JPH07272665A - Transmission type electron microscope - Google Patents

Transmission type electron microscope

Info

Publication number
JPH07272665A
JPH07272665A JP6062409A JP6240994A JPH07272665A JP H07272665 A JPH07272665 A JP H07272665A JP 6062409 A JP6062409 A JP 6062409A JP 6240994 A JP6240994 A JP 6240994A JP H07272665 A JPH07272665 A JP H07272665A
Authority
JP
Japan
Prior art keywords
electron microscope
image
drift
microscope image
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6062409A
Other languages
Japanese (ja)
Inventor
Soichiro Hayashi
聰一郎 林
Kenichi Myochin
健一 明珍
Chiyuki Iijima
千之 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP6062409A priority Critical patent/JPH07272665A/en
Publication of JPH07272665A publication Critical patent/JPH07272665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce complex operations by an operator for a long time observation and improve operability by measuring drifting and displacing quantities of an electron microscope image and automatically correcting an image position. CONSTITUTION:A transmission type electron microscope is equipped with an image formation optical system, an observation system and a photographing function having such general equipments as an electronic gun, an acceleration pipe, an illuminating optical system, an objective lens and the like and further provided with an image processing device for observing electron microscope images on the observation system by meand of a TV camera. Electron microscope images are fetched into a calculation processing device including a TV camera and an image processor and the drifting (displacing) quantity and the direction of the electron microscope images are detected by calculation processing. Then, automatic correction is performed by feedbacking the drifting quantity and the direction to the electron microscope and displayed as static electron microscope images on a monitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透過形電子顕微鏡の像
観察に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to image observation of a transmission electron microscope.

【0002】[0002]

【従来の技術】従来技術では当該補正については、全て
手動操作で補正した。例えば、観察中にドリフトが発生
するとオペレーターが操作卓の試料微動ツマミやイメー
ジシフトを操作して、像を移動して位置補正しながら観
察していた。
2. Description of the Related Art In the prior art, all the corrections have been performed manually. For example, if a drift occurs during observation, the operator operates the sample fine-movement knob or the image shift on the operation console to move the image and correct the position for observation.

【0003】[0003]

【発明が解決しようとする課題】電顕像のドリフトは、
主として試料を保持するホルダーや試料の位置を調整微
動する試料ステージがレンズ電流による発熱等の影響
で、当該位置が物理的な伸縮をし電顕像のドリフトとな
って観察されることが多かった。この電顕像のドリフト
量と変位量とを測定し、電子顕微鏡にフィードバックし
像位置の自動補正をして操作性の改善を図る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The holder that holds the sample and the sample stage that finely adjusts the position of the sample are often observed as a drift of the electron microscope image due to the physical expansion and contraction of the position due to the heat generated by the lens current. . The drift amount and the displacement amount of this electron microscope image are measured and fed back to the electron microscope to automatically correct the image position to improve the operability.

【0004】[0004]

【課題を解決するための手段】電顕像のドリフトはオン
グストロームやナノメーター程度の量で物理的な手段で
は測定することが不可能である。そこで画像処理の機能
を使い、観察開始に当たって指定した電顕像の特定領域
を基準画像として記憶し、単位時間ごとにその時刻にお
けるサンプリング像と基準画像とを比較して、電顕像の
ドリフトを求め、電子顕微鏡で一般的に言われるイメー
ジシフトの機能にフィードバックしてドリフト補正を実
行する。また、この補正はドリフト量によっては、試料
ステージの駆動部にフィードバックして機械的に補正す
ることも可能である。
Means for Solving the Problems The drift of an electron microscope image cannot be measured by a physical means in an amount of about angstrom or nanometer. Therefore, by using the image processing function, a specific region of the electron microscope image specified at the start of observation is stored as a reference image, and the sampled image at that time and the reference image are compared at each unit time, and the drift of the electron microscope image is corrected. Then, the drift correction is executed by feeding back to the function of image shift generally called in the electron microscope. In addition, depending on the amount of drift, this correction can be fed back to the drive unit of the sample stage and mechanically corrected.

