JPH07270534A - Method for probing stratum of seabed - Google Patents

Method for probing stratum of seabed

Info

Publication number
JPH07270534A
JPH07270534A JP6081027A JP8102794A JPH07270534A JP H07270534 A JPH07270534 A JP H07270534A JP 6081027 A JP6081027 A JP 6081027A JP 8102794 A JP8102794 A JP 8102794A JP H07270534 A JPH07270534 A JP H07270534A
Authority
JP
Japan
Prior art keywords
sound source
seabed
stratum
channel receiver
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6081027A
Other languages
Japanese (ja)
Inventor
Bunji Shigematsu
文治 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP6081027A priority Critical patent/JPH07270534A/en
Publication of JPH07270534A publication Critical patent/JPH07270534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a method capable of precisely observing the state of a stratum of the seabed. CONSTITUTION:In a method for probing the stratum of seabed by a multichannel reflection method where ultrasonic waves 6 emitted from the same sound source 3 are received by a multichannel receiver 8, positions of the sound source 3 and the multichannel receiver 8 are computed by receiving GPS position signals from artificial satellites 9a to 9d. The sound source 3 and the multichannel receiver 8 are movable. Reflection waves 7 reflected from the same point and along different routes are taken out and the stratum is discriminated by superposing them on one another, while noise is thereby removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は海底地層探査方法、とく
にマルチチャンネル反射法による海底地層探査方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for exploring a seabed, and more particularly to a method for exploring a seabed by the multi-channel reflection method.

【0002】[0002]

【従来の技術】図4は従来のマルチチャンネル反射法に
よる海底地層探査における問題点である多重反射の説明
図であって、1は観測船、2は海面、3は上記観測船1
によって曳航される超音波発信器等の音源、4,5は夫
々海底の地層、6は音源3からの超音波、7は反射波、
8は同じく上記観測船1によって曳航され、上記反射波
7を受信する多数の受信素子が一定の間隔で配列されて
成るマルチチャンネル受信器を示す。
2. Description of the Related Art FIG. 4 is an explanatory view of multiple reflection, which is a problem in the exploration of the seabed by the conventional multi-channel reflection method. 1 is an observation ship, 2 is the sea surface, 3 is the observation ship 1
Sound sources such as ultrasonic transmitters towed by, 4 and 5 are seafloor strata, 6 are ultrasonic waves from the sound source 3, 7 are reflected waves,
Reference numeral 8 denotes a multi-channel receiver which is also towed by the observation ship 1 and in which a large number of receiving elements for receiving the reflected waves 7 are arranged at regular intervals.

【0003】このような海底地層探査方法においては、
音源3とマルチチャンネル受信器8の時々刻々の正確な
位置情報が必要であり、従来は、電波測距儀等を使用し
観測船1の位置を測定していた。
In such a seabed geological survey method,
Accurate position information of the sound source 3 and the multi-channel receiver 8 is required every moment, and conventionally, the position of the observation ship 1 was measured using a radio rangefinder or the like.

【0004】[0004]

【発明が解決しようとする課題】然しながら、従来の海
底地層探査方法においては観測船1のだいたいの位置を
出すのにとどまっており、音源3とマルチチャンネル受
信器8の時々刻々の位置の正確な情報(X,Y,Z)を
求めることは極めて困難で正確な地層状態の把握ができ
なかった。
However, according to the conventional method for exploring the seabed, the position of the observation ship 1 is almost set, and the accurate positions of the sound source 3 and the multi-channel receiver 8 are accurately calculated. It was extremely difficult to obtain information (X, Y, Z), and it was not possible to accurately grasp the stratum condition.

【0005】また、従来の方法では音源3から発射され
る超音波6は図5に示すようにある指向角を持ってい
る。超音波の周波数を高くすれば上記指向角がシャープ
となり分解能が向上し好ましいが、探査できる海底は浅
いものに限られ、また、周波数を低くすれば探査できる
海底を深くすることができる反面、指向角が広くなり、
分解能が粗くなるという欠点がある。
In the conventional method, the ultrasonic wave 6 emitted from the sound source 3 has a certain directivity angle as shown in FIG. If the frequency of ultrasonic waves is increased, the above-mentioned directivity angle becomes sharper and the resolution is improved, which is preferable, but the seabed that can be probed is limited to shallow ones. The corners get wider,
There is a drawback that the resolution becomes coarse.

