JPH07274414A - Instantaneous power switching device - Google Patents

Instantaneous power switching device

Info

Publication number
JPH07274414A
JPH07274414A JP6298811A JP29881194A JPH07274414A JP H07274414 A JPH07274414 A JP H07274414A JP 6298811 A JP6298811 A JP 6298811A JP 29881194 A JP29881194 A JP 29881194A JP H07274414 A JPH07274414 A JP H07274414A
Authority
JP
Japan
Prior art keywords
power supply
switch
terminal
load
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6298811A
Other languages
Japanese (ja)
Other versions
JP2857979B2 (en
Inventor
Kazuhisa Tan
和久 丹
Shingo Uchida
進午 内田
Tetsuro Kumagai
哲朗 熊谷
Masuo Sasada
益男 笹田
Norifumi Hotta
典文 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Kandenko Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Nippon Kouatsu Electric Co
Tokyo Electric Power Co Inc
Kandenko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co, Tokyo Electric Power Co Inc, Kandenko Co Ltd filed Critical Nippon Kouatsu Electric Co
Priority to JP6298811A priority Critical patent/JP2857979B2/en
Publication of JPH07274414A publication Critical patent/JPH07274414A/en
Application granted granted Critical
Publication of JP2857979B2 publication Critical patent/JP2857979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To make it possible to perform a switching from an existing power source to a new power source without power service interruption by connecting a shunt equipped with an reactor for suppressing a rush current and a contactless switch being conductive after receiving a conducting command signal between newly installed power supply terminals and load terminals. CONSTITUTION:A first switchgear 15 connected between an existing power terminal 2 and a load terminal 4 is provided, and connected state between these terminals 2 and 4 are opened. Also, a second switchgear 16 is connected between a newly installed power supply terminals 3 and the load terminals 4, and these terminals 3 and 4 are connected together after the make and break of the first switchgear. Moreover, a contactless switch 17, a rush current suppressing reactor 18 and a third switchgear 19 are arranged in parallel to the second switchgear 16 between the newly installed power supply terminals 3 and the load terminals 4 thereby forming a shunt. By doing this, the switching from the existing power supply to the new power supply can be performed without power service interruption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は既設動力電源を新設動
力電源に切り替える場合に使用する動力用瞬時切替装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power instantaneous switching device used when switching an existing power source to a new power source.

【0002】[0002]

【従来の技術】低圧配電線工事において、既設の動力電
源から新設の動力電源への切替工事は、現状においては
休電状態にて行っている。
2. Description of the Related Art In low-voltage distribution line construction, switching work from an existing power source to a new power source is currently performed in a power-off state.

【0003】[0003]

【解決するための技術的課題】しかしながら近年電力需
要の高度化、多様化に伴い工事作業のための休電(停
電)が得にくい社会環境になってきている。このため上
記動力の切替作業についても無停電にて行う必要に迫ら
れている。
[Technical problem to be solved] However, in recent years, due to the sophistication and diversification of electric power demand, a social environment in which it is difficult to obtain power interruption (power outage) for construction work is becoming. For this reason, it is necessary to perform the power switching work without interruption.

【0004】この発明は上記従来の問題点を除き、既設
の動力電源から新設の動力電源への切り換えが無停電で
行え、需要家に対する供給信頼度を著しく高いものにす
ることができるようにした動力用瞬時切替装置を提供し
ようとするものである。
Except for the above-mentioned conventional problems, the present invention enables switching from an existing power source to a new power source without interruption, and makes it possible to remarkably increase the reliability of supply to consumers. It is intended to provide an instantaneous power switching device.

【0005】[0005]

【課題を解決するための具体的な手段】本願発明の動力
用瞬時切替装置は、ケースには、既設電源に接続する為
の既設電源用端子と、新設電源に接続する為の新設電源
用端子と、動力負荷に接続する為の負荷用端子が備えら
れており、上記既設電源用端子と負荷用端子との間には
両者間の接続状態を開放する為の第1の開閉器が接続し
てある一方、上記新設電源用端子と負荷用端子との間に
は上記第1の開閉器の開放の後に両端子間を接続する為
の第2の開閉器が接続してあり、更に、上記負荷用端子
には該端子の電圧低下を検知して無接点スイッチの導通
指令信号を出力するようにした導通制御回路が接続して
あると共に、上記新設電源用端子と負荷用端子との間に
は、上記導通指令信号を受けて導通するようにした無接
点スイッチと、突入電流抑制用のリアクトルとを備える
分路が、上記第2の開閉器と並列状態に接続したのであ
る。
A power instantaneous switching device according to the present invention has an existing power source terminal for connecting to an existing power source and a new power source terminal for connecting to a new power source in a case. And a load terminal for connecting to a power load, and a first switch for opening the connection state between the existing power supply terminal and the load terminal is connected. On the other hand, between the new power supply terminal and the load terminal, there is connected a second switch for connecting both terminals after the opening of the first switch, and further, The load terminal is connected to a conduction control circuit that detects a voltage drop at the terminal and outputs a conduction command signal for the contactless switch, and connects between the new power source terminal and the load terminal. Is a contactless switch that is made conductive by receiving the above-mentioned conduction command signal, and Shunt and a reactor for current suppression is than connected in parallel state and the second switch.

【0006】[0006]

【作用】既設電源用端子と負荷用端子との間の開閉器を
開くと、負荷用端子の電圧低下が導通制御回路により検
出されて新設電源用端子と負荷用端子との間の無接点ス
イッチが即座に、しかも突入電流の少ない状態で導通す
る。その結果、既設電源用端子から負荷用端子への通電
状態から、新設電源用端子から負荷用端子への通電状態
に、負荷用端子が停電状態となることなく切替わる。
[Operation] When the switch between the existing power supply terminal and the load terminal is opened, the voltage drop at the load terminal is detected by the conduction control circuit, and the contactless switch between the new power supply terminal and the load terminal. Conducts immediately and with a small amount of inrush current. As a result, the load terminal is switched from the power supply state of the existing power supply terminal to the load terminal to the power supply state of the new power supply terminal to the load terminal without a power failure.