【0005】[0005]

【作用】このドリフト補正によって電顕像は静止画像に
なり観察しやすくなるとともに、長時間観察におけるオ
ペレーターの煩雑な操作を軽減できるし、また離席時に
おいても観察像のターゲット像を見失うことも無くなり
操作性が一段と向上する。
By this drift correction, the electron microscope image becomes a still image for easy observation, and the operator's complicated operation during long-time observation can be reduced, and the target image of the observation image can be lost even when leaving the seat. It disappears and the operability is further improved.

【0006】[0006]

【実施例】電顕像のドリフトを補正するには、その電顕
像のドリフト方向と変位量を正確に測定しなければなら
ない。通常、電顕像のドリフトの変位量は電子顕微鏡が
安定した状態において、おおよそ1ナノメーター程度で
あると言われている。これは測定対象が極微小量である
とともに像のドリフトと言う定量化が困難なこともあっ
て、従来の測定器では計測が困難であったし、補正もで
きなかった。
Example To correct the drift of an electron microscope image, the drift direction and the amount of displacement of the electron microscope image must be accurately measured. Usually, it is said that the displacement amount of the drift of the electron microscope image is about 1 nanometer when the electron microscope is stable. This is because the measurement target is an extremely small amount and it is difficult to quantify it as an image drift. Therefore, it was difficult to measure with a conventional measuring instrument, and correction could not be performed.

【0007】ところが電子顕微鏡にとって、この極微小
量の変位量を測定することは極めて容易な技術である。
それは電子顕微鏡はその倍率の大小に関わらず、観察す
るのは蛍光板に結像した像だけであり、電顕像をTVカ
メラで画像処理装置に取り込んで最初の基準となる電顕
像と比較すれば、ドリフトの方向も変位量も計算でき
る。要するにナノメーターとかオングストロームと言う
極微小量に係わらず蛍光板に写しだされた電顕像を対象
に考えて検出処理すれば良いことである。
However, it is an extremely easy technique for an electron microscope to measure this extremely small amount of displacement.
The electron microscope observes only the image formed on the fluorescent plate regardless of the magnification, and the electron microscope image is captured by the TV camera into the image processing device and compared with the first reference electron microscope image. For example, the direction of drift and the amount of displacement can be calculated. In short, regardless of the extremely small amount of nanometer or angstrom, it is only necessary to consider the electron microscopic image projected on the fluorescent screen and perform the detection processing.

【0008】そこで本発明は、観察する電顕像のドリフ
トを求めるために、まず観察している電顕像の中からタ
ーゲットとする基準像を決めて記録し、その記録基準像
とある一定時間毎にサンプリングしたサンプリング像と
の間で画像処理演算を実行しそのドリフト方向と変位量
を求める。この画像処理の演算は色々有るが、一例とし
ては、サンプリング像と基準像との間で画面内のピクセ
ル毎に引き算をして、その結果にマイナスが多く発生し
た方向に像は変位している等の従来技術をそのまま活用
して求める。また、その変位量については、基準像の中
心とサンプリング像の中心を求め、その基準像の中心か
らの座標差が変位量である。これらの演算結果を電子顕
微鏡にフィードバックしてドリフトの自動補正を実行す
る。この具体的な手段として電子顕微鏡には通常イメー
ジシフトや試料微動の様な観察している電顕像を自由に
移動できる機能が備えられているので容易に補正するこ
とができる。従って、これらの技術を使って容易に自動
補正することができ、これが本発明の内容である。
Therefore, according to the present invention, in order to obtain the drift of the observed electron microscope image, first, a reference image as a target is determined and recorded from the observed electron microscope images, and the recorded reference image and a certain fixed time are set. An image processing operation is executed between the sampled images sampled for each of them to obtain the drift direction and the displacement amount. There are various operations for this image processing, but as an example, subtraction is performed for each pixel in the screen between the sampling image and the reference image, and the image is displaced in the direction in which a lot of negative results occur. Requested by directly utilizing conventional technology such as. Regarding the displacement amount, the center of the reference image and the center of the sampling image are obtained, and the coordinate difference from the center of the reference image is the displacement amount. The results of these calculations are fed back to the electron microscope to perform automatic drift correction. As a concrete means for this, the electron microscope is usually provided with a function of freely moving the observed electron microscope image such as an image shift or a sample fine movement, so that it can be easily corrected. Therefore, automatic correction can be easily performed using these techniques, and this is the content of the present invention.