【0006】更に、上記従来の方法では、図4に示すよ
うに反射波7の多重反射等による雑音が含まれているた
めその除去が必要となるが、この除去は極めて困難であ
った。
Further, in the above-mentioned conventional method, since noise due to multiple reflection of the reflected wave 7 is included as shown in FIG. 4, it is necessary to remove it, but this removal is extremely difficult.

【0007】本発明は上記の欠点を除くようにしたもの
である。
The present invention eliminates the above-mentioned drawbacks.

【0008】[0008]

【課題を解決するための手段】本発明の海底地層探査方
法は、曳航される音源及びマルチチャンネル受信器の座
標位置を人工衛星からのGPS位置信号によって演算す
る工程と、上記音源から海底に向かって超音波を発信
し、上記マルチチャンネル受信器によって受信する工程
とより成ることを特徴とする。
A method of exploring a seabed according to the present invention comprises a step of calculating coordinate positions of a towed sound source and a multi-channel receiver by a GPS position signal from an artificial satellite, and from the sound source to the seabed. And transmitting the ultrasonic wave and receiving the ultrasonic wave by the multi-channel receiver.

【0009】本発明の海底地層探査方法では、上記マル
チチャンネル受信器が受信したデータ及びそのときの上
記音源とマルチチャンネル受信器との座標位置を記憶す
る工程と、上記音源と上記マルチチャンネル受信器を移
動したとき同一点から反射される異なる経路の上記デー
タを重合せしめる工程とを更に有せしめることができ
る。
In the method of exploring the seabed according to the present invention, the step of storing the data received by the multi-channel receiver and the coordinate positions of the sound source and the multi-channel receiver at that time, the sound source and the multi-channel receiver. The step of superimposing the above-mentioned data of different paths reflected from the same point when the object is moved can be further included.

【0010】[0010]

【実施例】以下図面によって本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明の第1の実施例においては図1に示
すように、4個の人工衛星(GPS)9a〜9dからの
GPS位置信号と、このGPS位置信号を補正するGP
S補正信号を発信するため陸上に設けた固定局10及び
音源3とマルチチャンネル受信器8の上部に共通に設け
たGPS移動局11とを用い、上記GPS移動局11に
よって上記4個の人工衛星9a〜9dからのGPS位置
信号及び固定局10からのGPS補正信号を受信せし
め、音源3とマルチチャンネル受信器8の座標位置を夫
々演算せしめる。
In the first embodiment of the present invention, as shown in FIG. 1, GPS position signals from four artificial satellites (GPS) 9a to 9d and GP for correcting the GPS position signals are used.
A fixed station 10 and a sound source 3 provided on land for transmitting an S correction signal and a GPS mobile station 11 commonly provided above the multi-channel receiver 8 are used. The GPS position signals from 9a to 9d and the GPS correction signal from the fixed station 10 are received, and the coordinate positions of the sound source 3 and the multi-channel receiver 8 are calculated respectively.

【0012】なお、マルチチャンネル受信器8のGPS
移動局11より遠い部分の位置は、観測船1が基本的に
真っ直ぐ進むため航跡や方位、各センサーの位置により
演算できるが、もっと精度を向上させる場合には方位計
や傾斜計を用いる。
The GPS of the multi-channel receiver 8
The position of the part farther from the mobile station 11 can be calculated by the track and direction and the position of each sensor because the observation ship 1 basically moves straight, but in order to improve the accuracy, an azimuth meter and an inclinometer are used.

【0013】本発明の上記第1の実施例によれば、人工
衛星からのGPS位置信号と固定局からのGPS補正信
号を用いて音源3及びマルチチャンネル受信器8の座標
位置を知るようにしたので、従来方法に比べその位置精
度を大幅に改善することが可能となる。
According to the first embodiment of the present invention, the coordinate positions of the sound source 3 and the multi-channel receiver 8 are known by using the GPS position signal from the artificial satellite and the GPS correction signal from the fixed station. Therefore, it is possible to significantly improve the positional accuracy as compared with the conventional method.

