Manufacturing process of insulated wire with foamed plastics
JPS5657205A (en) * 1979-10-16 1981-05-19 Hitachi Cable Thin foamed insulated electric wire

Also Published As

Publication number Publication date
JPH01152412U (en) 1989-10-20
US4970112A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
EP1335390B1 (en) Communication cables with oppositely twinned and bunched insulated conductors
JPH029461Y2 (en)
JPH08507900A (en) Twisted pair cable
JPH04507165A (en) coaxial electrical cable structure
JP2011204503A (en) Flexible flat cable
JP2010218741A (en) High-speed differential cable
JPH0727527Y2 (en) Shielded wire
JP2008103179A (en) High-speed differential transmission cable
JP3982210B2 (en) Flexible flat cable
WO2008096348A2 (en) Communication cable for high frequency data transmission
JP4232942B2 (en) High-speed differential cable
US20220215986A1 (en) Cable
JP2021073657A (en) Two-core parallel cable
JP2005032583A (en) Shield cable for communication for automobile
JP3614740B2 (en) coaxial cable
JPS5918580Y2 (en) shielded wire
JPH03197872A (en) High voltage measuring apparatus
JP2010246350A (en) Lightning-protection coaxial cable
CN207817136U (en) A kind of partial discharge of power cable connector detection electromagnetic interference shielding device
JP2001084849A (en) Flat cable
JPH05190026A (en) High-frequency lead wire
JP2528592Y2 (en) Fine coaxial cable
JP3599361B2 (en) Foam insulated wire and multi-core cable for interface using the same
JP2523482Y2 (en) Multi-pair cable
JP2571412B2 (en) OF cable