【0009】図5は、一般的な電子顕微鏡の構成を示
す。電子銃と加速管(1)からの電子ビーム(2)はコ
ンデンサーレンズ(3)で所望の電流値とスポットサイ
ズに設定して、試料(4)に照射する。試料(4)を透
過した電子ビーム(2)は対物レンズ(5)で焦点合わ
せをし、中間レンズ(6),投射レンズ(7)で拡大し
蛍光板(8)に試料(4)の透過電顕像(9)を得る。
また、蛍光板(8)の上部にTVカメラ(11)を配置
し、透過電顕像(9)を画像演算処理装置(12)に取り
込み、必要な処理後、観察モニター(13)に表示出力
する。また、偏向レンズ(10)は通常電子顕微鏡では
イメージシフトと呼ばれる透過電顕像の情報を持った電
子ビーム(2)を偏向して位置移動する目的に使われ
る。さらにここには記載しなかったが、試料(4)は試
料ステージに固定され移動操作できる機構を有する。
FIG. 5 shows the structure of a general electron microscope. The electron beam (2) from the electron gun and the accelerating tube (1) is set to a desired current value and spot size by a condenser lens (3) and irradiated on a sample (4). The electron beam (2) transmitted through the sample (4) is focused by the objective lens (5), enlarged by the intermediate lens (6) and the projection lens (7), and transmitted through the fluorescent plate (8) by the sample (4). Obtain a visible image (9).
Further, the TV camera (11) is arranged above the fluorescent plate (8), the transmission electron microscope image (9) is taken into the image arithmetic processing unit (12), and after necessary processing, displayed and output to the observation monitor (13). . Further, the deflection lens (10) is usually used in an electron microscope for the purpose of deflecting and moving the position of the electron beam (2) having information of a transmission electron microscope image called image shift. Although not described here, the sample (4) has a mechanism that is fixed to the sample stage and can be moved.

【0010】図1は電顕像(21)の一例である。電顕
像(21)の視野の中からターゲットとして基準像(2
2)を指定し記録して像のドリフトを追跡する。また、
適当な画像領域を決めて検索する一定領域の枠(23)を
設ける。これは電顕像(21)の中に同一の繰り返しパタ
ーン(24)が多数有るときに、視野のターゲットを明
確にするとともに、さらに画像処理をする領域を設定し
て処理の高速化等を実行可能にするためでも有る。
FIG. 1 shows an example of an electron microscope image (21). From the field of view of the electron microscope image (21), the reference image (2
2) Designate and record to track image drift. Also,
A frame (23) of a fixed area for deciding and searching an appropriate image area is provided. This is to clarify the target of the field of view when there are many identical repetitive patterns (24) in the electron microscope image (21), and to speed up the process by setting the area for image processing. There is also to make it possible.

【0011】図2に、ある時間経過した後の電顕像(2
1)を破線で示し、基準像(22)を含む元の電顕像
(21)を実線で示す。さらに説明を簡単にするために
ターゲット像(25)を含む電顕像(21)のドリフト
した変位量がX軸の一方向にプラスdだけ変位したもの
とすると、ターゲット像(25)も同様にdだけ変位量
が発生したことになる。この時のAB間の枠(23)内
のヒストグラムをとると図3で示す様な形状になり、基
準像(22)のヒストグラム(26)は実線の様に、ド
リフトしたターゲット像(25)のヒストグラム(2
7)は破線で示す様になり、2つの中心位置の差は同様
にdである。
FIG. 2 shows an electron microscope image (2
1) is shown by a broken line, and the original electron microscope image (21) including the reference image (22) is shown by a solid line. Further, in order to simplify the explanation, if the drift amount of the electron microscope image (21) including the target image (25) is displaced by plus d in one direction of the X axis, the target image (25) is also the same. This means that the displacement amount is generated by d. The histogram in the frame (23) between AB at this time has a shape as shown in FIG. 3, and the histogram (26) of the reference image (22) shows the drifted target image (25) as shown by the solid line. Histogram (2
7) is indicated by a broken line, and the difference between the two center positions is d.