【0007】[0007]

【実施例】以下本願の実施例を示す図面について説明す
る。第1図及び第2図に示される動力用瞬時切替装置A
において、1はケースを示す。該ケース1に取付けてあ
る部材において、2は既設電源用端子、3は新設電源用
端子、4は負荷用端子を夫々示し、いずれも3相分の三
つの端子金具を有しておって3芯ケーブル(本件明細書
中において3芯ケーブルとは、3芯SVケーブルおよび
3カ撚線DVケーブルさらには3芯VVケーブル等の、
3本の芯線を備えたケーブルを意味する)の接続ができ
るようになっている。5はアース端子、6は表示及び操
作用のパネルで、後に述べる種々の表示灯や操作用のス
イッチが備わっている。次に7は接続用ケーブルで、3
芯ケーブルが用いてあり、一端は前記端子2,3又は4
に接続できるようになっており、他端には各芯線毎にジ
ャンパー金具8が取付けてある。9は各線路の別を判別
する為に備えられた表示、10は保持フックである。尚上
記接続用ケーブル7は三つの端子2,3,4用に3組備
えられている。次に11は必要に応じて備えられるリモコ
ンユニットで、上記動力用瞬時切替装置Aの操作を離れ
た地点から行ない得るようにしたものであり、前記パネ
ル6と同様の表示及び操作用のパネルが備えられ、かつ
リモコンケーブル12でもって上記動力用瞬時切替装置A
に接続される。13は保持フックである。
Embodiments of the present invention will be described below with reference to the drawings. Momentary power switching device A shown in FIGS. 1 and 2.
, 1 indicates a case. In the members attached to the case 1, 2 is an existing power supply terminal, 3 is a new power supply terminal, 4 is a load terminal, and each has three terminal fittings for three phases. Core cable (Three-core cable in the present specification means 3-core SV cable, 3-core DV cable, 3-core VV cable, etc.,
(Meaning a cable with three cores). Reference numeral 5 is a ground terminal, 6 is a display and operation panel, and is provided with various indicator lights and switches for operation described later. Next, 7 is a connecting cable, 3
A core cable is used, and one end is the terminal 2, 3 or 4
And a jumper metal fitting 8 is attached to the other end for each core wire. Reference numeral 9 is a display provided for distinguishing each line, and 10 is a holding hook. The connection cable 7 is provided in three sets for the three terminals 2, 3 and 4. Next, 11 is a remote control unit which is provided as necessary, and which allows the operation of the power instantaneous switching device A to be performed from a distant point. The same display and operation panel as the panel 6 is provided. It is equipped with the remote control cable 12 and the power instantaneous switching device A is provided.
Connected to. 13 is a holding hook.

【0008】次に上記動力用瞬時切替装置Aにおいてケ
ース1の内部に備えられた回路機構について説明する。
先ず既設電源用端子2、新設電源用端子3、負荷用端子
4相互の接続回路機構を示す第3図において、15は既設
電源用端子2と負荷用端子4との間に接続した第1の開
閉器で、それらの端子2,4間の接続状態を開放するよ
うにしたものであり、周知の電磁開閉器の接点が用いて
ある。16は新設電源用端子3と負荷用端子4との間に接
続した第2の開閉器で、上記第1の開閉器15の開放の後
にそれらの端子3,4間を接続するようにしたものであ
り、周知の電磁開閉器の接点が用いてある。
Next, the circuit mechanism provided inside the case 1 in the power instantaneous switching device A will be described.
First, in FIG. 3 showing the connection circuit mechanism among the existing power supply terminal 2, the new power supply terminal 3 and the load terminal 4, reference numeral 15 is a first connection between the existing power supply terminal 2 and the load terminal 4. This is a switch which opens the connection state between the terminals 2 and 4, and a contact of a known electromagnetic switch is used. Reference numeral 16 is a second switch connected between the new power supply terminal 3 and the load terminal 4, and after the first switch 15 is opened, the terminals 3 and 4 are connected to each other. The contact of a known electromagnetic switch is used.

【0009】17、18、19は、新設電源用端子3と負荷用
端子4との間に上記第2の開閉器16と並列状態に配置さ
れ、分路を構成する為のもので、まず17は無接点スイッ
チで、トライアックが用いてあるが、逆並列接続したサ
イリスタを用いてもよい。18は突入電流抑制用のリアク
トル、19は無接点スイッチ17に対し直列となるように接
続した第3の開閉器で、常態において無接点スイッチ17
と負荷用端子4との間を切り離すようにしたものであ
る。これらは第3図の如く接続されている。20は回路遮
断器(又はヒューズ)で、ジャンパー金具8の取付時、
誤って相間短絡となった場合直ちに遮断開放して負荷
(需要家)を3相3線用ならびに3相4線用のそれぞれ
の端子から切り離すようにしたものである。
Reference numerals 17, 18 and 19 are provided between the new power supply terminal 3 and the load terminal 4 in parallel with the second switch 16 to form a shunt. Is a contactless switch, and a triac is used, but a thyristor connected in antiparallel may be used. 18 is a reactor for suppressing inrush current, 19 is a third switch connected in series with the contactless switch 17, and in the normal state the contactless switch 17
The load terminal 4 and the load terminal 4 are separated from each other. These are connected as shown in FIG. 20 is a circuit breaker (or fuse), when installing the jumper metal fitting 8,
In the case of an accidental short circuit between phases, the load (consumer) is immediately disconnected and opened to disconnect the load (consumer) from the respective terminals for the three-phase three-wire and the three-phase four-wire.

【0010】次に制御回路21を示す第4図において、該
制御回路21は、検電検相等の確認表示回路22と、バイパ
ス用制御回路23と切替用制御回路24と、通電切回路29と
から成る。また切替用制御回路24は、切替操作部25と、
投入準備回路26と、開放制御回路27と、導通制御回路28
とから成る。
Next, referring to FIG. 4 showing the control circuit 21, the control circuit 21 includes a confirmation display circuit 22 for detecting an electromotive phase, a bypass control circuit 23, a switching control circuit 24, and a power-off circuit 29. Consists of. Further, the switching control circuit 24, the switching operation unit 25,
Closing preparation circuit 26, opening control circuit 27, continuity control circuit 28
It consists of and.