【0014】なお、固定局10からのGPS補正信号
は、人工衛星の軌道誤差や電離層による誤差等を補正す
るために必要なものである。
The GPS correction signal from the fixed station 10 is necessary to correct the orbit error of the artificial satellite and the error due to the ionosphere.

【0015】本発明の第2の実施例においては上記マル
チチャンネル受信器8を構成する各受信器が受信した反
射波を記憶し、共通反射点からの反射波を重合できるよ
うにする。
In the second embodiment of the present invention, the reflected waves received by the respective receivers constituting the multi-channel receiver 8 are stored so that the reflected waves from the common reflection point can be superposed.

【0016】図2はこの重合結果を示し、第1の経路で
反射した反射波7をトレース1,第2の経路のそれをト
レース2とする。各トレース1,2に含まれる雑音はそ
の周波数と振幅が常に変動していることから図2のa,
bに示されるようになり、一方地層4の共通反射点から
の反射はA,Bと略同一周波数及び振幅となる。従っ
て、その重合結果は図2のトレース重合で示すようにな
り、雑音が除去または低減され、代わりに求めたい反射
波A,Bが重合され強調された形となる。
FIG. 2 shows the result of this superposition, and the reflected wave 7 reflected on the first path is designated as trace 1 and that on the second path is designated as trace 2. Since the noise contained in each trace 1 and 2 has its frequency and amplitude constantly changing,
As shown in b, the reflection from the common reflection point of the stratum 4 has substantially the same frequency and amplitude as A and B. Therefore, the result of the superposition becomes as shown by the trace superposition in FIG. 2, and the noise is removed or reduced, and instead the reflected waves A and B to be obtained are superposed and emphasized.

【0017】従来は、各超音波の発射位置を正確に測定
できなかったが、GPSを利用することにより正確に音
源3及びマルチチャンネル受信器8の位置(X,Y,
Z)が測定できるため上記のような重合処理が可能とな
る。
Conventionally, it was not possible to accurately measure the emission position of each ultrasonic wave, but by using GPS, the positions (X, Y,
Since Z) can be measured, the above-mentioned polymerization treatment becomes possible.

【0018】本発明の第3の実施例においては以下のよ
うにして反射波7から地層を正確に求める。
In the third embodiment of the present invention, the formation is accurately obtained from the reflected wave 7 as follows.

【0019】図3は、観測船1が移動して音源3がA点
からB点に移動する間に共通反射点Pから反射される反
射波の説明図であって、図3から明らかなように音源3
から発信され、マルチチャンネル受信器8で受信される
迄の距離の1/2の部分に共通反射点Pが存在し、この
関係は観測船1が移動してもその指向角の範囲内では変
らない。即ち、音源3が第1の位置では共通反射点Pか
らの反射波を第1の受信素子が受信し、次いで音源3を
受信素子相互間の距離に相当するだけ移動せしめた場合
には、マルチチャンネル受信器8も同じく移動されるた
め入射角に等しい反射角で反射された反射波は受信素子
の第3の受信素子で受信されるようになる。
FIG. 3 is an explanatory view of a reflected wave reflected from the common reflection point P while the sound source 3 moves from the point A to the point B as the observation ship 1 moves, and as apparent from FIG. Sound source 3
There is a common reflection point P at a half of the distance from when the observation ship 1 is moved to when it is received by the multi-channel receiver 8. This relationship does not change within the range of its directional angle. Absent. That is, when the sound source 3 receives the reflected wave from the common reflection point P at the first position by the first receiving element and then moves the sound source 3 by a distance corresponding to the distance between the receiving elements, Since the channel receiver 8 is also moved, the reflected wave reflected at the reflection angle equal to the incident angle is received by the third reception element of the reception elements.

【0020】従って、第1、第3、第5・・・の受信素
子によって受信した反射波は何れも共通反射点Pの情報
を示すことになり、これらを重合することによって上記
共通反射点の地層を正確に求めることができる。
Therefore, the reflected waves received by the first, third, fifth, ... Receiving elements all indicate the information of the common reflection point P, and by superposing these, the common reflection point P The stratum can be accurately determined.