【0012】ここで計算の一例として、基準像(22)
のヒストグラム(26)をIS 、ターゲット像(25)
のヒストグラム(27)をIC として、各ピクセル毎に
コントラストの差、ISn−ICnをn=0からn=Nまで
(nはピクセル番号でn=0は枠(23)の左端でn=
Nは枠(23)の右端)演算すると、ドリフトの方向と
その量が演算結果として求められる。単純化して演算す
るために理想的なコントラストのヒストグラムを持って
いるとし、そのドリフトの変位方向は差を取った結果の
Sn−ICn=0を中心としてプラスからマイナスに向か
って変化すればプラス方向からマイナス方向にドリフト
したことになり、逆にマイナスからプラスに向かって変
化すればドリフトは反対方向になる。
Here, as an example of calculation, the reference image (22)
Histogram (26) of I S , target image (25)
N of the histogram (27) as I C, the leftmost difference in contrast for each pixel, I Sn and -I Cn from n = 0 to n = N (n is n = 0 is a pixel number frame (23) =
When N is calculated at the right end of the frame (23), the direction and amount of drift are obtained as the calculation result. If we have an ideal contrast histogram in order to simplify the calculation, and if the displacement direction of the drift changes from plus to minus with I Sn −I Cn = 0 as the result of the difference taken as the center, This means that the drift has changed from the positive direction to the negative direction. Conversely, if the drift changes from negative to positive, the drift will be in the opposite direction.

【0013】この場合X軸だけの方向のみを考えたが、
枠(23)内の各方向に付いて細かく演算すれば、演算
数が多くなるだけで精密に方向が求められる。また、基
準像(22)の中心座標(ISの微分値がゼロの座標、
またはISの重心位置等)を求め、ターゲット像(2
5)の中心座標(基準像の演算と同様)を求めて相互の
座標差を求めれば、それがドリフトの変位量である。こ
れに付いても枠(23)内の平面に付いて計算すれば二
次元的な量が計算で正確に求められる。
In this case, only the direction of the X axis was considered,
If each direction in the frame (23) is finely calculated, the direction can be precisely calculated only by increasing the number of calculations. Further, the center coordinates of the reference image (22) (the coordinates where the differential value of I S is zero,
Alternatively, the position of the center of gravity of I S , etc.) is obtained, and the target image (2
If the center coordinates of 5) (similar to the calculation of the reference image) are found and the mutual coordinate difference is found, that is the displacement amount of drift. In addition, if the calculation is performed on the plane in the frame (23), a two-dimensional quantity can be accurately calculated.

【0014】また、枠(23)はターゲット像(25)
のドリフト量によって逐次ターゲット像(25)が枠
(23)の中央になる様に位置をずらしながら設定し、
画像データー収集領域と演算領域の適正化を行う。
Further, the frame (23) is the target image (25).
The target image (25) is sequentially set by shifting the position so that the target image (25) becomes the center of the frame (23) according to the drift amount of
Optimize the image data collection area and calculation area.

【0015】さらにドリフトの方向と変位量の計算を早
くするために、基準像(22)との演算処理を実行せず
に、各検出時のターゲット像(25)の順番をNとすれ
ば、N−1番目とN番目のターゲット像(25)の演算
で方向と変位量は数値的に小さい範囲で演算でき、最後
に基準像(22)とN番目のターゲット像(25)で補
正すればより正確に早く演算できる。
In order to speed up the calculation of the direction of drift and the amount of displacement, if the order of the target images (25) at each detection is N without performing the arithmetic processing with the reference image (22), By calculating the N-1th and Nth target images (25), the direction and displacement can be calculated within a numerically small range. Finally, if the reference image (22) and the Nth target image (25) are corrected, More accurate and faster calculation.