【0011】確認表示回路22は符号31〜45で示される周
知の部材及び夫々MIL記号で示された周知の論理回路
を図示の如く結線して構成してある。尚31〜33は検電回
路、34, 35は検相回路、36〜38は検電表示灯、39, 40は
検相表示灯、41, 42はランプ点滅用の発振器、43はブザ
ー、44はバイパス完了表示灯、45は切替完了表示灯であ
る。また49a, 49bは後述の第1の開閉器の制御用コイ
ル49によって開閉制御される接点、58aは第2の開閉器
の制御用コイル58によって開閉制御される接点を夫々示
す。次にバイパス用制御回路23は、バイパス回路形成操
作用の手動のスイッチ(押釦スイッチ)47、フリップフ
ロップ回路48、第1の開閉器の制御用コイル(電磁開閉
器のコイル)49及びMIL記号で示された周知の論理回
路を図示の如く結線して構成してある。
The confirmation display circuit 22 is constituted by connecting well-known members indicated by reference numerals 31 to 45 and well-known logic circuits respectively indicated by MIL symbols as shown in the drawing. 31 to 33 are voltage detection circuits, 34 and 35 are phase detection circuits, 36 to 38 are voltage detection indicators, 39 and 40 are phase detection indicators, 41 and 42 are lamp blinking oscillators, 43 is a buzzer, 44 Is a bypass completion indicator light, and 45 is a switching completion indicator light. Reference numerals 49a and 49b denote contacts which are controlled to be opened and closed by the control coil 49 of the first switch, which will be described later, and 58a denotes contacts which are controlled to be opened and closed by the control coil 58 of the second switch. Next, the bypass control circuit 23 includes a manual switch (push button switch) 47 for forming a bypass circuit, a flip-flop circuit 48, a control coil (a coil of an electromagnetic switch) 49 for the first switch, and a MIL symbol. The well-known logic circuit shown is connected as shown in the drawing.

【0012】次に切替用制御回路24において、切替操作
部25は切替操作用の手動のスイッチ(押釦スイッチ)51
と、周知の論理回路とを図示の如く結線して構成してあ
る。投入準備回路26は、フリップフロップ回路52と、第
3の開閉器の制御用コイル(電磁開閉器のコイル)53
と、図示の周知の論理回路とで構成してある。開放制御
回路27は、上記コイル53によって開閉制御される接点53
aと、図示の周知の論理回路とで構成してある。導通制
御回路28は負荷用端子4の電圧低下を検知して無接点ス
イッチの導通指令信号を出力するようにしたものであ
り、周知の停電検出回路55と、フリップフロップ回路56
と、トライアック駆動回路57と、第2の開閉器の制御用
コイル(電磁開閉器のコイル)58と、図示の周知の論理
回路とで構成してある。
Next, in the switching control circuit 24, the switching operation section 25 has a manual switch (push button switch) 51 for switching operation.
And a well-known logic circuit are connected as shown in the drawing. The closing preparation circuit 26 includes a flip-flop circuit 52 and a control coil (a coil of an electromagnetic switch) 53 for the third switch.
And a well-known logic circuit shown in the figure. The opening control circuit 27 includes a contact 53 that is controlled to open / close by the coil 53.
a and a well-known logic circuit shown in the figure. The continuity control circuit 28 detects a voltage drop at the load terminal 4 and outputs a continuity command signal for the non-contact switch, and a known power failure detection circuit 55 and a flip-flop circuit 56.
, A triac drive circuit 57, a control coil (coil of an electromagnetic switch) 58 for the second switch, and a well-known logic circuit shown in the figure.

【0013】次に通電切回路29は通電切操作用の手動の
スイッチ(押釦スイッチ)59と図示の周知の論理回路と
で構成してある。
Next, the energization cutoff circuit 29 is composed of a manual switch (push button switch) 59 for energization cutoff operation and a well-known logic circuit shown in the figure.

【0014】次に上記装置Aを使用して3相3線から3
相4線に動力を切り替える場合の作業方法及び装置Aの
動作について、図面第5図乃至第8図をも参照しながら
説明する。尚第5図は3相3線式の動力電源から3相4
線式の動力電源への切替の都市型工事の場合の例を示す
もので、図において、60は電灯及び動力の需要家、61〜
64は既設の部材で、61は高圧配電線、62は3相3線式の
動力用の変圧器、63は低圧配電線、64は引込線を夫々示
す。66〜75は新設の部材で、66は高圧幹線ケーブル、67
は高圧引下げケーブル、68は3相4線式の灯動共用の変
圧器、69は低圧引下げケーブル(4芯の内、1芯は接地
線)、70は分岐箱、71は低圧幹線ケーブル(4芯の内、
1芯は接地線)、72は動力用の引込箱、73は動力用の引
込線(3芯ケーブル)、74は電灯用の引込箱、75は電灯
用の引込線を夫々示す。
Next, using the above-mentioned apparatus A, three-phase three-wire to three-phase
The work method and the operation of the apparatus A when the power is switched to the phase 4 wire will be described with reference to FIGS. 5 to 8. In addition, FIG. 5 shows a three-phase three-wire type power source to a three-phase four
The figure shows an example in the case of urban construction in which the power source is switched to a linear power source. In the figure, 60 is a light and power consumer, 61-
Reference numeral 64 is an existing member, 61 is a high-voltage distribution line, 62 is a three-phase three-wire power transformer, 63 is a low-voltage distribution line, and 64 is a service line. 66 to 75 are new members, 66 is a high voltage main cable, 67
Is a high-voltage pull-down cable, 68 is a three-phase 4-wire transformer that is commonly used for lighting, 69 is a low-voltage pull-down cable (one of four cores is a ground wire), 70 is a branch box, 71 is a low-voltage trunk cable (4 Of the core
(1 core is a ground wire), 72 is a power supply drop box, 73 is a power supply drop wire (3-core cable), 74 is an electric light drop box, and 75 is a light drop line.

【0015】また第6図は需要家60における引込口付近
での接続の状況を示すもので、図において、76は需要家
の建物、77は既設電源を示し、前記引込線64をもって構
成されている。78は新設電源を示し、前記引込線73をも
って構成されている。尚上記引込線64や引込線73は例え
ば第9図、第14図に示される周知の手法でもって建物
76に引留められている。80は動力負荷を示す。これにお
いて、81は引込口配線で、接続用のコネクタ82でもって
上記引込線64と接続してある。83は屋内配線、84はモー
タ等の動力負荷を示す。尚上記コネクタ82としては、第
10、11図に示されるボルト型コネクタや、第12、
13図に示されるバイス型が使用され、これらコネクタ
には第14図に示される絶縁製のボルコンカバーが被せ
られる。
Further, FIG. 6 shows the state of connection in the vicinity of the service entrance of the customer 60. In the figure, 76 is the customer's building, 77 is the existing power supply, and is constructed with the service line 64. . Reference numeral 78 denotes a new power supply, which is configured with the lead-in wire 73. The service line 64 and service line 73 are constructed by a well-known method shown in FIGS. 9 and 14, for example.
Retained at 76. 80 indicates a power load. In this, 81 is a lead-in wire, which is connected to the lead-in wire 64 by a connector 82 for connection. Reference numeral 83 indicates indoor wiring, and reference numeral 84 indicates a power load such as a motor. The connector 82 may be the bolt type connector shown in FIGS.
The vise type shown in FIG. 13 is used, and these connectors are covered with the insulating volcon cover shown in FIG.

