JPH07271059A - Electrophotographic photoreceptor and electrophotographic device - Google Patents

Electrophotographic photoreceptor and electrophotographic device

Info

Publication number
JPH07271059A
JPH07271059A JP6328394A JP6328394A JPH07271059A JP H07271059 A JPH07271059 A JP H07271059A JP 6328394 A JP6328394 A JP 6328394A JP 6328394 A JP6328394 A JP 6328394A JP H07271059 A JPH07271059 A JP H07271059A
Authority
JP
Japan
Prior art keywords
electrophotographic
voltage
charging
photosensitive member
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6328394A
Other languages
Japanese (ja)
Inventor
Yosuke Morikawa
陽介 森川
Koji Goto
浩二 後藤
Hiroyuki Omori
弘之 大森
Akira Yoshida
晃 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6328394A priority Critical patent/JPH07271059A/en
Publication of JPH07271059A publication Critical patent/JPH07271059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide an electrophotographic photoreceptor and electrophotographic device which make it possible to obtain good images without uneveness in surface potential in spite of presence of the uneven film thicknesses of photosensitive layers with the electrophotographic device which causes contact electrostatic charge by impression of only the DC voltage. CONSTITUTION:This electrophotographic device has an electrophotographic photoreceptor and an electrostatic charging member arranged in contact therewith and electrostatically charges the photoreceptor by impressing only the DC voltage thereto from the electrostatic charging member. The electrophotographic photoreceptor has the value of (n) satisfying 0.45<=n<=4.0 when the relation between the electrophotographic quantum efficiency PHI and electric field intensity E of the photoreceptor is expressed by the equation PHI=PHI0E<n> (where PHIg is a constant).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体とこれ
に接触配置された帯電用部材とを有し、この感光体に前
記帯電用部材から直流電圧のみを印加することにより帯
電される電子写真装置に用いられる電子写真感光体、及
び電子写真装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an electrophotographic photosensitive member and a charging member arranged in contact therewith, and is charged by applying only a DC voltage from the charging member to the photosensitive member. The present invention relates to an electrophotographic photosensitive member used in an electrophotographic apparatus, and an electrophotographic apparatus.

【0002】[0002]

【従来の技術】電子写真方法において、例えばセレン、
硫化カドミウム、塩化亜鉛、アモルファスシリコン、有
機光導電体などの電子写真感光体に帯電、露光、現像、
転写、定着、クリーニングなどの基本的プロセスを行う
ことにより画像を得る際、帯電プロセスは従来より殆ど
金属ワイヤーに高電圧(DC5〜8KV)を印加し発生
するコロナにより帯電を行っている。しかし、この方法
ではコロナ発生時にオゾンやNOx等のコロナ生成物に
より感光体表面を変質させ画像ボケや劣化を進行させた
り、ワイヤーの汚れが画像品質に影響し、画像白抜けや
黒スジを生じる等の問題があった。特に感光層が有機光
導電体を主体として構成される電子写真感光体は、他の
セレン感光体やアモルファスシリコン感光体に比べて化
学的安定性が低く、コロナ生成物にさらされると化学反
応(主に酸化反応)が起こり劣化し易い傾向にある。従
って、コロナ帯電下で繰り返し使用した場合には前述の
劣化による画像ボケや感度の低下によるコピー濃度薄が
起こり耐印刷寿命が短かくなる傾向にあった。
2. Description of the Related Art In an electrophotographic method, for example, selenium,
Charge, expose, and develop electrophotographic photoreceptors such as cadmium sulfide, zinc chloride, amorphous silicon, and organic photoconductors.
When an image is obtained by performing basic processes such as transfer, fixing, and cleaning, the charging process is conventionally performed by applying a high voltage (DC 5 to 8 KV) to a metal wire and charging by a corona generated. However, in this method, when corona occurs, corona products such as ozone and NOx deteriorate the surface of the photoconductor to cause image blurring and deterioration, and wire stains affect image quality, resulting in white spots and black streaks. There was a problem such as. In particular, the electrophotographic photoconductor whose photosensitive layer is mainly composed of an organic photoconductor has lower chemical stability than other selenium photoconductors and amorphous silicon photoconductors, and a chemical reaction when exposed to corona products ( Oxidation reaction mainly occurs and tends to deteriorate. Therefore, when it is repeatedly used under corona charging, image blurring due to the above-mentioned deterioration and low copy density due to reduction in sensitivity tend to occur, and the printing durability life tends to be short.

【0003】また、コロナ帯電では電力的にも感光体に
向かう電流がその5〜30%にすぎず、殆どがシールド
板に流れ帯電手段としては効率の悪いものであった。
In the case of corona charging, the electric current flowing to the photoconductor is only 5% to 30% in terms of electric power, and most of them flow to the shield plate and are inefficient as charging means.

【0004】このような問題点を補うために、コロナ放
電器を利用しないで特開昭57−178267号公報、
特開昭56−104351号公報、特開昭58−405
66号公報、特開昭58−139156号公報、特開昭
58−150975号公報などに提案されているよう
に、接触帯電させる方法が研究されている。
In order to make up for such a problem, without using a corona discharger, Japanese Patent Laid-Open No. 57-178267 has been proposed.
JP-A-56-104351, JP-A-58-405
As proposed in Japanese Patent Laid-Open No. 66, Japanese Patent Application Laid-Open No. 58-139156, Japanese Patent Application Laid-Open No. 58-150975, etc., a method of contact charging has been studied.

【0005】具体的には、感光体表面に1〜2KV程度
の直流電圧を外部より印加した導電性弾性ローラなどの
帯電部材を接触させることにより感光体表面を所定の電
位に帯電させるものである。
Specifically, the surface of the photoconductor is charged to a predetermined potential by contacting the surface of the photoconductor with a charging member such as a conductive elastic roller to which a DC voltage of about 1 to 2 KV is applied from the outside. .

【0006】しかしながら、直接帯電方法は多数の提案
があるにもかかわらず、市場実績はほとんどない。その
理由としては帯電の不均一性、直接電圧を印加すること
による感光体の放電絶縁破壊の発生が原因として挙げら
れる。
However, although there are many proposals for the direct charging method, there is almost no market record. The reason for this is as follows: non-uniform charging, and discharge dielectric breakdown of the photoconductor due to direct voltage application.

【0007】帯電を均一にするために、直流電圧に交流
電圧を重畳して帯電用部材に印加する方法が提案されて
いる(特開昭63−149668号)。この帯電方法
は、直流電圧(VDC)に交流電圧(VAC)を重畳するこ
とによって脈流電圧を印加して均一な帯電を行うもので
ある。
In order to make the charging uniform, a method of superimposing an AC voltage on a DC voltage and applying it to a charging member has been proposed (JP-A-63-149668). In this charging method, a pulsating voltage is applied by superimposing an AC voltage (VAC) on a DC voltage ( VDC ) to perform uniform charging.