【0016】図4にこの総合的な演算処理のフローチャ
ートの一例を示す。まず、前記したように基準像(2
2)と処理領域の枠(23)を指定し、基準像(22)
のデーター収集(31)を行って記録する。この処理で
追跡するターゲット像と画像処理領域が決定し、演算比
較する基準像が求められる。次に現在観察中の電顕像の
中からターゲット像のデーター収集(32)を実行す
る。何れの処理も図5に示したTVカメラ(11)と画
像演算処理装置(12)とで処理する。収集したターゲ
ット像(25)の画像データーと記録基準像の画像デー
ターからドリフトの方向と変位量の演算処理(33)を
実行して、その結果のドリフトデーターを図5には記載
してないがイメージシフト用の偏向レンズ(10)にフ
ィードバックして、さらに補正画像のデーター収集(3
5)を実行し処理して、位置補正結果の判断(36)を
する。その結果が正しく補正されてる時はそのまま観察
画像のモニター表示(37)をし最初に処理を戻し、ま
た、判別結果が正しく無い時には表示せずに最初に処理
を戻して繰り返し演算処理を実行する。
FIG. 4 shows an example of a flow chart of this comprehensive arithmetic processing. First, as described above, the reference image (2
2) and the frame (23) of the processing area are designated, and the reference image (22)
Data is collected (31) and recorded. In this process, the target image to be tracked and the image processing area are determined, and the reference image to be calculated and compared is obtained. Next, data acquisition (32) of the target image is executed from the electron microscope images currently being observed. Both processes are performed by the TV camera (11) and the image calculation processing device (12) shown in FIG. Although the calculation process (33) of the drift direction and the displacement amount is executed from the collected image data of the target image (25) and the image data of the recording reference image, the resulting drift data is not shown in FIG. Feedback is provided to the deflection lens (10) for image shift to collect data of the corrected image (3
5) is executed and processed to determine the position correction result (36). When the result is correctly corrected, the observed image is displayed on the monitor as it is (37) and the process is returned to the beginning, and when the determination result is not correct, the process is returned to the beginning without displaying and the repetitive calculation process is executed. .

【0017】[0017]

【発明の効果】本発明によれば、ドリフト補正によって
電顕像は静止画像になり、オペレターの煩雑な操作を軽
減できる効果がある。
According to the present invention, the electron microscope image becomes a still image by the drift correction, and the complicated operation of the operator can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】電顕像の一例を模擬的に示す図である。FIG. 1 is a diagram schematically showing an example of an electron microscope image.

【図2】図1の電顕像にドリフトが発生し位置変位が起
きた例を示す図である。
FIG. 2 is a diagram showing an example in which a drift occurs in the electron microscope image of FIG. 1 and a positional displacement occurs.

【図3】図2の枠(23)内のAB間のラインにおける
ヒストグラムを示す図である。
FIG. 3 is a diagram showing a histogram in a line between AB in a frame (23) in FIG.

【図4】本発明の画像処理の処理フローチャートであ
る。
FIG. 4 is a processing flowchart of image processing of the present invention.

【図5】一般的な透過形電子顕微鏡の構成図である。FIG. 5 is a configuration diagram of a general transmission electron microscope.

【符号の説明】 1…電子銃と加速管、2…電子ビーム、3…コンデンサ
ーレンズ、4…試料、5…対物レンズ、6…中間レン
ズ、7…投射レンズ、8…蛍光板、9…透過電顕像、1
0…偏向レンズ、11…TVカメラ、12…画像演算処
理装置、13…観察モニター、21…電顕像、22…基
準像、23…枠、24…パターン、25…ターゲット
像、26,27…ヒストグラム、31,32,35…デ
ーター収集、33…演算処理、34…ターゲット像の位
置補正、36…位置補正結果の判断、37…観察画像の
モニター表示。
[Explanation of Codes] 1 ... Electron gun and accelerator tube, 2 ... Electron beam, 3 ... Condenser lens, 4 ... Sample, 5 ... Objective lens, 6 ... Intermediate lens, 7 ... Projection lens, 8 ... Fluorescent plate, 9 ... Transmitted electricity Visible image, 1
0 ... Deflection lens, 11 ... TV camera, 12 ... Image processing unit, 13 ... Observation monitor, 21 ... Electron microscope image, 22 ... Reference image, 23 ... Frame, 24 ... Pattern, 25 ... Target image, 26, 27 ... Histogram, 31, 32, 35 ... Data collection, 33 ... Arithmetic processing, 34 ... Target image position correction, 36 ... Position correction result determination, 37 ... Observation image monitor display.