【0016】次に作業方法について説明する。まず、既
設の3相3線式の動力用電源でもって送電中の切替予定
の需要家60の動力引込口のそばに上記切替装置Aを設置
する。次に新設の3相4線式の灯動共用の変圧器68の2
次側端子より分岐箱70さらには引込箱72を経て引込線73
を引込口付近まで延長し、需要家の屋側76に引留める。
ただし引込線73(3芯ケーブル)の先端はテーピングし
て絶縁されている。
Next, a working method will be described. First, the switching device A is installed near the power inlet of the customer 60 who is scheduled to switch while power is being transmitted by the existing 3-phase 3-wire power source. Next, 2 of the newly installed three-phase, four-wire type shared lights
Branch box 70 from the terminal on the next side, and further through drop box 72, drop line 73
Is extended to the vicinity of the entrance and is retained at the customer's shop side 76.
However, the leading end of the service wire 73 (3-core cable) is taped and insulated.

【0017】このように準備した後、上記切替装置Aの
各端子2,3,4の接続を行う。即ち、先ずコネクター
82の変圧器側において引込線64に対し、上記切替装置A
の既設電源用端子2に装着した接続用ケーブル7を各線
毎に接続する。また負荷用端子4に同じく装着した接続
用ケーブル7をコネクター82の負荷側において引込口配
線81に接続する。つまり、接続用コネクター82に対し既
設電源用端子2と負荷用端子4とを並列に接続する。こ
れらの接続は各々の接続用ケーブル7の先端に備えたジ
ャンパー金具8でもって締め付け接続する。次に上記引
込口付近においてすでに引留めされた状態の3相4線側
の引込線73の絶縁テープを剥がし、切替装置Aの新設電
源用端子3に装着された接続用ケーブル7を接続する。
その接続も上記と同様に同ケーブルの先端にそなえたジ
ャンパー金具によって行う。そして本体ケース1の接地
端子5に対し接地線を接続すると同装置の接続が終了し
切り替え準備が終わる。尚、接地端子5を特に設けない
場合はこの作業は省略される。
After the above preparation, the terminals 2, 3, 4 of the switching device A are connected. That is, first the connector
The switching device A is connected to the incoming line 64 on the transformer side of 82.
The connection cable 7 attached to the existing power supply terminal 2 is connected for each line. Further, the connecting cable 7 also attached to the load terminal 4 is connected to the lead-in wiring 81 on the load side of the connector 82. That is, the existing power supply terminal 2 and the load terminal 4 are connected in parallel to the connection connector 82. These connections are made by tightening with a jumper metal fitting 8 provided at the tip of each connection cable 7. Next, the insulating tape of the lead-in wire 73 on the three-phase, four-wire side that has already been held near the lead-in port is peeled off, and the connecting cable 7 attached to the new power supply terminal 3 of the switching device A is connected.
Similar to the above, the connection is made with a jumper metal fitting at the end of the cable. Then, when a ground wire is connected to the ground terminal 5 of the main body case 1, the connection of the device is completed and the preparation for switching is completed. This work is omitted if the ground terminal 5 is not provided.

【0018】上記のように切替装置Aの各端子2,3,
4の接続が終わると装置はその電源がON状態になり
(3相3線の既設電源用端子2の接続によって装置の電
源がONになる)、第4図の回路は次のように動作す
る。即ち各端子の充電の有無が検電回路31, 32, 33で判
定され、各端子が3線共に充電状態の場合には表示灯3
6,37, 38が夫々点灯する。又既設電源用端子2と負荷用
端子4の検相判定が検相回路34によって行われ、3相と
も同相の場合には第4図の点(a)に出力が生ずる。又新
設電源用端子3と負荷用端子4の検相判定が検相回路35
で行われ、3相とも同相であると点(b)に出力が生ず
る。又検相回路34の検相判定出力は反転回路34aで反転
され、検相回路35の検相判定出力は反転回路35aで反転
される。更に既設電源用端子2と負荷用端子4とが両方
共に検電有りの場合には点(c)に出力が生じ、新設電源
用端子3と負荷用端子4とが両方共検電有りの場合には
点(d)に出力が生ずる。
As described above, each terminal 2, 3, of the switching device A is
When the connection of 4 is completed, the power supply of the device is turned on (the power supply of the device is turned on by connecting the terminal 2 for the existing power supply of 3-phase 3-wire), and the circuit of FIG. 4 operates as follows. . That is, whether or not each terminal is charged is determined by the voltage detection circuits 31, 32, and 33, and when each terminal is in a charged state for all three lines, the indicator lamp 3
6,37,38 lights up respectively. Further, the phase detection of the existing power supply terminal 2 and the load terminal 4 is performed by the phase detection circuit 34, and when all three phases are in phase, an output occurs at point (a) in FIG. Moreover, the phase detection circuit 35 detects the phase detection of the newly installed power supply terminal 3 and the load terminal 4.
The output occurs at point (b) when the three phases are in phase. Further, the phase detection determination output of the phase detection circuit 34 is inverted by the inverting circuit 34a, and the phase detection determination output of the phase detection circuit 35 is inverted by the inverting circuit 35a. Furthermore, when both the existing power supply terminal 2 and the load terminal 4 have voltage detection, an output occurs at point (c), and both the new power supply terminal 3 and load terminal 4 have voltage detection. Has an output at point (d).