【0008】この場合、帯電の均一性を保持して、正現
像方式における白ポチ、反転現像方式における黒ポチ、
かぶりといった画像欠陥を防ぐためには、重畳する交流
電圧が、直流電圧の2倍以上のピーク間電位差(V
P-P )をもっていることが必要である。
In this case, while maintaining the uniformity of charging, white spots in the positive development system, black spots in the reversal development system,
In order to prevent image defects such as fogging, the superimposed AC voltage is at least twice the peak-to-peak potential difference (V
It is necessary to have a PP ).

【0009】しかしながら、画像欠陥を防ぐために、重
畳する交流電圧を上げていくと、脈流電圧の最大印加電
圧によって、感光体内部の微かな欠陥部位において放電
絶縁破壊が起こってしまう。特に感光体が絶縁耐圧の低
いOPC感光体の場合には、この絶縁破壊が著しい。こ
の場合、正現像方式においては接触部分の長手方向にわ
たって画像が白ヌケし、反転現像方式においては黒オビ
が発生してしまう。さらにピンホールがある場合、そこ
の部位が導通路となって電流がリークして帯電部材に印
加された電圧が降下してしまうという問題点があった。
However, if the superposed AC voltage is increased in order to prevent image defects, the maximum applied voltage of the pulsating voltage causes discharge dielectric breakdown at a minute defect portion inside the photoconductor. In particular, when the photoconductor is an OPC photoconductor having a low withstand voltage, this dielectric breakdown is remarkable. In this case, in the normal development method, the image is blanked in the longitudinal direction of the contact portion, and in the reversal development method, black blemishes occur. Further, when there is a pinhole, there is a problem in that the portion of the pinhole serves as a conduction path, current leaks, and the voltage applied to the charging member drops.

【0010】さらに、AC帯電による帯電音が感光体用
シリンダーで増幅され、騒音という問題点も発生する。
この対策として、シリンダー内にアルミニウム塊状の詰
め物等を行うことが考えられているが、コスト高にな
る、及び組立て工程が増える等の問題がある。
Furthermore, the charging noise due to AC charging is amplified by the photoconductor cylinder, which causes a problem of noise.
As a countermeasure against this, it is considered to fill the inside of the cylinder with aluminum lumps, but there are problems such as an increase in cost and an increase in assembling steps.

【0011】このような問題点を解決するために、交流
電圧(VAC)を重畳せずに直流電圧(VDC)のみを印加
する直接帯電が検討されている。
In order to solve such a problem, direct charging in which only a DC voltage (V DC ) is applied without superposing an AC voltage (V AC ) has been studied.

【0012】しかしながら、直流電圧のみの印加では、
帯電は感光体の静電容量に大きく依存し、同一印加電圧
の条件下では、静電容量の大きい場合は暗電位は高く、
静電容量が小さい場合は暗電位は低くなることが知られ
ている。明電位に関しては、一般に使用されている電荷
発生層を用いると静電容量が大きい場合は明電位は高
く、静電容量が小さい場合は明電位は低くなる。つま
り、直流電圧のみの直接帯電系においては、静電容量が
大きい場合は明電位は通常の感度ダウン分に加えて、高
暗電位により更に高くなり、静電容量が小さい場合は逆
に明電位は高感度に加えて、低暗電位により更に低くな
る。
However, when only the DC voltage is applied,
Charging largely depends on the electrostatic capacity of the photoconductor, and under the same applied voltage condition, the dark potential is high when the electrostatic capacity is large,
It is known that the dark potential becomes low when the capacitance is small. Regarding the bright potential, when a generally used charge generation layer is used, the bright potential is high when the capacitance is large, and is low when the capacitance is small. In other words, in a direct charging system using only a DC voltage, the bright potential is further increased by the high dark potential in addition to the normal sensitivity reduction amount when the electrostatic capacitance is large, and conversely when the electrostatic capacitance is small. In addition to high sensitivity, is lower due to low dark potential.

【0013】言いかえると、感光体の長手方向又は周方
向で静電容量の差、つまり電荷輸送層に膜厚差がある
と、膜厚の厚いところでは明電位は、低暗電位と合わせ
て更に低くなり、また膜厚の薄いところでは明電位は、
高暗電位と合わせて更に高くなる。つまり、微かな膜厚
差があっても明電位差としては大きなものとなり、画像
濃度も大きな差となる。
In other words, if there is a difference in electrostatic capacitance in the longitudinal direction or the circumferential direction of the photoconductor, that is, if there is a film thickness difference in the charge transport layer, the bright potential is combined with the low dark potential at the thick film thickness. Further, when the film thickness becomes thinner, the bright potential becomes
Combined with the high dark potential, it becomes even higher. That is, even if there is a slight film thickness difference, the bright potential difference becomes large, and the image density also becomes large.

【0014】[0014]

【発明が解決しようとする課題】従って、本発明の目的
は、直流電圧のみを印加し、接触帯電させる電子写真装
置においても、感光層の膜厚ムラ(奥/手前及び周方
向)が存在しても表面電位的にもムラがなく、良好な画
像が得られる電子写真感光体、及び電子写真装置を提供
することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is that even in an electrophotographic apparatus in which only a DC voltage is applied and contact charging is performed, there is unevenness in the thickness of the photosensitive layer (back / front and circumferential direction). In addition, it is an object of the present invention to provide an electrophotographic photosensitive member and an electrophotographic apparatus that can obtain good images without unevenness in surface potential.

【0015】[0015]

【課題を解決するための手段】本発明者らは、前記問題
点について検討を重ねた結果、電子写真感光体を改良す
ることにより、感光体に帯電用部材から接触帯電する際
に、直流電圧のみにより印加しても、前記のような問題
を解決できることを見い出した。
DISCLOSURE OF THE INVENTION As a result of repeated studies on the above problems, the present inventors have improved the electrophotographic photosensitive member to provide a DC voltage when the photosensitive member is contact-charged from a charging member. It has been found that the above problem can be solved by applying only the voltage.

【0016】すなわち、本発明は電子写真感光体と該感
光体に接触配置された帯電用部材とを有し、該感光体に
該帯電用部材から直流電圧のみを印加することにより帯
電される電子写真装置に用いる電子写真感光体におい
て、該感光体の電子写真的量子効率Φと電界強度Eとの
関係が下記式(1) Φ=Φ0n (1) (但し、Φ0 は定数)で表わしたときのnの値が式
(2) 0.45≦n≦4.0 (2) を満足することを特徴とする電子写真感光体である。
That is, the present invention has an electrophotographic photosensitive member and a charging member disposed in contact with the photosensitive member, and an electron charged by applying only a DC voltage from the charging member to the photosensitive member. an electrophotographic photosensitive member used in the photographic apparatus, the relationship between the electrophotographic quantum efficiency [Phi and the electric field strength E of the photoreceptor satisfies the following formula (1) Φ = Φ 0 E n (1) ( where, [Phi 0 is a constant) The electrophotographic photosensitive member is characterized in that the value of n represented by the formula (2) satisfies the formula: 0.45 ≦ n ≦ 4.0 (2).