フロントページの続き (72)発明者 明珍 健一 茨城県勝田市大字市毛882番地 株式会社 日立製作所計測器事業部内 (72)発明者 飯島 千之 茨城県勝田市堀口字長久保832番地2 日 立計測エンジニアリング株式会社内Front Page Continuation (72) Kenichi Akichin, Inventor Kenichi Myochin, 882 Ichige, Ichima, Katsuta, Ibaraki Hitachi Ltd., Measuring Instruments Division (72) Inventor, Chiyuki Iijima 832 Nagakubo, Horiguchi, Katsuta, Ibaraki 2 Date Measurement Engineering Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般的な電子銃や加速管や照射光学系や対
物レンズを始めとする結像光学系や観察系や写真撮影の
機能を備え、また観察系にTVカメラ等でその電顕像を
観察し、さらに画像処理装置を備えた透過形電子顕微鏡
において、電顕像をTVカメラと画像処理等を含む演算
処理装置に取り込んで、さらに電顕像のドリフト(変
位)量とその方向を演算処理で検出する機能を備え、か
つ、そのドリフト量と方向を電子顕微鏡にフィードバッ
クして自動補正し、モニターに静止電顕像として表示す
ることを特徴とする透過形電子顕微鏡。
1. A general electron gun, an accelerating tube, an irradiation optical system, an imaging optical system including an objective lens, an observation system, and a function of taking a photograph, and the observation system uses a TV camera or the like for electron microscopy. The image is observed, and in a transmission electron microscope equipped with an image processing device, the electron microscope image is taken into an arithmetic processing device including a TV camera and image processing, and further the amount of drift (displacement) of the electron microscope image and its direction. A transmission electron microscope, which has a function to detect by a calculation process, and the drift amount and direction are fed back to the electron microscope to be automatically corrected and displayed as a static electron microscope image on a monitor.
【請求項2】請求項1において、検出した電顕像のドリ
フト量と方向を、電子顕微鏡の試料を固定し移動する機
能を有する試料ステージにフィードバックし、または、
電子線の偏向コイルにフィードバックし、そのドリフト
量と方向を自動補正することを特徴とする透過形電子顕
微鏡。
2. The method according to claim 1, wherein the detected drift amount and direction of the electron microscope image are fed back to a sample stage having a function of fixing and moving a sample of an electron microscope, or
A transmission electron microscope characterized by feedback to an electron beam deflection coil to automatically correct the drift amount and direction.
【請求項3】請求項1において、検出した電顕像のドリ
フト量と方向を請求項2における電子顕微鏡にフィード
バックする手段によらず、画像処理機能のみで電顕像を
移動補正しモニターに静止電顕像として表示することを
特徴とする透過形電子顕微鏡。
3. The method according to claim 1, wherein the drift amount and direction of the detected electron microscope image are not fed back to the electron microscope according to claim 2, and the electron microscope image is moved and corrected only by an image processing function and the electron microscope image is stopped on a monitor. A transmission electron microscope characterized by displaying as an electron microscope image.
【請求項4】請求項1において、オペレターが電顕像の
ドリフトを検出するためのターゲット領域を、特定なグ
ラフィカルな枠でその位置や大きさを自由に操作指定で
き、画像処理の演算処理や検出を正確かつ高速度化にし
たことを特徴とする透過形電子顕微鏡。
4. The target area for an operator to detect drift of an electron microscope image according to claim 1, wherein a position and a size of the target area can be freely designated by a specific graphical frame, and calculation processing of image processing and A transmission electron microscope characterized by accurate and high-speed detection.
JP6062409A 1994-03-31 1994-03-31 Transmission type electron microscope Pending JPH07272665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062409A JPH07272665A (en) 1994-03-31 1994-03-31 Transmission type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062409A JPH07272665A (en) 1994-03-31 1994-03-31 Transmission type electron microscope

Publications (1)

Publication Number Publication Date
JPH07272665A true JPH07272665A (en) 1995-10-20

Family

ID=13199325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062409A Pending JPH07272665A (en) 1994-03-31 1994-03-31 Transmission type electron microscope

Country Status (1)