【0019】上記のような動作の結果、既設電源用端子
2及び負荷用端子4共に検電有りで、かつ3相共同相の
場合には点(e)に出力が生じ、新設電源用端子3及び負
荷用端子4共に検電有りで、かつ3相共同相の場合には
点(f)に出力が生ずる。上記の場合において既設電源用
端子2又は負荷用端子4が1相でも検電無しの場合や1
相でも異相の場合には点(g)に出力が生じ、ブザー43が
鳴動する。又上記の場合において新設電源用端子3又は
負荷用端子4が1相でも検電無しの場合や1相でも異相
の場合には点(h)に出力が生ずる。更に又上記の場合に
おいて既設電源用端子2と負荷用端子4が全て検電有り
でかつ3相の各々について異相の相があると、その相に
ついて点(i)に発振器41で設定される周期の信号が出力
され、その相についての検相表示灯39が点滅する。同様
に、新設電源用端子3と負荷用端子4が全て検電有りで
かつ3相の各々について異相の相があると、その相につ
いて点(j)に発振器42で設定される周期の信号が出力さ
れ、その相についての検相表示灯40が点滅する。
As a result of the above operation, in the case where both the existing power supply terminal 2 and the load terminal 4 have the voltage detection and the three-phase common phase, the output occurs at the point (e), and the new power supply terminal 3 When both the load terminal 4 and the load terminal 4 have the voltage detection and the three-phase common phase, an output occurs at the point (f). In the above case, even if the existing power supply terminal 2 or load terminal 4 has no phase,
When the phases are different, an output is generated at the point (g) and the buzzer 43 sounds. Further, in the above case, when the new power supply terminal 3 or the load terminal 4 is in one phase and there is no voltage detection, or when there is one phase or another phase, an output occurs at the point (h). Furthermore, in the above case, if the existing power supply terminal 2 and load terminal 4 are all detected and there is a different phase for each of the three phases, the cycle set by the oscillator 41 at point (i) for that phase. Signal is output and the phase detection indicator lamp 39 for that phase blinks. Similarly, when the new power supply terminal 3 and the load terminal 4 all have the voltage detection and there is a different phase for each of the three phases, a signal of the cycle set by the oscillator 42 is output at the point (j) for that phase. It is output, and the phase detection indicator lamp 40 for that phase blinks.

【0020】上記各表示灯36〜40により既設電源用端子
2と負荷用端子4との検電及び検相が全て適正と確認さ
れたならば、バイパス用制御回路23のスイッチ47を操作
する。するとフリップフロップ回路48からの信号によっ
てコイル49が励磁され、第3図における第1の開閉器15
が投入状態となる。又確認表示回路22の接点49bが閉
じ、バイパス完了表示灯44が点灯すると共に接点49aも
閉じる。
When it is confirmed by the indicators 36 to 40 that the power detection and phase detection of the existing power supply terminal 2 and the load terminal 4 are all proper, the switch 47 of the bypass control circuit 23 is operated. Then, the coil 49 is excited by the signal from the flip-flop circuit 48, and the first switch 15 in FIG.
Is turned on. The contact 49b of the confirmation display circuit 22 is closed, the bypass completion indicator lamp 44 is turned on, and the contact 49a is closed.

【0021】この状態となったならば第6図のコネクタ
ー82を外す。すると引込線64からコネクター82を介して
引込口配線81に送電されていた動力電源は、上記引込線
64から接続用ケーブル7、切替装置Aにおける既設電源
用端子2、第1の開閉器15、回路遮断器20及び負荷用端
子4、接続用ケーブル7を介して上記引込口配線81に送
電されるようになる。
In this state, the connector 82 shown in FIG. 6 is removed. Then, the power source that has been transmitted from the service line 64 to the service port wiring 81 via the connector 82 is the above service line.
Power is transmitted from 64 to the service wire 81 via the connection cable 7, the existing power supply terminal 2 in the switching device A, the first switch 15, the circuit breaker 20 and the load terminal 4, and the connection cable 7. Like

【0022】上記のようにコイル49が励磁されて接点49
aが閉じると、新設電源用端子3と負荷用端子4との各
相において1相でも検電無しの場合や1相でも異相の場
合があると点(k)に出力が生じ、ブザー43が鳴動する。
As described above, the coil 49 is excited to contact the contact 49.
When a is closed, an output occurs at the point (k) when there is a single phase in the new power supply terminal 3 and the load terminal 4 even if there is no detection or even in one phase, and the buzzer 43 turns on. Ring.

【0023】次に上記のようにして新設電源用端子3と
負荷用端子4とにおいて全て検電検相が正常であると確
認され、かつバイパス完了表示灯44の点灯によって第1
の開閉器15の投入状態が確認されたならば切替操作部25
のスイッチ51を閉じる。すると投入準備回路26のフリッ
プフロップ回路52からの出力によりコイル53が励磁さ
れ、第3図における第3の開閉器19が投入状態となる。
又上記のようにコイル53が励磁されると開放制御回路27
における接点53aが閉じ、バイパス用制御回路23におけ
るフリップフロップ回路48のリセット端子に信号が加え
られ、フリップフロップ回路48がリセットする。その結
果、コイル49の励磁が解かれ、第3図における第1の開
閉器15は開放状態となる。即ち、負荷用端子4が停電状
態となる。
Next, as described above, it is confirmed that all of the new power source terminal 3 and the load terminal 4 are normal in the detection phase, and the bypass completion indicator lamp 44 is turned on to make the first detection.
If it is confirmed that the switch 15 of
Close the switch 51 of. Then, the coil 53 is excited by the output from the flip-flop circuit 52 of the closing preparation circuit 26, and the third switch 19 in FIG. 3 is turned on.
When the coil 53 is excited as described above, the open control circuit 27
The contact 53a at is closed, a signal is applied to the reset terminal of the flip-flop circuit 48 in the bypass control circuit 23, and the flip-flop circuit 48 is reset. As a result, the excitation of the coil 49 is released, and the first switch 15 in FIG. 3 is opened. That is, the load terminal 4 is in a power failure state.

【0024】上記のように負荷用端子4が停電状態とな
ると、そこの電圧は第8図に示されるように上記開閉器
15の開放時点から順次低下する(第6図に示されるよう
に需要家の屋内配線83にはモータ等の動力負荷84が接続
されている為、それの逆起電力により上記負荷用端子4
の電圧は徐々に下降する)。上記のように電圧低下が生
ずると第4図における導通制御回路28の停電検出回路55
がそれを検出して出力信号を生ずる。上記検出は例えば
第8図に示されるように負荷用端子4の電圧が規定電圧
(200V)に対し、例えば75%(150V)を下回ったときに
行われる。上記のように停電検出回路55が出力を生ずる
と、フリップフロップ回路56からの出力によりトライア
ック駆動回路57が作動し、第3図の無接点スイッチ17に
対して導通指令信号が与えられる。
When the load terminal 4 is in the power failure state as described above, the voltage thereat is as shown in FIG.
It gradually decreases from the opening point of 15 (as shown in FIG. 6, since a power load 84 such as a motor is connected to the indoor wiring 83 of the customer, the back electromotive force of the power load 84 causes the load terminal 4 to move.
Voltage gradually decreases). When the voltage drop occurs as described above, the power failure detection circuit 55 of the continuity control circuit 28 in FIG.
Detects it and produces an output signal. The above-mentioned detection is performed, for example, when the voltage of the load terminal 4 falls below 75% (150V) with respect to the specified voltage (200V) as shown in FIG. When the power failure detection circuit 55 produces an output as described above, the triac drive circuit 57 is activated by the output from the flip-flop circuit 56, and a conduction command signal is given to the contactless switch 17 of FIG.