【0017】また、本発明は、電子写真感光体と該感光
体に接触配置された帯電用部材とを有し、該感光体に該
帯電用部材から直流電圧のみを印加することにより帯電
される電子写真装置において、該感光体の電子写真的量
子効率Φと電界強度Eとの関係が下記式(1) Φ=Φ0n (1) (但し、Φ0 は定数)で表わしたときのnの値が式
(2) 0.45≦n≦4.0 (2) を満足することを特徴とする電子写真装置である。
Further, the present invention has an electrophotographic photosensitive member and a charging member arranged in contact with the photosensitive member, and is charged by applying only a DC voltage from the charging member to the photosensitive member. in the electrophotographic apparatus, the relationship between the electrophotographic quantum efficiency [Phi and the electric field strength E of the photosensitive member is represented by the following formula (1) Φ = Φ 0 E n (1) ( where, [Phi 0 is a constant) when expressed in The value of n satisfies the equation (2) 0.45 ≦ n ≦ 4.0 (2).

【0018】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0019】電子写真感光体に対し帯電用部材を接触さ
せて帯電を行なう直接帯電法は、感光体と帯電用部材と
の接触部近傍の微小空間において、パッシェン則に従う
空隙破壊放電によって行われる。このような帯電メカニ
ズムの性格上、表面電位は感光体の静電容量に大きく依
存する。従来、多く使用されているコロナ放電において
も同様に表面電位は感光体の静電容量に依存するが、D
C直接帯電時とは異なり、静電容量が大きい場合は暗電
位は低く、静電容量が小さい場合は暗電位は高くなる。
明電位については逆に、一般に使用されている電荷発生
層を用いると静電容量が大きい場合は明電位は高く、静
電容量の大きい場合明電位は低くなる。
The direct charging method, in which a charging member is brought into contact with an electrophotographic photosensitive member to perform charging, is performed by a void breaking discharge according to Paschen's law in a minute space near the contact portion between the photosensitive member and the charging member. Due to the nature of such a charging mechanism, the surface potential greatly depends on the electrostatic capacity of the photoconductor. Similarly, the surface potential of corona discharge, which has been widely used in the past, depends on the electrostatic capacity of the photoconductor.
Unlike the case of C direct charging, the dark potential is low when the capacitance is large, and the dark potential is high when the capacitance is small.
On the contrary, when a commonly used charge generation layer is used, the bright potential is high when the electrostatic capacity is large, and the bright potential is low when the electrostatic capacity is large.

【0020】つまり、同一感光体内で母線方向及び周方
向で感光層の膜厚のムラが存在しても、コロナ放電の場
合は、電子写真に重要な明電位(ハーフトーン電位も含
む)は、明電位差と感度差の(+)(−)効果で、それ
ほど大きな電位差とはならず、画像濃度もほぼ均一なも
のが得られる。また、交流電圧の重畳を行なった場合
は、感光体の膜厚ムラが存在しても、暗電位はほとんど
膜厚に依存せず一定である。つまり明電位差は感光体の
膜厚ムラに起因する感度差のみで、暗電位差により明電
位差が大きくも小さくもならない。
That is, even if there is unevenness in the film thickness of the photosensitive layer in the same photoconductor in the generatrix direction and the circumferential direction, in the case of corona discharge, the bright potential (including the halftone potential) important for electrophotography is: Due to the (+) and (-) effects of the bright potential difference and the sensitivity difference, the potential difference is not so large, and the image density is almost uniform. Further, when the AC voltage is superposed, the dark potential is substantially independent of the film thickness and is constant even if the film thickness of the photoconductor is uneven. That is, the bright potential difference is only the sensitivity difference caused by the unevenness of the film thickness of the photoconductor, and the bright potential difference is neither large nor small due to the dark potential difference.

【0021】本発明では、帯電が直流電圧のみの接触帯
電においても、感光体の電子写真的量子効率が式
(1),(2)を満足することにより、コロナ放電によ
って印加した場合と同様に、又は、それ以上に均一な明
電位が得られることを見い出した。すなわち、式(1)
で示す電子写真的量子効率が電界強度に依存し、その依
存度nが式(2)を満足することにより、電界が強いと
ころでは電荷発生層においてより多くの電荷を発生さ
せ、電界が弱いところでは電荷発生を抑制する。つま
り、感光体の母線方向及び周方向に膜厚ムラが存在して
も、明電位をほぼ均一にでき、従って画像濃度を均一に
することができる。
In the present invention, the electrophotographic quantum efficiency of the photoconductor satisfies the formulas (1) and (2) even in the case of contact charging using only DC voltage, so that the same as in the case of applying by corona discharge. , Or even more uniform bright potential was found. That is, equation (1)
Since the electrophotographic quantum efficiency shown in Fig. 2 depends on the electric field strength and the degree of dependence n satisfies the formula (2), more electric charges are generated in the charge generation layer in the strong electric field and weak electric field is generated in the electric charge generation layer. Suppresses charge generation. That is, even if there is film thickness unevenness in the generatrix direction and the circumferential direction of the photoconductor, the bright potential can be made substantially uniform, so that the image density can be made uniform.

【0022】前記式(1)で示す「電子写真的量子効率
Φ」とは Φ=Δδ/Nλ (4) Δδ:波長λの光で照射したときの単位面積当り減少し
た電荷量で、電子数を示す。
The "electrophotographic quantum efficiency Φ" shown in the above formula (1) is Φ = Δδ / Nλ (4) Δδ: the amount of charge reduced per unit area when irradiated with light of wavelength λ, and the number of electrons Indicates.

【0023】Nλ:入射した単位面積当りの光量子数 表面電位を用いると Φ=(εε0 ΔV)/(dNλ) (5) ε :比誘電率 ε0 :真空の誘電率 ΔV:電位の減少量 d :光導電層の厚さ(cm) 式(5)を電子数に換算すると Φ={(εΔVnλ)/(dI0 )}×8.85×10-6 (6) nλ:光量子1個当りのエネルギー(eV) I0 :入射光(μW/cm2 ) 量子効率の計算には、入射光の反射と透過に対する補正
が必要となるため、I 0 にI1 を代入する。
Nλ: Number of photons per unit area of incident light Using surface potential, Φ = (εε0 ΔV) / (dNλ) (5) ε: relative permittivity ε0 : Dielectric constant of vacuum ΔV: Reduction amount of electric potential d: Thickness of photoconductive layer (cm) When formula (5) is converted into the number of electrons, Φ = {(εΔVnλ) / (dI0 )} × 8.85 × 10-6 (6) nλ: Energy (eV) I per photon I0 : Incident light (μW / cm2 ) For the calculation of quantum efficiency, correction for reflection and transmission of incident light
Is required, I 0 To I1 Is substituted.