【0021】従って本発明の第3の実施例においては、
音源3とマルチチャンネル受信器8の座標位置を上述し
たように上記GPS位置信号により管理しながら、各発
信及び受信データを記憶し、上記P点位置に関連する各
データを重合せしめる。
Therefore, in the third embodiment of the present invention,
While managing the coordinate positions of the sound source 3 and the multi-channel receiver 8 by the GPS position signals as described above, each transmission and reception data is stored and each data related to the P point position is superposed.

【0022】なお、原理を簡単にするため海底面での反
射のみで説明しているが、実際には地中の測定も行なう
ことができる。
In order to simplify the principle, only the reflection on the sea bottom has been described, but in reality underground measurements can also be performed.

【0023】上記のように本発明のこの第3の実施例に
よれば、海底地層の全方向のデータを取得することがで
き鮮明に地層が判別できることになる。
As described above, according to the third embodiment of the present invention, the data of all directions of the seabed stratum can be acquired, and the stratum can be clearly discriminated.

【0024】なお、上記重合は本発明の第1の実施例に
よる方法によって音源3及びマルチチャンネル受信器8
の座標位置を極めて精度良く管理できるようになったた
め実現できたものである。
The above-mentioned stacking is performed by the method according to the first embodiment of the present invention, the sound source 3 and the multi-channel receiver 8
This was realized because the coordinate position of was able to be managed very accurately.

【0025】[0025]

【発明の効果】上記のように本発明の海底地層探査方法
によれば、深度の大小にかかわらず海底の地層状態を極
めて精度良く観測できるようになる大きな利益がある。
As described above, according to the method for exploring the seabed according to the present invention, there is a great advantage that the state of the seabed layer can be observed extremely accurately regardless of the depth.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の海底地層探査方法の第1の実施例説明
図である。
FIG. 1 is an explanatory diagram of a first embodiment of a method for exploring a seabed stratum of the present invention.

【図2】本発明の海底地層探査方法の第2の実施例の反
射波の説明図である。
FIG. 2 is an explanatory diagram of reflected waves of a second embodiment of the method for exploring a seabed stratum of the present invention.

【図3】本発明の海底地層探査方法の第3の実施例説明
図である。
FIG. 3 is an explanatory view of a third embodiment of the seabed geological survey method of the present invention.

【図4】従来の海底地層探査方法の問題点である多重反
射の説明図である。
FIG. 4 is an explanatory diagram of multiple reflection, which is a problem of the conventional seabed geological exploration method.

【図5】従来の海底地層探査方法の説明図である。FIG. 5 is an explanatory diagram of a conventional seabed geological exploration method.

【符号の説明】[Explanation of symbols]

1 観測船 2 海面 3 音源 4 地層 5 地層 6 超音波 7 反射波 8 マルチチャンネル受信器 9a 人工衛星 9b 人工衛星 9c 人工衛星 9d 人工衛星 10 固定局 11 GPS移動局 1 Observation ship 2 Sea surface 3 Sound source 4 Stratum 5 Stratum 6 Ultrasonic wave 7 Reflected wave 8 Multichannel receiver 9a Artificial satellite 9b Artificial satellite 9c Artificial satellite 9d Artificial satellite 10 Fixed station 11 GPS mobile station

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 曳航される音源及びマルチチャンネル受
信器の座標位置を人工衛星からのGPS位置信号によっ
て演算する工程と、 上記音源から海底に向かって超音波を発信し、上記マル
チチャンネル受信器によって受信する工程とより成るこ
とを特徴とする海底地層探査方法。
1. A step of calculating coordinate positions of a towed sound source and a multi-channel receiver by a GPS position signal from an artificial satellite, and an ultrasonic wave is emitted from the sound source toward the seabed, and the multi-channel receiver A method for exploring a seabed, comprising the step of receiving.
【請求項2】 上記マルチチャンネル受信器が受信した
データ及びそのときの上記音源とマルチチャンネル受信
器との座標位置を記憶する工程と、 上記音源と上記マルチチャンネル受信器を移動したとき
同一点から反射される異なる経路の上記データを重合せ
しめる工程とを更に有する請求項1記載の海底地層探査
方法。
2. A step of storing data received by the multi-channel receiver and coordinate positions of the sound source and the multi-channel receiver at that time, and from the same point when the sound source and the multi-channel receiver are moved. The method for exploring a seabed according to claim 1, further comprising the step of superimposing the data of different reflected paths.
JP6081027A 1994-03-29 1994-03-29 Method for probing stratum of seabed Pending JPH07270534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081027A JPH07270534A (en) 1994-03-29 1994-03-29 Method for probing stratum of seabed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081027A JPH07270534A (en) 1994-03-29 1994-03-29 Method for probing stratum of seabed

Publications (1)

Publication Number Publication Date
JPH07270534A true JPH07270534A (en) 1995-10-20

Family

ID=13734998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081027A Pending JPH07270534A (en) 1994-03-29 1994-03-29 Method for probing stratum of seabed

Country Status (1)

Country Link
JP (1) JPH07270534A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070988A (en) * 2005-09-09 2007-03-22 Tomac:Kk Pump-dredging method
JP2010539357A (en) * 2007-09-13 2010-12-16 ドレッジング・インターナショナル・ナムローゼ・フエンノートシャップ System and method for optimizing straw
JP2018189372A (en) * 2017-04-28 2018-11-29 総合地質調査株式会社 High resolution three-dimensional sound wave exploration device
KR102565188B1 (en) * 2023-02-08 2023-08-09 한국지질자원연구원 Method for determinating real time location of receivers for offshore seismic survey

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070988A (en) * 2005-09-09 2007-03-22 Tomac:Kk Pump-dredging method
JP2010539357A (en) * 2007-09-13 2010-12-16 ドレッジング・インターナショナル・ナムローゼ・フエンノートシャップ System and method for optimizing straw
KR101538981B1 (en) * 2007-09-13 2015-07-23 드레징 인터내셔널 엔. 브이. A system and method for optimizing dredging
JP2018189372A (en) * 2017-04-28 2018-11-29 総合地質調査株式会社 High resolution three-dimensional sound wave exploration device
KR102565188B1 (en) * 2023-02-08 2023-08-09 한국지질자원연구원 Method for determinating real time location of receivers for offshore seismic survey

Similar Documents

Publication Publication Date Title
US4912682A (en) Point location determination at or close to the surface
US6492945B2 (en) Instantaneous radiopositioning using signals of opportunity
US7512036B2 (en) Underwater acoustic positioning system and method
US4992990A (en) Method for determining the position of seismic streamers in a reflection seismic measuring system
US4870626A (en) Method for determining the position of a marine seismic receiver cable
US20160124081A1 (en) Metrology method and device for calibrating the geometry of a network of underwater acoustic beacons
US20100061187A1 (en) Positioning system
GB2493113A (en) Marine seismic streamers which are longer than required to meet a geophysical requirement
RU2483326C2 (en) Hydroacoustic synchronous range-finding navigation system for positioning underwater objects in navigation field of randomly arranged hydroacoustic transponder beacons
AU2005268886B2 (en) Method for an antenna angular calibration by relative distance measuring
US11199624B2 (en) Bathymetric system and bathymetry method corrected for altitude errors
USH1618H (en) Coherent arrays of drifting sonobuoys
US4905210A (en) Liquid impoundment survey vehicle incorporating positioning finding and tracking system
JPH07270534A (en) Method for probing stratum of seabed
US6317079B1 (en) System for ascertaining height as related to an established reference
RU2431156C1 (en) Method of positioning by hydroacoustic navigation system
US7450061B2 (en) Relative position measurement system using satellite
US8462582B2 (en) Method for assistance in the localization of towed streamers comprising a step for defining and a step for generating distinct acoustic cycles
JP2002257921A (en) Transponder calibration method
Schreiber et al. Efficient hydrographic surveying of EEZ with new multibeam echosounder technology for shallow and deep water
JPH0694456A (en) Sounding system by gps kinematic positioning method
US4492963A (en) Method and apparatus for determining lane count error in a radio navigational system
das Neves Viegas et al. Precise positioning by phase processing of sound waves
Doutt et al. Determination of Distance Between a Moving Ship and Drifting Buoys to Centimeter-Level Accuracy at Sea Using L1 Phase GPS Receivers and Differential Moving-Base Kinematic Processing
JPH0381682A (en) Mobile underwater target tracking device