【0025】無接点スイッチ17はその導通指令信号を受
けて即座に導通し、その無接点スイッチ17によって新設
電源用端子3と負荷用端子4との間の導通状態が達成さ
れる。このような状態になると第6図における引込線73
に到来する電力が、接続ケーブル7、切替装置Aにおけ
る新設電源用端子3、無接点スイッチ17、リアクトル1
8、第3の開閉器19、回路遮断器20および負荷用端子
4、接続ケーブル7を経て引込口配線81に送電される。
この場合、リアクトル18の存在によりその突入電流は抑
制され、無接点スイッチ17は小容量でも破損することな
く無停電効果を発揮する。上記のように第1の開閉器15
が開放されてから無接点スイッチ17が導通状態となるま
での時間は、例えば10ミリ秒以下の極めて短時間で行
われる。従って、需要家の屋内配線にマイクロコンピュ
ータ内蔵機器が接続されていても、それらに対する実質
的な停電状態は生じない。上記フリップフロップ回路56
の出力信号はコイル58にも与えられて、該コイル58が励
磁される。その結果、第3図に示される第2の開閉器16
が直ちに投入状態となる。この第2の開閉器は機械的な
接点である為上記無接点スイッチ17の導通に遅れて(機
械的遅れでもって)投入状態となる。
The contactless switch 17 receives the conduction command signal and immediately becomes conductive, and the contactless switch 17 establishes a conduction state between the new power supply terminal 3 and the load terminal 4. In such a state, the service line 73 in FIG.
The power that arrives at the connection cable 7, the new power supply terminal 3 in the switching device A, the contactless switch 17, the reactor 1
Power is transmitted to the inlet wiring 81 via the third switch 19, the circuit breaker 20, the load terminal 4, and the connection cable 7.
In this case, the presence of the reactor 18 suppresses the inrush current, and the non-contact switch 17 exerts an uninterruptible effect without being damaged even with a small capacity. First switch 15 as described above
The time from when the switch is opened to when the contactless switch 17 is turned on is extremely short, for example, 10 milliseconds or less. Therefore, even if a device with a built-in microcomputer is connected to the customer's indoor wiring, no substantial power failure occurs for them. The above flip-flop circuit 56
Is also applied to the coil 58 to excite the coil 58. As a result, the second switch 16 shown in FIG.
Is immediately turned on. Since the second switch is a mechanical contact, the second switch is turned on after the conduction of the contactless switch 17 (with a mechanical delay).

【0026】上記のように第2の開閉器16が投入状態と
なると、それ以降は新設電源用端子3から負荷用端子4
への通電は上記第2の開閉器16を経る回路で行われる状
態となり、無接点スイッチ17は遮断状態となる(開閉器
16の接点抵抗<<トライアックの導通抵抗)。この状態に
おいては、コイル58の励磁により接点58aが導通する
為、切替完了表示灯45が点灯し切り替えが完了されたこ
とが表示される。
When the second switch 16 is turned on as described above, thereafter, the new power supply terminal 3 to the load terminal 4 are connected.
Power is supplied to the circuit through the second switch 16, and the contactless switch 17 is cut off (switch).
16 contact resistance << triac conduction resistance). In this state, since the contact 58a is made conductive by the excitation of the coil 58, the switching completion indicator lamp 45 is turned on and it is indicated that the switching is completed.

【0027】上記のように切り替えの完了が確認された
ならば、第6図において引込線73と引込口配線81とをコ
ネクタで接続する。その接続が完了したならば、第4図
の通電切回路29におけるスイッチ59をONにする。する
とフリップフロップ回路52,56はいずれもリセットされ
てコイル53, 58の励磁が解かれ、開閉器19, 16が開放状
態となる。この状態となったならば、最後に該切替装置
Aの各端子2,3,4に装着してある接続ケーブル7を
第6図の引込線64, 73及び引込口配線81から外して該切
替装置Aを撤去することにより、全ての切り替え作業が
完了する。
When the completion of switching is confirmed as described above, the lead-in wire 73 and the lead-in wiring 81 are connected by a connector in FIG. When the connection is completed, the switch 59 in the power-off circuit 29 of FIG. 4 is turned on. Then, the flip-flop circuits 52 and 56 are both reset, the excitation of the coils 53 and 58 is released, and the switches 19 and 16 are opened. In this state, finally, the connection cable 7 attached to each terminal 2, 3, 4 of the switching device A is removed from the service lines 64, 73 and the service port wiring 81 of FIG. By removing A, all switching work is completed.

【0028】次に上記切替装置の動作を第7図のタイム
チャートに基づいて説明する。先ずバイパス回路形成操
作用のスイッチ47を投入すると第1の開閉器15が閉状態
となる。次に切替操作用のスイッチ51を投入すると第3
の開閉器19が閉状態となり、然る後第1の開閉器15が開
放状態となる。第1の開閉器15が開放状態となって負荷
用端子4が前述の如く電圧低下し始めると、前記の如き
導通制御回路28の動作により無接点スイッチ17がON状
態となる。尚図において、T1は前述の如く10ミリ秒以
内である。上記無接点スイッチ17の導通後、第2の開閉
器16が投入状態となる。尚時間T1, T2の差は第2の開閉
器16の機械的な遅れによるものである。その後、通電切
操作用のスイッチ59をON操作すると上記第2及び第3
の開閉器16, 19が開放状態となる。
Next, the operation of the switching device will be described with reference to the time chart of FIG. First, when the switch 47 for forming the bypass circuit is turned on, the first switch 15 is closed. Next, when the switch 51 for switching operation is turned on, the third
The switch 19 is closed, and then the first switch 15 is opened. When the first switch 15 is opened and the voltage of the load terminal 4 starts to drop as described above, the contactless switch 17 is turned on by the operation of the conduction control circuit 28 as described above. In the figure, T1 is within 10 milliseconds as described above. After the contactless switch 17 is turned on, the second switch 16 is turned on. The difference between the times T1 and T2 is due to the mechanical delay of the second switch 16. After that, when the switch 59 for turning off the power is turned on, the second and third operations are performed.
The switches 16 and 19 of are opened.