【0024】 I1 =I0 (1−Rλ){1−eexp(−αλd)} (7) Rλ:表面反射率 αλ:層の吸収係数I 1 = I 0 (1-Rλ) {1-eexp (-αλd)} (7) Rλ: surface reflectance αλ: layer absorption coefficient

【0025】式(2)におけるnの値は、式(1)の対
数をとったときの傾きに等しく、量子効率Φと電界強度
Eとの両対数グラフの傾きから求めることができる。
The value of n in the equation (2) is equal to the gradient when the logarithm of the equation (1) is taken, and can be obtained from the gradient of the logarithmic graph of the quantum efficiency Φ and the electric field strength E.

【0026】式(2)を満足させる手段としては、電荷
発生層中の電荷発生材料を変更したり、バインダー樹脂
を変更したり、あるいは2種以上の電荷発生材料又は2
種以上のバインダー樹脂を使用する等が考えられる。
As means for satisfying the formula (2), the charge generating material in the charge generating layer is changed, the binder resin is changed, or two or more kinds of charge generating materials or 2 are used.
It is possible to use more than one kind of binder resin.

【0027】また、式(3)で示す電界強度Eは、量子
効率Φと電界強度Eとの両対数グラフを作成したとき、
電界強度Eの値が8.0×105 を越えると直線性がな
くなる傾向があり、その傾きであるnの値の意味がなく
なる。更に、1.5×105より小さくなることは、電
子写真プロセス上ほとんどないのでこの値を下限とし
た。
Further, the electric field strength E shown in the equation (3) is as follows when a logarithmic graph of the quantum efficiency Φ and the electric field strength E is created.
When the value of the electric field strength E exceeds 8.0 × 10 5 , the linearity tends to be lost, and the value of n, which is the slope of the linearity, becomes meaningless. Further, there is almost no decrease of less than 1.5 × 10 5 in the electrophotographic process, so this value was made the lower limit.

【0028】本発明で使われる帯電用部材1の形状とし
ては、図5に示すようなローラーの他、ブレード、ベル
トなどいずれの形状をとっても良く、電子写真装置の仕
様、形態に合わせて選択可能である。また、この帯電用
部材の材質としては、アルミニウム、鉄、銅などの金
属、ポリアセチレン、ポリピロール、ポリテオフェンな
どの導電性高分子材、カーボン、金属などを分散させて
導電性処理したゴムや人工繊維、またはポリカーボネー
ト、ポリビニル、ポリエステルなどの絶縁性物質の表面
を金属や他の導電性物質によってコートしたものなどを
用いることができる。帯電用部材の体積抵抗値として
は、100 〜1012Ω・cm、特には102〜107 Ω
・cmの範囲が好ましい。
The charging member 1 used in the present invention may have any shape such as a blade and a belt other than the roller as shown in FIG. 5, and can be selected according to the specifications and form of the electrophotographic apparatus. Is. Further, as the material of the charging member, aluminum, iron, a metal such as copper, polyacetylene, polypyrrole, a conductive polymer material such as polytheophene, carbon, rubber or an artificial fiber conductively treated by dispersing a metal, Alternatively, an insulating material such as polycarbonate, polyvinyl, or polyester whose surface is coated with a metal or another conductive material can be used. The volume resistance value of the charging member is 10 0 to 10 12 Ω · cm, particularly 10 2 to 10 7 Ω.
-A range of cm is preferable.

【0029】図1、図2及び図3は、本発明の電子写真
感光体の典型的な構成を示すものであり、感光層が有機
光導電体を主成分として構成されている。
FIGS. 1, 2 and 3 show a typical construction of the electrophotographic photosensitive member of the present invention, in which the photosensitive layer is composed mainly of an organic photoconductor.

【0030】有機光導電体としては、ポリビニルカルバ
ゾール等の有機光導電性ポリマーを用いたもの、あるい
は低分子量の有機光導電性物質をバインダー樹脂中に含
有したものなどがある。
Examples of the organic photoconductor include those using an organic photoconductive polymer such as polyvinylcarbazole, and those containing a low molecular weight organic photoconductive substance in a binder resin.

【0031】図1の電子写真感光体は、導電性支持体1
0上に感光層11が設けられており、この感光層11
は、バインダー樹脂樹脂中に電荷発生物質12を分散含
有した電荷発生層13と、電荷輸送材料(図示せず)を
含有した電荷輸送層14の積層構造である。この場合、
電荷輸送層14は、電荷発生層13の上に積層されてい
る。
The electrophotographic photosensitive member of FIG. 1 has a conductive support 1
0 is provided with a photosensitive layer 11, and the photosensitive layer 11
Is a laminated structure of a charge generation layer 13 containing a charge generation material 12 dispersed in a binder resin and a charge transport layer 14 containing a charge transport material (not shown). in this case,
The charge transport layer 14 is laminated on the charge generation layer 13.

【0032】図2の電子写真感光体は、図1の場合と異
なり、電荷輸送層14は、電荷発生層13の下に積層さ
れている。この場合、電荷発生層13中には電荷輸送材
料が含有されていてもよい。
In the electrophotographic photoreceptor of FIG. 2, unlike the case of FIG. 1, the charge transport layer 14 is laminated below the charge generation layer 13. In this case, the charge generation layer 13 may contain a charge transport material.

【0033】図3の電子写真感光体は、導電性支持体1
0上に感光層11が設けられており、この感光層11
は、バインダー樹脂中に電荷発生材料12と電荷輸送材
料(図示せず)が含有されている。
The electrophotographic photosensitive member of FIG. 3 has a conductive support 1
0 is provided with a photosensitive layer 11, and the photosensitive layer 11
Includes a charge generation material 12 and a charge transport material (not shown) in a binder resin.

【0034】また、図1、図2、図3の構成に加えて、
オーバーコート層を塗布することもできる。
In addition to the configurations shown in FIGS. 1, 2 and 3,
It is also possible to apply an overcoat layer.

【0035】これらのうち図1に示すように導電性支持
体10側より電荷発生層13、次いで電荷輸送層14の
順で積層されている構造の感光体が本発明においては好
ましい。
Of these, a photoreceptor having a structure in which the charge generation layer 13 and the charge transport layer 14 are laminated in this order from the conductive support 10 side as shown in FIG. 1 is preferable in the present invention.

【0036】導電性支持体10としては、アルミニウ
ム、ステンレスなどの金属、紙、プラスチックなどの円
筒状シリンダー、シートまたはフィルムなどが用いられ
る。また、これらの円筒状シリンダー、シートまたはフ
ィルムは、必要に応じて導電性ポリマー層あるいは酸化
スズ、酸化チタン、銀粒子などの導電性粒子を含有する
樹脂層を有していてもよい。
As the conductive support 10, a metal such as aluminum or stainless steel, a cylindrical cylinder such as paper or plastic, a sheet or a film is used. Further, these cylindrical cylinders, sheets or films may have a conductive polymer layer or a resin layer containing conductive particles such as tin oxide, titanium oxide and silver particles, if necessary.

【0037】また、導電性支持体と感光層の間には、バ
リアー機能と下引機能をもつ下引層(接着層)を設ける
ことができる。
Further, an undercoat layer (adhesive layer) having a barrier function and an undercoat function can be provided between the conductive support and the photosensitive layer.

【0038】下引層は感光層の接着性改良、塗工性改
良、支持体の保護、支持体上の欠陥の被覆、支持体から
の電荷注入性改良、感光層の電気的破壊に対する保護な
どのために形成される。その膜厚は0.2〜2μm程度
である。
The subbing layer is for improving the adhesion of the photosensitive layer, improving the coating property, protecting the support, covering defects on the support, improving the charge injection property from the support, protecting the photosensitive layer against electrical breakdown, etc. Formed for. The film thickness is about 0.2 to 2 μm.

【0039】電荷発生材料としては、ピリリウム、チオ
ピリリウム系染料、フタロシアニン系顔料、アントアン
トロン顔料、ジベンズピレンキノン顔料、ピラトロン顔
料、アゾ顔料、インジゴ顔料、キナクリドン系顔料、非
対称キノシアニン、キノシアニンなどを用いることがで
きる。
As the charge generating material, use is made of pyrylium, thiopyrylium dye, phthalocyanine pigment, anthanthrone pigment, dibenzpyrenequinone pigment, pyratron pigment, azo pigment, indigo pigment, quinacridone pigment, asymmetric quinocyanine, quinocyanine, etc. You can

【0040】電荷輸送材料としては、ヒドラゾン系化合
物、ピラゾリン系化合物、スチリル系化合物、オキサゾ
ール系化合物、チアゾール系化合物、トリアリールメタ
ン系化合物、ポリアリールアルカン系化合物などを用い
ることができる。
As the charge transport material, hydrazone compounds, pyrazoline compounds, styryl compounds, oxazole compounds, thiazole compounds, triarylmethane compounds, polyarylalkane compounds and the like can be used.

【0041】電荷発生層13は、前記の電荷発生材料を
0.3〜4倍量のバインダー樹脂、及び溶剤と共に、ホ
モジナイザー、超音波、ボールミル、振動ボールミル、
サンドミル、アトライター、ロールミルなどの方法でよ
く分散し、塗布、乾燥されて形成される。その厚みは5
μm以下、特には0.01〜1μmの範囲が好ましい。
電荷輸送層14は一般的には前記の電荷輸送材料とバ
インダー樹脂を溶剤に溶解し、塗布して形成する。電荷
輸送材料とバインダー樹脂との混合割合は2:1〜1:
2程度である。溶剤としてはアセトン、メチルエチルケ
トンなどのケトン類、酢酸メチル、酢酸エチルなどのエ
ステル類、トルエン、キシレンなどの芳香族炭化水素
類、クロルベンゼン、クロロホルム、四塩化炭素などの
塩素系炭化水素類などが用いられる。この溶液を塗布す
る際には、例えば浸漬コーティング法、スプレーコーテ
ィング法、スピンナーコーティング法等のコーティング
法を用いることができ、乾燥は10℃〜200℃、好ま
しくは20℃〜150℃の範囲の温度で5分〜5時間、
好ましくは10分〜2時間の時間で送風乾燥または静止
乾燥下で行うことができる。生成した電荷輸送層の膜厚
は5〜30μm、特には10〜25μmの範囲が好まし
い。
The charge generation layer 13 includes a homogenizer, an ultrasonic wave, a ball mill, a vibrating ball mill, together with a binder resin in an amount of 0.3 to 4 times the amount of the charge generation material and a solvent.
It is formed by being well dispersed by a method such as a sand mill, an attritor, or a roll mill, coated and dried. Its thickness is 5
It is preferably not more than μm, particularly preferably in the range of 0.01 to 1 μm.
The charge transport layer 14 is generally formed by dissolving the above charge transport material and the binder resin in a solvent and coating the solution. The mixing ratio of the charge transport material and the binder resin is 2: 1 to 1: 1.
It is about 2. As the solvent, ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, chlorinated hydrocarbons such as chlorobenzene, chloroform and carbon tetrachloride are used. To be When applying this solution, a coating method such as a dip coating method, a spray coating method or a spinner coating method can be used, and drying is performed at a temperature in the range of 10 ° C to 200 ° C, preferably 20 ° C to 150 ° C. 5 minutes to 5 hours,
Preferably, it can be carried out for 10 minutes to 2 hours under blast drying or static drying. The thickness of the generated charge transport layer is preferably 5 to 30 μm, particularly preferably 10 to 25 μm.

【0042】電荷輸送層14を形成するのに用いられる
バインダー樹脂としては、アクリル樹脂、スチレン系樹
脂、ポリエステル、ポリカーボネート樹脂、ポリアリレ
ート、ポリサルホン、ポリフェニレンオキシド、エポキ
シ樹脂、ポリウレタン樹脂、アルキド樹脂、及び不飽和
樹脂等から選ばれる樹脂が好ましい。特に好ましい樹脂
としては、ポリメチルメタクリレート、ポリスチレン、
スチレン−アクリロニトリル共重合体、ポリカーボネー
ト樹脂又はジアリルフタレート樹脂が挙げられる。 ま
た、電荷発生層あるいは電荷輸送層には、酸化防止剤、
紫外線吸収剤、潤滑剤など種々の添加剤を含有させるこ
とができる。
The binder resin used to form the charge transport layer 14 includes acrylic resin, styrene resin, polyester, polycarbonate resin, polyarylate, polysulfone, polyphenylene oxide, epoxy resin, polyurethane resin, alkyd resin and A resin selected from saturated resins and the like is preferable. Particularly preferred resins include polymethylmethacrylate, polystyrene,
Examples thereof include a styrene-acrylonitrile copolymer, a polycarbonate resin or a diallyl phthalate resin. Further, the charge generation layer or the charge transport layer contains an antioxidant,
Various additives such as an ultraviolet absorber and a lubricant can be contained.

【0043】本発明の電子写真プロセスを用いた画像形
成装置の具体例を図4に示す。この装置は、電子写真感
光体2の周面上にローラー形状帯電用部材1、像露光手
段4、現像器5、転写帯電器6、クリーナー7、前露光
手段8が配置されている。画像形成の方法は、まず、電
子写真感光体2上に接触配置されている帯電用部材1に
電圧を印加し、感光体2表面を帯電し、像露光手段4に
よって原稿に対応した画像を感光体2に像露光し、静電
潜像を形成する。次に、現像器5中のトナーを感光体2
に付着させることにより感光体2上の静電潜像を現像
(可視像化)する。さらに感光体2上に形成されたトナ
ー像を給紙ローラーと給紙ガイドを通して供給された紙
などの転写材上に転写帯電器6によって転写し、クリー
ナー7によって、転写材に転写されずに感光体2上に残
った残トナーを回収する。前露光手段8によって感光体
2に光を当て除電を行う。一方、トナー像が形成された
転写材は搬送部によって定着器9に送られてトナー像が
定着される。
A specific example of an image forming apparatus using the electrophotographic process of the present invention is shown in FIG. In this apparatus, a roller-shaped charging member 1, an image exposure unit 4, a developing unit 5, a transfer charger 6, a cleaner 7, and a pre-exposure unit 8 are arranged on the peripheral surface of an electrophotographic photosensitive member 2. In the image forming method, first, a voltage is applied to the charging member 1 arranged in contact with the electrophotographic photosensitive member 2 to charge the surface of the photosensitive member 2 and an image corresponding to the original is exposed by the image exposing unit 4. The body 2 is imagewise exposed to form an electrostatic latent image. Next, the toner in the developing device 5 is removed from the photosensitive member 2.
The electrostatic latent image on the photoconductor 2 is developed (visualized) by being adhered to. Further, the toner image formed on the photoconductor 2 is transferred onto a transfer material such as paper supplied through a paper feed roller and a paper feed guide by a transfer charger 6, and the cleaner 7 does not transfer the toner image onto the transfer material. The residual toner remaining on the body 2 is collected. The pre-exposure unit 8 irradiates the photoconductor 2 with light to remove the charge. On the other hand, the transfer material on which the toner image has been formed is sent to the fixing device 9 by the conveying section and the toner image is fixed.

【0044】この画像形成装置において、像露光手段4
の光源はハロゲン光、蛍光灯、レーザー光などを用いる
ことができる。また必要に応じて他の補助プロセスを加
えてもよい。
In this image forming apparatus, the image exposure means 4
As the light source, a halogen light, a fluorescent lamp, a laser light or the like can be used. Also, other auxiliary processes may be added if necessary.

【0045】本発明の電子写真装置は、複写機だけでな
くレーザービームプリンター、CRTプリンター、電子
写真製版システムなど電子写真応用分野に広く適用する
ことができる。
The electrophotographic apparatus of the present invention can be widely applied to electrophotographic application fields such as a laser beam printer, a CRT printer, and an electrophotographic plate making system as well as a copying machine.

【0046】[0046]

【実施例】【Example】

〔実施例1〕電子写真感光体を以下のようにして作製し
た。
[Example 1] An electrophotographic photosensitive member was produced as follows.

【0047】φ80mm×360mmのアルミニウムシ
リンダーを支持体として、これにポリアミド樹脂(商品
名:アミランCM8000、東レ製)の5重量%メタノ
ール溶液を浸漬法で塗布し、0.5μm厚の下引層を設
けた。
A φ80 mm × 360 mm aluminum cylinder was used as a support, and a 5 wt% methanol solution of a polyamide resin (trade name: Amilan CM8000, manufactured by Toray) was applied to the support by a dipping method to form an undercoat layer having a thickness of 0.5 μm. Provided.

【0048】次に下記構造式(1)Next, the following structural formula (1)

【0049】[0049]

【化1】 のビスアゾ顔料を2.5部(重量部、以下同様)、下記
構造式
[Chemical 1] 2.5 parts of bisazo pigment (part by weight, the same applies hereinafter), the following structural formula

【0050】[0050]

【化2】 のブチラール樹脂(a)(商品名:BLS、積水化学
(株)製)1部及びシクロヘキサノン100部を1φガ
ラスビーズを用いたサンドミル装置で20時間分散し
た。この分散液にテトラヒドロフラン100部を加え
て、下引層上に塗布し、80℃、10分熱風乾燥して2
80mg/m2 の電荷発生層を形成した。
[Chemical 2] 1 part of butyral resin (a) (trade name: BLS, manufactured by Sekisui Chemical Co., Ltd.) and 100 parts of cyclohexanone were dispersed in a sand mill using 1φ glass beads for 20 hours. To this dispersion, 100 parts of tetrahydrofuran was added, coated on the undercoat layer, dried at 80 ° C. for 10 minutes with hot air, and dried.
A charge generation layer of 80 mg / m 2 was formed.

【0051】次いで下記構造式(2)Next, the following structural formula (2)

【0052】[0052]

【化3】 の化合物9部及びビスフェノールZ型ポリカーボネイト
(商品名:Z−200、三菱ガス化学(株)製)10部
をモノクロロベンゼン100部に溶解した。
[Chemical 3] 9 parts of the compound and 10 parts of bisphenol Z-type polycarbonate (trade name: Z-200, manufactured by Mitsubishi Gas Chemical Co., Inc.) were dissolved in 100 parts of monochlorobenzene.

【0053】この溶液を前記電荷発生層上に塗布し、1
00℃、1時間熱風乾燥して25μmの電荷輸送層を浸
漬塗布法で形成した。浸漬塗布法を採用したため、感光
層の上部と下部では膜厚差が1〜2μmあった。
This solution was applied onto the charge generation layer, and 1
It was dried with hot air at 00 ° C. for 1 hour to form a 25 μm charge transport layer by a dip coating method. Since the dip coating method was adopted, the film thickness difference between the upper part and the lower part of the photosensitive layer was 1 to 2 μm.

【0054】このように作製した感光体を次のように評
価した。
The photoconductor thus prepared was evaluated as follows.

【0055】ウレタンゴム100部に導電性カーボン4
部を溶融混練し、φ5mm長さ350mmのステンレス
芯を中心軸としてφ20mm×330mmになるように
ローラー形状帯電用部材を成型した。体積抵抗値は10
6 Ω・cmであった。
Conductive carbon 4 on 100 parts of urethane rubber
The parts were melted and kneaded, and a roller-shaped charging member was molded to have a diameter of φ20 mm × 330 mm with a stainless core having a diameter of φ5 mm and a length of 350 mm as the central axis. Volume resistance value is 10
It was 6 Ω · cm.

【0056】画像形成装置は基本形態として、キヤノン
製NP4835をベースとし像露光手段、現像器、給紙
系、転写帯電器、搬送系、及び前露光手段はそのまま使
用し、一次帯電手段として前述のローラー形状帯電用部
材、クリーナーはシリコンゴム製のブレードによるブレ
ードクリーニングのみでクリーニングを行う形式に改造
した。帯電ユニットに印加する電圧は直流−1400V
のみとし、交流電圧の重畳は行なわなかった。
The basic form of the image forming apparatus is based on Canon NP4835, and the image exposing means, developing device, paper feeding system, transfer charging device, conveying system, and pre-exposure means are used as they are, and the above-mentioned primary charging means is used. The roller-shaped charging member and cleaner were modified so that they could be cleaned only by blade cleaning with a silicon rubber blade. The voltage applied to the charging unit is DC-1400V
However, the AC voltage was not superimposed.

【0057】〔実施例2〕電荷発生材料として下記構造
Example 2 As the charge generating material, the following structural formula was used.

【0058】[0058]

【化4】 のI型TiOPc顔料を1.2部、ブチラール樹脂(商
品名:BX−1、積水化学(株)製)を1部、及びシク
ロヘキサノン100部を1Φガラスビーズを用いたサン
ドミル装置で4時間分散した。この分散液に酢酸エチル
100部を加えて下引層上に塗布し、95℃、10分熱
風乾燥して180mg/m2 の電荷発生層を形成した。
それ以外は実施例1と同様に行った。
[Chemical 4] 1.2 parts of I type TiOPc pigment, 1 part of butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.), and 100 parts of cyclohexanone were dispersed for 4 hours in a sand mill using 1Φ glass beads. . 100 parts of ethyl acetate was added to this dispersion and applied on the undercoat layer, and dried at 95 ° C. for 10 minutes with hot air to form a charge generation layer of 180 mg / m 2 .
Other than that was performed like Example 1.

【0059】〔実施例3〕電荷発生層中のバインダー樹
脂を下記構造式(b)
[Example 3] The binder resin in the charge generation layer was represented by the following structural formula (b).

【0060】[0060]

【化5】 に示すベンザール樹脂(商品名:B−80、コピア
(株)製)に代えた以外は実施例1と同様に行った。
[Chemical 5] The same procedure as in Example 1 was carried out except that the benzal resin (trade name: B-80, manufactured by Copia Co., Ltd.) shown in 1 was used.

【0061】〔実施例4〕実施例1で用いた電荷発生層
用塗料2部と実施例2で用いた電荷発生層用塗料
Example 4 2 parts of the charge generation layer coating used in Example 1 and the charge generation layer coating used in Example 2

【0062】1部を加えたものを280mg/m2 塗布
した以外は実施例1と同様に行った。 〔実施例5〕電荷発生材料として前記構造式(1)に示
す化合物を2.5部、またバインダーとして下記構造式
(c)
The same procedure as in Example 1 was carried out except that 1 part was added and 280 mg / m 2 was applied. Example 5 2.5 parts of the compound represented by the structural formula (1) as a charge generating material, and the following structural formula (c) as a binder:

【0063】[0063]

【化6】 の化合物を0.1部、及び前記構造式(a)に示す化合
物を0.9部とした以外は実施例1と同様に行った。
[Chemical 6] Example 1 was repeated except that 0.1 part of the compound of Example 1 and 0.9 part of the compound represented by the structural formula (a) were used.

【0064】〔比較例1〕電荷発生材料として前記構造
式(1)に示す化合物を1.8部、またバインダー樹脂
として前記構造式(c)に示す化合物を1部とした以外
は実施例1と同様に行った。
Comparative Example 1 Example 1 was repeated except that 1.8 parts of the compound represented by the structural formula (1) was used as the charge generating material and 1 part of the compound represented by the structural formula (c) was used as the binder resin. I went the same way.

【0065】〔比較例2〕比較例1におけるバインダー
樹脂を下記構造式(d)
Comparative Example 2 The binder resin in Comparative Example 1 was prepared by using the following structural formula (d).

【0066】[0066]

【化7】 の化合物に代えた以外は比較例1と同様に行った。[Chemical 7] The same procedure as in Comparative Example 1 was repeated except that the compound of Example 1 was used instead.

【0067】〔比較例3〕比較例1における構造式
(1)に示す化合物の使用量を1.2部に変えた以外は
比較例1と同様に行った。
Comparative Example 3 Comparative Example 1 was repeated except that the amount of the compound represented by the structural formula (1) in Comparative Example 1 was changed to 1.2 parts.

【0068】以上の実施例1〜5及び比較例1〜3につ
いて、初期においては奥側(中心より135mm)と手
前側(中心より135mm)での表面電位測定(Vd/
Vl)を行ない、またセクション画像を複写して評価を
行なった、また、これらの感光体に画像出し耐久を行な
い、周方向に約2μmの膜厚ムラができた時点で周方向
での表面電位ムラによる評価、及びセクション画像の複
写による評価を行なった。
In the above Examples 1 to 5 and Comparative Examples 1 to 3, in the initial stage, the surface potential (Vd / Vd /) was measured on the back side (135 mm from the center) and the front side (135 mm from the center).
Vl) was performed, and section images were copied and evaluated. Further, when image development and durability were performed on these photoconductors, surface potential in the circumferential direction at the time when film thickness unevenness of about 2 μm was produced in the circumferential direction. The evaluation by unevenness and the evaluation by copying the section image were performed.

【0069】また、量子効率の測定は、川口電気(株)
製ペーパーアナライザーを改造して行なった。この結果
を、両対数グラフの横軸に電界強度E(V/cm)、縦
軸に量子効率をとってプロットする。電界強度が式
(3)を満足する範囲ではこれらのプロットがほぼ直線
上に乗り、この直線の傾きによりnの値が得られる。
Quantum efficiency was measured by Kawaguchi Electric Co., Ltd.
This was done by modifying a paper analyzer made by Japan. The results are plotted by plotting the electric field strength E (V / cm) on the horizontal axis of the log-log graph and the quantum efficiency on the vertical axis. In the range where the electric field strength satisfies the expression (3), these plots lie on a substantially straight line, and the value of n is obtained from the slope of this straight line.

【0070】 [0070]

【0071】[0071]

【発明の効果】以上、説明したように、本発明によれ
ば、直流電圧のみを印加し、接触帯電させる電子写真装
置においても、感光層の膜厚ムラ(奥/手前及び周方
向)が存在しても表面電位的にもムラがなく良好な画像
が得られる。
As described above, according to the present invention, even in an electrophotographic apparatus in which only a DC voltage is applied and contact charging is performed, there is unevenness in the film thickness of the photosensitive layer (back / front and circumferential direction). Even if the surface potential is uneven, a good image can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に適用される感光体の構成を示す部分縦
断面図。
FIG. 1 is a partial vertical cross-sectional view showing the configuration of a photoconductor applied to the present invention.