Country Link
JP (1) JPH07272665A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520281A (en) * 2001-07-13 2005-07-07 ナノファクトリー インストルメンツ アーベー Devices for reducing the effects of microscope distortion
US7235784B2 (en) 2004-10-12 2007-06-26 Hitachi High-Technologies Corporation Transmission electron microscope and image observation method using it
WO2011089911A1 (en) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ Charged particle beam microscope and method of measurement employing same
JP2011228223A (en) * 2010-04-23 2011-11-10 Hitachi High-Technologies Corp Transmission electron microscope and method for correcting visual field deviation
WO2012111054A1 (en) * 2011-02-17 2012-08-23 株式会社 日立ハイテクノロジーズ Charged particle beam microscope, and method for correcting measured image using same
KR101235629B1 (en) * 2011-11-11 2013-02-21 한국기초과학지원연구원 Device for compensating image drift of transmission electron microscope
JP2017084631A (en) * 2015-10-29 2017-05-18 株式会社島津製作所 Image correction device
KR101964529B1 (en) * 2017-11-16 2019-04-02 한국기초과학지원연구원 Transmission electron microscope and image correction method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520281A (en) * 2001-07-13 2005-07-07 ナノファクトリー インストルメンツ アーベー Devices for reducing the effects of microscope distortion
US7235784B2 (en) 2004-10-12 2007-06-26 Hitachi High-Technologies Corporation Transmission electron microscope and image observation method using it
DE102005048677B4 (en) * 2004-10-12 2008-03-27 Hitachi High-Technologies Corp. Transmission electron microscope and image observation method using the same
DE102005048677B8 (en) * 2004-10-12 2008-06-26 Hitachi High-Technologies Corp. Transmission electron microscope and image observation method using the same
JP5422673B2 (en) * 2010-01-25 2014-02-19 株式会社日立ハイテクノロジーズ Charged particle beam microscope and measuring method using the same
WO2011089911A1 (en) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ Charged particle beam microscope and method of measurement employing same
US8993961B2 (en) 2010-01-25 2015-03-31 Hitachi High-Technologies Corporation Electric charged particle beam microscope and electric charged particle beam microscopy
JP2011228223A (en) * 2010-04-23 2011-11-10 Hitachi High-Technologies Corp Transmission electron microscope and method for correcting visual field deviation
WO2012111054A1 (en) * 2011-02-17 2012-08-23 株式会社 日立ハイテクノロジーズ Charged particle beam microscope, and method for correcting measured image using same
JP2012169233A (en) * 2011-02-17 2012-09-06 Hitachi High-Technologies Corp Charge particle beam microscope and measured image correction method using the same
US8957959B2 (en) 2011-02-17 2015-02-17 Hitachi High-Technologies Corporation Charged particle microscope and measurement image correction method thereof
KR101235629B1 (en) * 2011-11-11 2013-02-21 한국기초과학지원연구원 Device for compensating image drift of transmission electron microscope
JP2017084631A (en) * 2015-10-29 2017-05-18 株式会社島津製作所 Image correction device
KR101964529B1 (en) * 2017-11-16 2019-04-02 한국기초과학지원연구원 Transmission electron microscope and image correction method thereof

Similar Documents

Publication Publication Date Title
US7932504B2 (en) Microscope system and VS image production and program thereof
JP5422673B2 (en) Charged particle beam microscope and measuring method using the same
US5117110A (en) Composite scanning tunnelling microscope with a positioning function
JP2925647B2 (en) Microscope magnification changer
US7544936B2 (en) Method and device for observing a specimen in a field of view of an electron microscope
DE102005048677B4 (en) Transmission electron microscope and image observation method using the same
US20090283677A1 (en) Section image acquiring method using combined charge particle beam apparatus and combined charge particle beam apparatus
JP2007316258A (en) Microscope system, microscope image composition method, and program
JP2000106121A (en) Electron microscope or analogous equipment thereof
US20050174085A1 (en) Micromanipulation system
CN111788508B (en) Digital microscope and method for changing the magnification of a digital microscope
JP5205306B2 (en) Scanning electron microscope
US20210035359A1 (en) Method for Improving Modeling Speed of Digital Slide Scanner
JPH07272665A (en) Transmission type electron microscope
US6777679B2 (en) Method of observing a sample by a transmission electron microscope
JP2005235665A (en) Dark field scanning transmission electron microscope and observation method
JP3672728B2 (en) Automatic specimen tilting device in transmission electron microscope
JP2000251824A (en) Electron beam apparatus and stage movement positioning method thereof
JP3870141B2 (en) electronic microscope
JP3987636B2 (en) electronic microscope
US20220122277A1 (en) Coordinate Linking System and Coordinate Linking Method
EP4206664A1 (en) Methods and systems for tomographic microscopy imaging
JP2011076960A (en) Device for recognition of thin-film sample position in electron microscope
JP3732299B2 (en) Transmission electron microscope
JP3078645B2 (en) Observation method of RHEED image by scanning RHEED microscope