【0029】次に引込線の周知の引留め状態を示す第9
図において、86は建物76の壁に固定したラック、87は低
圧引留碍子、88はメッセンジャーワイヤ、89は巻付クリ
ップを夫々示す。尚、引込線64(73)は3芯SVケーブル
であり、引込口配線81は3芯VVケーブルである。
Next, a ninth example showing a known retaining state of the service wire
In the figure, 86 is a rack fixed to the wall of the building 76, 87 is a low pressure insulator, 88 is a messenger wire, and 89 is a winding clip. The lead-in wire 64 (73) is a 3-core SV cable, and the lead-in wire 81 is a 3-core VV cable.

【0030】次にボルト型コネクタ82による電線の接続
状態を示す第10図及び第11図において、64aは前記
引込線64の一線、81aは前記引込口配線81の一線を示
し、それらはボルト型コネクタ82で図示のように接続し
てある。ボルト型コネクタ82において、90は本体、91は
締付ナット、92はコネクタガイドを夫々示す。
Next, in FIGS. 10 and 11 showing the connection state of the electric wire by the bolt type connector 82, 64a shows one line of the lead-in wire 64, 81a shows one line of the lead-in port wiring 81, which are bolt type connectors. Connected at 82 as shown. In the bolt-type connector 82, 90 is a main body, 91 is a tightening nut, and 92 is a connector guide.

【0031】次に第12図及び第13図はバイス型コネ
クタ93による電線64a, 81a相互の接続状態を示すもの
である。該コネクタ93において、94は本体、95は締付用
のボルトを示す。
Next, FIGS. 12 and 13 show the connection state of the electric wires 64a and 81a by the vise type connector 93. As shown in FIG. In the connector 93, 94 is a main body and 95 is a tightening bolt.

【0032】次に第14図は引込線の引留め状態の異な
る例を示すものである。図において、96は引込用フッ
ク、96aは継足フック、96bはフック取付ねじ、97は引
留用平型碍子を夫々示す。又引込線64としては三ケ撚D
V電線が用いられており、周知のコネクタを介して引込
口配線81(3芯VVケーブル)に接続してある。98は分
界チューブ、99はボルコンカバーを示す。
Next, FIG. 14 shows an example in which the lead wire is held in a different state. In the drawing, 96 is a retracting hook, 96a is a connecting hook, 96b is a hook mounting screw, and 97 is a flat insulator for anchoring. Also, as the lead-in wire 64, three twists D
A V electric wire is used and is connected to the lead-in wiring 81 (3-core VV cable) via a well-known connector. 98 indicates a demarcation tube, and 99 indicates a volcon cover.

【0033】[0033]

【発明の効果】以上のように本発明にあっては、負荷80
への電力の供給を既設電源77からの供給から新設電源78
からの供給に切替る場合、第1の開閉器15を開き第2の
開閉器16を閉じることによって上記切替ができ、その
上、上記第1の開閉器15を開いた場合、負荷用端子4の
電圧が低下し始めると、導通制御回路28がそれを検知し
て無接点スイッチ17の導通指令信号を発し、その信号に
より無接点スイッチ17が即座に導通して、その無接点ス
イッチ17による新設電源用端子3と負荷用端子4との間
の導通状態がリアクトル18により突入電流が抑制された
状態で達成される特長がある。このことは、負荷80の側
にあっては実質的に電源の供給が途絶えることなく、即
ち無停電の状態で上記既設電源から新設電源への切替が
行なわれることであって、電力の需要家に対する電力供
給の信頼度を著しく高め得る効果がある。
As described above, according to the present invention, the load 80
Power supply to the existing power supply 77 to the new power supply 78
When switching to the supply from the above, the above switching can be performed by opening the first switch 15 and closing the second switch 16, and when the first switch 15 is opened, the load terminal 4 When the voltage starts to decrease, the continuity control circuit 28 detects it and issues a continuity command signal for the contactless switch 17, and the signal causes the contactless switch 17 to conduct immediately, and the contactless switch 17 newly establishes a new signal. It is characterized in that the electrical connection between the power supply terminal 3 and the load terminal 4 is achieved with the reactor 18 suppressing the inrush current. This means that there is virtually no interruption of power supply on the load 80 side, that is, switching from the existing power supply to the new power supply is performed in the uninterrupted state. There is an effect that the reliability of the power supply to

【図面の簡単な説明】[Brief description of drawings]

【図1】動力用瞬時切替装置の正面図。FIG. 1 is a front view of a power instantaneous switching device.

【図2】動力用瞬時切替装置の側面図。FIG. 2 is a side view of a power instantaneous switching device.

【図3】動力用瞬時切替装置の接続回路機構を示す回路
図。
FIG. 3 is a circuit diagram showing a connection circuit mechanism of a power instantaneous switching device.

【図4】動力用瞬時切替装置の制御回路を示す回路図。FIG. 4 is a circuit diagram showing a control circuit of a power instantaneous switching device.

【図5】3相3線式の配電と3相4線式の配電を説明す
る為の回路図。
FIG. 5 is a circuit diagram for explaining three-phase three-wire type power distribution and three-phase four-wire type power distribution.

【図6】動力用瞬時切替装置の使用状態説明用接続図。FIG. 6 is a connection diagram for explaining a usage state of the power instantaneous switching device.

【図7】動力用瞬時切替装置の動作説明用タイムチャー
ト。
FIG. 7 is a time chart for explaining the operation of the power instantaneous switching device.

【図8】負荷用端子の電圧変化を示す図。FIG. 8 is a diagram showing a voltage change of a load terminal.

【図9】引込線の引留め状態を示す図。FIG. 9 is a diagram showing a retaining state of a service wire.

【図10】ボルト型コネクタによる電線の接続状態を示
す正面図。
FIG. 10 is a front view showing a connection state of electric wires by a bolt type connector.

【図11】ボルト型コネクタによる電線の接続状態を示
す一部破断側面図。
FIG. 11 is a partially cutaway side view showing a connection state of electric wires by a bolt type connector.