【図2】本発明に適用される他の感光体の構成を示す部
分縦断面図。
FIG. 2 is a partial vertical cross-sectional view showing the configuration of another photoconductor applied to the present invention.

【図3】本発明に適用されるさらに他の感光体の構成を
示す部分縦断面図。
FIG. 3 is a partial vertical cross-sectional view showing the configuration of still another photosensitive member applied to the present invention.

【図4】本発明のプロセスにもとづく電子写真装置の要
部を示す縦断面図。
FIG. 4 is a vertical cross-sectional view showing a main part of an electrophotographic apparatus based on the process of the present invention.

【図5】一般的な帯電部材及び感光体を示す部分縦断面
図。
FIG. 5 is a partial vertical cross-sectional view showing a general charging member and a photoconductor.

【符号の説明】[Explanation of symbols]

1 帯電用部材 2 感光体 3 外部電源装置 4 露光光 5 現像器 6 転写用帯電部材 7 クリーナー 8 前露光手段 9 定着器 10 導電性支持体 11 感光層 13 電荷発生層 14 電荷輸送層 1 Charging Member 2 Photosensitive Member 3 External Power Supply Device 4 Exposure Light 5 Developing Device 6 Transfer Charging Member 7 Cleaner 8 Pre-Exposure Means 9 Fixing Device 10 Conductive Support 11 Photosensitive Layer 13 Charge Generation Layer 14 Charge Transport Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 晃 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Yoshida 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電子写真感光体と該感光体に接触配置さ
れた帯電用部材とを有し、該感光体に該帯電用部材から
直流電圧のみを印加することにより帯電される電子写真
装置に用いる電子写真感光体において、該感光体の電子
写真的量子効率Φと電界強度Eとの関係が下記式(1) Φ=Φ0n (1) (但し、Φ0 は定数)で表わしたときのnの値が式
(2) 0.45≦n≦4.0 (2) を満足することを特徴とする電子写真感光体。
1. An electrophotographic apparatus having an electrophotographic photosensitive member and a charging member disposed in contact with the photosensitive member, and being charged by applying only a DC voltage from the charging member to the photosensitive member. an electrophotographic photosensitive member used, the relationship between the electrophotographic quantum efficiency [Phi and the electric field strength E of the photoreceptor satisfies the following formula (1) Φ = Φ 0 E n (1) ( where, [Phi 0 is a constant) was expressed in In this case, the value of n satisfies the formula (2) 0.45 ≦ n ≦ 4.0 (2).
【請求項2】 前記電界強度Eが下記式(3) 1.5×105 ≦E≦8.0×105 (V/cm) (3) を満足する請求項1記載の電子写真感光体。2. The electrophotographic photosensitive member according to claim 1, wherein the electric field strength E satisfies the following formula (3): 1.5 × 10 5 ≦ E ≦ 8.0 × 10 5 (V / cm) (3). . 【請求項3】 電子写真感光体と該感光体に接触配置さ
れた帯電用部材とを有し、該感光体に該帯電用部材から
直流電圧のみを印加することにより帯電される電子写真
装置において、該感光体の電子写真的量子効率Φと電界
強度Eとの関係が下記式(1) Φ=Φ0n (1) (但し、Φ0 は定数)で表わしたときのnの値が式
(2) 0.45≦n≦4.0 (2) を満足することを特徴とする電子写真装置。
3. An electrophotographic apparatus comprising an electrophotographic photosensitive member and a charging member disposed in contact with the photosensitive member, and charged by applying only a DC voltage from the charging member to the photosensitive member. , the relationship is represented by the following formula with an electrophotographic quantum efficiency [Phi and the electric field strength E of the photoconductor (1) Φ = Φ 0 E n (1) ( where, [Phi 0 is a constant) the value of n when expressed in An electrophotographic apparatus satisfying the formula (2) 0.45 ≦ n ≦ 4.0 (2).
【請求項4】 前記電界強度Eが下記式(3) 1.5×105 ≦E≦8.0×105 (V/cm) (3) を満足する請求項3記載の電子写真装置。4. The electrophotographic apparatus according to claim 3, wherein the electric field strength E satisfies the following formula (3): 1.5 × 10 5 ≦ E ≦ 8.0 × 10 5 (V / cm) (3).
JP6328394A 1994-03-31 1994-03-31 Electrophotographic photoreceptor and electrophotographic device Pending JPH07271059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6328394A JPH07271059A (en) 1994-03-31 1994-03-31 Electrophotographic photoreceptor and electrophotographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6328394A JPH07271059A (en) 1994-03-31 1994-03-31 Electrophotographic photoreceptor and electrophotographic device

Publications (1)

Publication Number Publication Date
JPH07271059A true JPH07271059A (en) 1995-10-20

Family

ID=13224850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6328394A Pending JPH07271059A (en) 1994-03-31 1994-03-31 Electrophotographic photoreceptor and electrophotographic device

Country Status (1)

Country Link
JP (1) JPH07271059A (en)

Similar Documents

Publication Publication Date Title
JP2584873B2 (en) Electrophotographic equipment
JPH0664393B2 (en) Charging member, contact charging device having the same, contact charging method using the same, and electrophotographic device having the same
JPH0830915B2 (en) Charging member, charging device using the same, and electrophotographic apparatus
JP2005017580A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
US6324365B1 (en) Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same
JP3444995B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP2002082464A (en) Image forming device, method for forming image, and process cartridge
JPH09319107A (en) Electrophotographic photoreceptor and electrophotographic device
JPH08254930A (en) Image forming device
JPH07271059A (en) Electrophotographic photoreceptor and electrophotographic device
JP3227230B2 (en) Electrophotographic equipment
JP3682848B2 (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP3302106B2 (en) Electrophotographic process and electrophotographic photoreceptor used therefor
JP3367318B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3584147B2 (en) Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus
JP3432093B2 (en) Image forming device
JPH06348112A (en) Electrophotographic process
JPH0744075A (en) Image forming device
JPH06230590A (en) Electrophotographic sensitive body and electro-photographic device with the same
JP2705278B2 (en) Electrophotographic photoreceptor
JPH0869120A (en) Electrophotographic device and process cartridge
US6434351B2 (en) Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same
JP2004102156A (en) Electrophotographic photoreceptor, and electrophotographic device, and process cartridge using same
JP2660158B2 (en) Contact charging device, contact charging method, and electrophotographic device
JP2765663B2 (en) Charging member