【図12】バイス型コネクタによる電線の接続状態を示
す正面図。
FIG. 12 is a front view showing a connection state of electric wires by a vise type connector.

【図13】バイス型コネクタによる電線の接続状態を示
す一部破断側面図。
FIG. 13 is a partially cutaway side view showing a connection state of electric wires by a vise type connector.

【図14】引込線の引留め状態の異なる例を示す図。FIG. 14 is a diagram showing an example in which a lead wire is held in a different state.

【符号の説明】[Explanation of symbols]

1・・・ケース 2・・・既設電源用端子 3・・・新設電源用端子 4・・・負荷用端子 15・・・第1の開閉器 16・・・第2の開閉器 17・・・無接点スイッチ 28・・・導通制御回路 1 ... Case 2 ... Existing power supply terminal 3 ... New power supply terminal 4 ... Load terminal 15 ... First switch 16 ... Second switch 17 ... Solid state switch 28 ... Continuity control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 進午 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 熊谷 哲朗 東京都文京区湯島4丁目1番18号 株式会 社関電工内 (72)発明者 笹田 益男 大府市長草町深廻間35 日本高圧電気株式 会社技術研究所内 (72)発明者 堀田 典文 大府市長草町深廻間35 日本高圧電気株式 会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinho Uchida 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Within Tokyo Electric Power Co., Inc. (72) Inventor Tetsuro Kumagai 4-1-1-18, Yushima, Bunkyo-ku, Tokyo Stocks Incorporated KANDENKO (72) Inventor Masuda Sasada 35 Fukanma, Nagakusa-cho, Obu-shi 35 Technical Research Institute of High Voltage Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ケースには、既設電源に接続する為の既
設電源用端子と、新設電源に接続する為の新設電源用端
子と、動力負荷に接続する為の負荷用端子が備えられて
おり、上記既設電源用端子と負荷用端子との間には両者
間の接続状態を開放する為の第1の開閉器が接続してあ
る一方、上記新設電源用端子と負荷用端子との間には上
記第1の開閉器の開放の後に両端子間を接続する為の第
2の開閉器が接続してあり、更に、上記負荷用端子には
該端子の電圧低下を検知して無接点スイッチの導通指令
信号を出力するようにした導通制御回路が接続してある
と共に、上記新設電源用端子と負荷用端子との間には、
上記導通指令信号を受けて導通するようにした無接点ス
イッチと、突入電流抑制用のリアクトルとを備える分路
が、上記第2の開閉器と並列状態に接続してあることを
特徴とする動力用瞬時切替装置。
1. The case is provided with an existing power supply terminal for connecting to an existing power supply, a new power supply terminal for connecting to a new power supply, and a load terminal for connecting to a power load. , A first switch is connected between the existing power supply terminal and the load terminal to open the connection state between the two, and between the new power supply terminal and the load terminal Is connected to a second switch for connecting both terminals after opening the first switch, and further, the load terminal is a contactless switch for detecting a voltage drop at the terminal. A continuity control circuit for outputting the continuity command signal is connected, and between the new power supply terminal and the load terminal,
A power supply characterized in that a shunt equipped with a contactless switch adapted to receive the conduction command signal so as to conduct electricity and a reactor for suppressing an inrush current is connected in parallel with the second switch. Instant switching device for.
JP6298811A 1994-11-08 1994-11-08 Instantaneous switching device for power Expired - Fee Related JP2857979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6298811A JP2857979B2 (en) 1994-11-08 1994-11-08 Instantaneous switching device for power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6298811A JP2857979B2 (en) 1994-11-08 1994-11-08 Instantaneous switching device for power

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62287959A Division JPH01129719A (en) 1987-11-13 1987-11-13 Instantaneous power switching device

Publications (2)

Publication Number Publication Date
JPH07274414A true JPH07274414A (en) 1995-10-20
JP2857979B2 JP2857979B2 (en) 1999-02-17

Family

ID=17864534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6298811A Expired - Fee Related JP2857979B2 (en) 1994-11-08 1994-11-08 Instantaneous switching device for power

Country Status (1)

Country Link
JP (1) JP2857979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273430A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Device for switching load of transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109833U (en) * 1975-03-04 1976-09-04
JPS6288411U (en) * 1985-11-21 1987-06-05
JPS62244227A (en) * 1986-04-16 1987-10-24 ニシム電子工業株式会社 Method and apparatus for changing over different phase current routes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109833U (en) * 1975-03-04 1976-09-04
JPS6288411U (en) * 1985-11-21 1987-06-05
JPS62244227A (en) * 1986-04-16 1987-10-24 ニシム電子工業株式会社 Method and apparatus for changing over different phase current routes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273430A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Device for switching load of transformer

Also Published As

Publication number Publication date
JP2857979B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
CN101478176B (en) Backup electric power system
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
CN101783522B (en) Intelligent charging connector
CN210927077U (en) Residual current protection device with uninterrupted power supply test function
US20170149379A1 (en) Interconnect device for use in islanding a microgrid
CN203927005U (en) Electric valve control circuit and the electric operated valve instrument that comprises this circuit
CN114024313B (en) Power supply distributor
JP2857979B2 (en) Instantaneous switching device for power
CN209072071U (en) Two inlet wires of one kind and mother automatic switching control system
WO2021109833A1 (en) Portable automatic phase sequence detection device
CN203039358U (en) An AC brake opening and closing self-holding circuit
CN211627693U (en) Portable automatic phase sequence detection device
CN110277787B (en) On-load voltage regulation switch control system and voltage regulation control method thereof
JPH01129719A (en) Instantaneous power switching device
JPH038037Y2 (en)
JPH03218229A (en) Incoming line switch for underground power distribution line and switching method for uninterruptible power supply
CN218068147U (en) Interface box with phase sequence automatic switching function
JPH01307133A (en) Earth leakage breaker with protection against neutral wire open-phase for single-phase three wires
CN214125542U (en) Low-voltage heater control circuit
CN216622998U (en) Multi-loop data center test load box for PDU test
CN210430912U (en) Synthetic intensive 10KV high-voltage prepayment metering equipment
CN219145010U (en) Circuit for preventing undervoltage protection misoperation of low-voltage frame type circuit breaker
CN210110648U (en) Circuit for long-distance control of motor contactor coil
JP2740863B2 (en) Switching device for transformer
KR19990064561A (en) Transformer system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees