JPH07270379A - Determination of chloride ion - Google Patents

Determination of chloride ion

Info

Publication number
JPH07270379A
JPH07270379A JP6062611A JP6261194A JPH07270379A JP H07270379 A JPH07270379 A JP H07270379A JP 6062611 A JP6062611 A JP 6062611A JP 6261194 A JP6261194 A JP 6261194A JP H07270379 A JPH07270379 A JP H07270379A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
membrane
chloride ion
monoamine oxidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6062611A
Other languages
Japanese (ja)
Inventor
Fumio Ukaji
文緒 宇梶
Masato Okada
昌人 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP6062611A priority Critical patent/JPH07270379A/en
Publication of JPH07270379A publication Critical patent/JPH07270379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To determine the amt. of a chloride ion by reacting a specimen containing a chloride ion with a monoamine oxidase-immobilized enzyme membrane in the presence of an amine compd. and measuring the output of an enzyme electrode generated corresponding to the reduction amt. of a reactant and the increase amt. of a reaction product. CONSTITUTION:Monoamine oxidase has a property obstructed in activity in dependence on the concn. of a chloride ion and catalyzes the production reaction of aldehyde, ammonia and hydrogen peroxide due to oxidative deamination using an amine compd. as a substrate. As a specimen, for example, blood, serum or plasma containing a chloride ion can be used. For example, an oxygen electrode is combined with an immobilized enzyme membrane prepared by immobilizing monoamine oxidase originating from Aspergillus niger on a acetylcellulose membrane to constitute an enzyme electrode. The specimen is brought into contact with the enzyme membrane in the presence of benzylamine and the output of the enzyme electrode generated to the reduction of enzyme or the increase of hydrogen peroxide accompanying the oxidation reaction of benzylamine to determine the concn. of the chloride ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は塩素イオンを定量する新
規な方法に関するものであり、例えば、体液中の塩素イ
オンの定量といった臨床検査などの医療の分野で広く利
用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for quantifying chloride ion, which can be widely used in the medical field such as clinical examination for quantifying chloride ion in body fluid.

【0002】[0002]

【従来の技術】体液中の塩素イオンは、水の平衡、酸塩
基平衡、そして、浸透圧の調整などに関与する重要なイ
オンである。従来、体液中の塩素イオンの測定は、比色
法、電量滴定法、イオン選択電極法などにより行われて
きた。
Background Art Chloride ions in body fluids are important ions involved in water equilibrium, acid-base equilibrium, and adjustment of osmotic pressure. Conventionally, the measurement of chlorine ions in body fluids has been performed by a colorimetric method, a coulometric titration method, an ion selective electrode method, or the like.

【0003】比色法は、塩素イオンとチオシアン第二水
銀を反応させ、遊離したチオシアンイオンを第二鉄イオ
ンで発色させて比色定量するものであるが、試薬中に毒
性の強い水銀やシアンが含有されているという欠点があ
った。
The colorimetric method is a method in which chlorine ions are reacted with mercuric thiocyanate and the liberated thiocyanate is colored with ferric ion for colorimetric quantification. However, there is a drawback in that

【0004】電量滴定法は、電解液中で銀電極に一定の
電流を流し、遊離した銀イオンと塩素イオンを反応させ
塩化銀として沈殿させ、すべての塩素イオンが消費され
ると銀イオンが急速に増加し、この瞬間を指示電極でと
らえて終点とし、これに要した時間から塩素イオンを定
量するものであるが、試料の分析処理効率が悪いなどの
欠点があった。
In the coulometric titration method, a constant electric current is applied to a silver electrode in an electrolytic solution to cause the liberated silver ions and chlorine ions to react with each other to precipitate as silver chloride. When all the chlorine ions are consumed, the silver ions are rapidly added. The chlorine ion is quantified from the time required for this to be taken as the end point by catching this moment with the indicator electrode, but there are drawbacks such as poor analytical processing efficiency of the sample.

【0005】イオン選択電極法は、イオン選択電極を利
用して塩素イオンを定量するものであるが、塩素イオン
だけでなく、他のハロゲンイオンにも応答してしまうと
いうイオン特異性の問題がある。
The ion-selective electrode method uses an ion-selective electrode to quantify chlorine ions, but has a problem of ion specificity that it responds not only to chlorine ions but also to other halogen ions. .

【0006】最近、アミラーゼを利用した酵素法による
塩素イオンの定量法が報告された[クリニカルケミスト
リー(Clin. Chem.)、34巻、552頁、1988年]。この方
法は、試薬中に有害物質を含有しておらず、イオン選択
電極法で問題となったイオン特異性もよく、生化学自動
分析装置を用いれば、試料の分析処理効率も高いという
利点を有している。しかし、測定範囲が狭い上に試薬の
安定性が悪く、比色による測定法であるため、血清中の
ビリルビン系色素などや乳濁血清などの白濁の影響も大
きいという欠点を有していた。また、酵素が一般の化学
試薬に比べて高価であるにもかかわらず繰り返し使用が
不可能であるという欠点も有していた。
Recently, a method for quantifying chloride ion by an enzymatic method using amylase has been reported [Clinical Chemistry, 34, 552, 1988]. This method does not contain harmful substances in the reagent, has good ion specificity that has been a problem in the ion selective electrode method, and has the advantage of high sample analysis efficiency if an automatic biochemical analyzer is used. Have However, since the measurement range is narrow, the stability of the reagent is poor, and the method is a colorimetric measurement method, it has a drawback that the influence of white turbidity such as bilirubin dye in serum and emulsion serum is large. In addition, the enzyme has a drawback that it cannot be used repeatedly even though it is more expensive than general chemical reagents.

【0007】[0007]

【発明が解決しようとする課題】イオン選択電極法にお
いて問題となった他のハロゲンイオンによる妨害を受け
にくく、かつ血清を測定する場合等には、被検体中に含
まれるビリルビン系色素などや白濁の影響も受けず、酵
素の繰り返し使用が可能で、簡便な操作で正確に塩素イ
オンを定量できる方法が望まれていた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention It is difficult to be interfered by other halogen ions which have been a problem in the ion-selective electrode method, and when measuring serum, bilirubin-based dye or the like contained in a subject or cloudiness. There has been a demand for a method that can repeatedly use an enzyme without being affected by the above and can accurately quantify chloride ion by a simple operation.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意研究した結果、モノアミン酸化酵素が
塩素イオン濃度に依存して阻害を受けるという事実を発
見し、さらに、固定化モノアミン酸化酵素膜を電極に装
着した酵素電極を用いてモノアミン酸化酵素活性を測定
することで、精度よく、簡便に塩素イオンが定量でき、
酵素の繰り返し使用も可能になることを確認し、本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that monoamine oxidase is inhibited depending on the chloride ion concentration, and further immobilization. By measuring the monoamine oxidase activity using an enzyme electrode with a monoamine oxidase membrane attached to the electrode, chlorine ion can be quantified accurately and easily,
It was confirmed that the enzyme can be used repeatedly, and the present invention has been completed.

【0009】即ち、本発明は、モノアミン酸化酵素を膜
状高分子化合物に固定化した固定化酵素膜と電極を組み
合わせてなる酵素電極を用い、当該酵素電極の固定化酵
素膜に塩素イオンを含有する被検体をアミン化合物の存
在下に接触させ、モノアミン酸化酵素によるアミン化合
物の酸化反応に伴う反応物の減少量または反応生成物の
増加量に対応して生ずる酵素電極の出力を測定すること
により塩素イオン量を決定することを特徴とする塩素イ
オンの定量方法である。
That is, according to the present invention, an enzyme electrode comprising a combination of an immobilized enzyme membrane having a monoamine oxidase immobilized on a membrane polymer compound and an electrode is used, and the immobilized enzyme membrane of the enzyme electrode contains chlorine ions. By contacting the analyte in the presence of an amine compound, and measuring the output of the enzyme electrode corresponding to the decrease amount of the reaction product or the increase amount of the reaction product accompanying the oxidation reaction of the amine compound by the monoamine oxidase. It is a method for quantifying chlorine ions, which is characterized by determining the amount of chlorine ions.

【0010】本発明におけるモノアミン酸化酵素とは、
塩素イオン濃度に依存して阻害を受けるという性質を有
し、次式に示すアミン化合物を基質とした酸化的脱アミ
ノ化によるアルデヒド、アンモニア、過酸化水素の生成
反応を触媒する酵素を指す。 アミン化合物+酸素+H2O → アルデヒド化合物+
アンモニア+過酸化水素 モノアミン酸化酵素としては、上記の性質を有する酵素
であれば特に限定されず、公知のものが使用できる。具
体的には、アグリカルチュアル・バイオロジカル・ケミ
ストリー(Agric. Biol. Chem.)、29巻、649頁(1965
年)記載のアスペルギルス・ニガー(Aspergillus nige
r)由来のアミン酸化酵素、特開昭58−9698公報
に記載のタラロマイセス・フラバス・バリエタス・フラ
バス・M4175菌(Talaromyces flavus var. flavus
M4175)由来のアミン酸化酵素、ペトロミセス・アリア
セウス・M4648菌(Petromyces alliaceus M4648)
由来のアミン酸化酵素、ネオサルトルヤ・フイツエリー
・M4690菌(Neosartorya fischeri M4690)由来の
アミン酸化酵素、ユーロチウム・チエバリエリ・M48
05菌(Eurotium chevelieri M4805)由来のアミン酸
化酵素、ユーベニシリウム・パルバム・M5051菌
(Eupenicillium parvum M5051)由来のアミン酸化酵素
等が挙げられるが、塩素イオンに対する感受性と安定性
という点から、アスペルギルス・ニガー(Aspergillus
niger)由来のアミン酸化酵素が好適に使用できる。こ
の様なモノアミン酸化酵素生産菌から公知の方法により
目的とする酵素を得ることができる。
The monoamine oxidase in the present invention is
An enzyme that has the property of being inhibited depending on the chloride ion concentration and that catalyzes the reaction of producing aldehydes, ammonia, and hydrogen peroxide by oxidative deamination using an amine compound represented by the following formula as a substrate. Amine compound + oxygen + H 2 O → aldehyde compound +
The ammonia + hydrogen peroxide monoamine oxidase is not particularly limited as long as it is an enzyme having the above properties, and known ones can be used. Specifically, Agricultural Biological Chemistry (Agric. Biol. Chem.), 29, 649 (1965
Year) Aspergillus nige
r) -derived amine oxidase, Talaromyces flavus var. flavus (Talaromyces flavus var. flavus) described in JP-A-58-9698.
Amine oxidase derived from M4175, Petromyces alliaceus M4648
Amine oxidase derived from, Amine oxidase derived from Neosartorya fischeri M4690 (Neosartorya fischeri M4690), Eurotium thievarieri M48
Amine oxidase derived from bacterium No. 05 (Eurotium chevelieri M4805), amine oxidase derived from Eubenicillium parvum M5051 (Eupenicillium parvum M5051), and the like are mentioned. Niger (Aspergillus
niger) -derived amine oxidase can be preferably used. The target enzyme can be obtained from such a monoamine oxidase-producing bacterium by a known method.

【0011】固定化酵素膜に使用される膜状高分子化合
物としては、公知のアセチルセルロース、塩化ビニル樹
脂、ポリカーボネート、ナイロン、ポリプロピレン、ポ
リエチレン、コラーゲン等を用いることができる。酵素
の固定化能と安定性が高い点でアセチルセルロースが好
ましい。酵素の固定化方法は、特に限定されず公知の方
法が利用できる。例えば、「固定化酵素」(千畑一郎
編、講談社サイエンティフィック、1975年)記載
の、担体結合法、架橋法、包括法等の方法が挙げられ
る。
As the membranous polymer compound used for the immobilized enzyme membrane, known acetyl cellulose, vinyl chloride resin, polycarbonate, nylon, polypropylene, polyethylene, collagen and the like can be used. Acetyl cellulose is preferred because of its high enzyme immobilization ability and stability. The method for immobilizing the enzyme is not particularly limited, and a known method can be used. For example, the methods such as the carrier binding method, the cross-linking method and the entrapping method described in “Immobilized Enzyme” (edited by Ichiro Chibata, Kodansha Scientific, 1975) can be mentioned.

【0012】固定化酵素膜の製造方法をアセチルセルロ
ースにモノアミン酸化酵素を固定化する場合を例に説明
する。トリアセチルセルロースをジクロロメタンに溶解
し、グルタルアルデヒドを添加し、次いで1,8−ジア
ミノ−4−アミノメチルオクタンを添加し、ガラス板上
などに膜状となるように薄く流延し乾燥させる。この膜
をグルタルアルデヒドと反応させ、次いでモノアミン酸
化酵素溶液とを接触させることにより、モノアミン酸化
酵素を固定化する。
A method for producing an immobilized enzyme membrane will be described by taking an example of immobilizing a monoamine oxidase on acetyl cellulose. Triacetyl cellulose is dissolved in dichloromethane, glutaraldehyde is added, and then 1,8-diamino-4-aminomethyloctane is added, and the mixture is thinly cast into a film on a glass plate or the like and dried. The membrane is reacted with glutaraldehyde and then contacted with a solution of monoamine oxidase to immobilize the monoamine oxidase.

【0013】モノアミン酸化酵素とアセチルセルロース
膜とを接触させる際のpHは、一般的にはpH5〜9の範囲、
特にpH6.5〜7.5の範囲が好適である。pHを維持するため
の緩衝液は、リン酸緩衝液、GOOD緩衝液等が好適に
使用できる。その際の温度は酵素が安定であれば特に限
定されないが、具体的には、1〜15℃の範囲、特に2〜5
℃の範囲が好適であり、反応時間は、30分〜3時間の範
囲、特に1〜2時間の範囲が好適である。
The pH at the time of contacting the monoamine oxidase with the acetylcellulose membrane is generally in the range of pH 5 to 9,
Particularly, a pH range of 6.5 to 7.5 is suitable. As the buffer solution for maintaining the pH, a phosphate buffer solution, a GOOD buffer solution or the like can be preferably used. The temperature at that time is not particularly limited as long as the enzyme is stable, but specifically, it is in the range of 1 to 15 ° C, particularly 2 to 5 ° C.
The range of 0 ° C is suitable, and the reaction time is preferably in the range of 30 minutes to 3 hours, particularly preferably in the range of 1 to 2 hours.

【0014】本発明で使用される電極は、前述のモノア
ミン酸化酵素が触媒する反応の際の物質の増減を検知
し、電気信号に変換できるものであれば、特に限定され
ず公知のものが利用できる。例えば、「固定化酵素」
(千畑一郎編、講談社サイエンティフィック、1975
年)、「バイオセンサー」(鈴木周一編、講談社サイエ
ンティフィック、1984年)記載の酸素電極、過酸化
水素電極、アンモニア電極等が挙げられる。このような
電極に、前述の固定化酵素膜を装着し、酵素電極を作製
する。
The electrode used in the present invention is not particularly limited as long as it can detect an increase / decrease of a substance during the reaction catalyzed by the above-mentioned monoamine oxidase and convert it into an electric signal, and a known electrode is used. it can. For example, "immobilized enzyme"
(Edited by Ichiro Chibata, Kodansha Scientific, 1975
1), "Biosensor" (edited by Shuichi Suzuki, Kodansha Scientific, 1984), oxygen electrodes, hydrogen peroxide electrodes, ammonia electrodes and the like. The above-mentioned immobilized enzyme membrane is attached to such an electrode to prepare an enzyme electrode.

【0015】本発明に用いるアミン化合物は、モノアミ
ン酸化酵素による酸化的脱アミノ化反応の基質となりう
るものであれば特に限定されない。該アミン化合物を具
体的に例示すれば、ベンジルアミン、p−フルオロベン
ジルアミン、フェネチルアミン、1−アミノブタン、1
−アミノペンタン、1−アミノヘキサン等が挙げられ、
特にベンジルアミンが酵素との親和性の点で好ましい。
The amine compound used in the present invention is not particularly limited as long as it can serve as a substrate for the oxidative deamination reaction by a monoamine oxidase. Specific examples of the amine compound include benzylamine, p-fluorobenzylamine, phenethylamine, 1-aminobutane, 1
-Aminopentane, 1-aminohexane and the like,
Particularly, benzylamine is preferable in terms of affinity with the enzyme.

【0016】当該アミン化合物は、固定化酵素膜と被検
体が接触する際に存在すればよく、その方法は限定され
ない。緩衝液中に予め添加しておいても良いし、酵素反
応セル中に別途アミン化合物水溶液を添加しても良い。
The amine compound may be present when the immobilized enzyme membrane comes into contact with the subject, and the method is not limited. It may be added to the buffer solution in advance, or an amine compound aqueous solution may be separately added to the enzyme reaction cell.

【0017】本発明において、反応物とは、前記反応式
に従ったモノアミン酸化酵素によるアミン化合物の酸化
反応の際に消費される物質で、アミン化合物、または酸
素を指す。また、反応生成物とは、モノアミン酸化酵素
によって生成される物質で、過酸化水素、アンモニア、
または上記アミン化合物由来のアルデヒド化合物を指
す。容易に測定できるという点で、酸素、過酸化水素又
はアンモニアを、反応物又は反応生成物として測定する
ことが好ましい。特に共存物質の影響を受けにくいとい
う点で、酸素または過酸化水素を測定することがさらに
好適である。
In the present invention, the reactant is a substance consumed in the oxidation reaction of an amine compound by a monoamine oxidase according to the above reaction formula, and means an amine compound or oxygen. The reaction product is a substance produced by a monoamine oxidase, such as hydrogen peroxide, ammonia,
Alternatively, it refers to an aldehyde compound derived from the above amine compound. Oxygen, hydrogen peroxide, or ammonia is preferably measured as a reaction product or a reaction product because it can be easily measured. In particular, it is more preferable to measure oxygen or hydrogen peroxide because it is unlikely to be affected by coexisting substances.

【0018】本発明における被検体は、塩素イオンを含
有するものであれば特に限定されない。例えば、血液、
血清、血漿、尿、培養物、培養液、細胞内液、味噌醤油
を含有する食品、もしくはそれらの抽出液等が挙げられ
る。
The subject in the present invention is not particularly limited as long as it contains chlorine ions. For example, blood,
Examples thereof include serum, plasma, urine, cultures, culture fluids, intracellular fluids, foods containing miso soy sauce, and extracts thereof.

【0019】本発明における酵素電極に被検体及びアミ
ン化合物を接触させて反応させる際の反応系の液量は、
特に限定されないが、通常0.1ml〜5mlの範囲である。ア
ミン化合物は0.01〜100mMの濃度で使用されるが、特に
0.5〜10mMの範囲の濃度で好適に使用される。反応系のp
Hは、モノアミン酸化酵素の活性が高く維持されるpHで
あれば特に限定されないが、一般的には、pH5〜9の範
囲、特にpH6〜8の範囲が好適である。pHを維持するため
の緩衝液は、塩素イオンを含有していなければ特に限定
されないが、例えば、リン酸緩衝液、GOOD緩衝液等
が好適に使用できる。反応温度は、10〜45℃の範囲、特
に25℃〜37℃の範囲が好適である。反応時間は、30秒〜
15分の範囲、特に1〜5分の範囲が好適である。
The amount of liquid in the reaction system when the analyte and the amine compound are brought into contact with the enzyme electrode in the present invention and reacted is
Although not particularly limited, it is usually in the range of 0.1 ml to 5 ml. The amine compound is used at a concentration of 0.01-100 mM,
It is preferably used at a concentration in the range of 0.5 to 10 mM. P of reaction system
H is not particularly limited as long as it has a pH at which the activity of monoamine oxidase is maintained at a high level, but generally, a pH range of 5 to 9 is preferable, and a pH range of 6 to 8 is particularly preferable. The buffer solution for maintaining the pH is not particularly limited as long as it does not contain chloride ions, but for example, phosphate buffer solution, GOOD buffer solution and the like can be preferably used. The reaction temperature is preferably in the range of 10 to 45 ° C, particularly 25 ° C to 37 ° C. Reaction time is 30 seconds ~
A range of 15 minutes is preferred, especially a range of 1 to 5 minutes.

【0020】本発明の塩素イオンの定量方法において、
モノアミン酸化酵素によるアミン化合物の酸化反応の際
の反応物である酸素を測定する場合には、例えば、図1
に示したような酸素電極と固定化酵素膜を組み合わせた
酵素電極を使用することができる。酸素電極表面に固定
化酵素膜をOリングなどを用いて固定する。作用電極、
対極、酸素透過膜、電解質溶液は公知の物質が使用でき
る。例えば、作用電極としては白金電極が、対極として
は銀電極が、酸素透過膜としては、ポリテトラフルオロ
エチレン膜等が、電解質溶液としてはリン酸緩衝液等
が、それぞれ好適に使用できる。このような酵素電極
に、被検体、アミン化合物、緩衝液からなる反応液を接
触させると、反応液中の酸素は固定化酵素膜と酸素透過
膜を透過し作用電極上で還元され、酸素濃度に比例した
還元電流を生じる。この還元電流値を測定することで酵
素反応による酸素の減少速度(量)を定量する。
In the method for quantifying chloride ion of the present invention,
When measuring oxygen as a reaction product in the oxidation reaction of an amine compound by a monoamine oxidase, for example, FIG.
It is possible to use an enzyme electrode in which an oxygen electrode and an immobilized enzyme membrane are combined as shown in FIG. The immobilized enzyme membrane is immobilized on the surface of the oxygen electrode using an O-ring or the like. Working electrode,
Known substances can be used for the counter electrode, the oxygen permeable membrane, and the electrolyte solution. For example, a platinum electrode can be preferably used as the working electrode, a silver electrode as the counter electrode, a polytetrafluoroethylene film or the like as the oxygen permeable membrane, and a phosphate buffer solution or the like as the electrolyte solution. When a reaction solution consisting of the analyte, amine compound, and buffer solution is brought into contact with such an enzyme electrode, oxygen in the reaction solution permeates the immobilized enzyme membrane and oxygen permeable membrane and is reduced on the working electrode, resulting in oxygen concentration. Produces a reduction current proportional to. By measuring this reduction current value, the rate of decrease (amount) of oxygen due to the enzymatic reaction is quantified.

【0021】モノアミン酸化酵素によるアミン化合物の
酸化反応の際の生成物である過酸化水素を測定する場合
には、例えば、図2に示したような過酸化水素電極と固
定化酵素膜を組み合わせた酵素電極を使用することがで
きる。過酸化水素電極表面に固定化酵素膜をOリングな
どを用いて固定する。作用電極、対極、多孔性高分子
膜、電解質溶液は公知の物質が使用できる。例えば、作
用電極としては、白金電極が、対極としては、銀電極
が、多孔性高分子膜としては、セルロース膜、ポリエチ
レン膜等が、電解質溶液としては、リン酸緩衝液等が、
それぞれ好適に使用できる。このような酵素電極に、被
検体、アミン化合物、緩衝液からなる反応液を接触させ
ると、固定化酵素膜内で生成した過酸化水素は、多孔性
高分子膜を透過し作用電極上で酸化され、過酸化水素濃
度に比例した酸化電流を生じる。この酸化電流値を測定
することで酵素反応による過酸化水素の増加速度(量)
を定量する。
When hydrogen peroxide, which is a product of the oxidation reaction of an amine compound by a monoamine oxidase, is measured, for example, a hydrogen peroxide electrode and an immobilized enzyme membrane as shown in FIG. 2 are combined. Enzyme electrodes can be used. The immobilized enzyme membrane is immobilized on the surface of the hydrogen peroxide electrode using an O-ring or the like. Known substances can be used for the working electrode, the counter electrode, the porous polymer membrane, and the electrolyte solution. For example, the working electrode is a platinum electrode, the counter electrode is a silver electrode, the porous polymer membrane is a cellulose membrane, a polyethylene membrane or the like, and the electrolyte solution is a phosphate buffer or the like.
Each can be preferably used. When a reaction solution consisting of the analyte, amine compound, and buffer solution is brought into contact with such an enzyme electrode, hydrogen peroxide generated in the immobilized enzyme membrane permeates the porous polymer membrane and is oxidized on the working electrode. And produces an oxidation current proportional to the hydrogen peroxide concentration. By measuring this oxidation current value, the rate of increase (amount) of hydrogen peroxide due to the enzymatic reaction
Is quantified.

【0022】モノアミン酸化酵素によるアミン化合物の
酸化反応の際の生成物であるアンモニアを測定する場合
には、例えば、図3に示したようなアンモニア電極と固
定化酵素膜を組み合わせた酵素電極を使用することがで
きる。アンモニア電極表面に固定化酵素膜をOリングな
どを用いて固定する。pH測定用ガラス電極、参照電極、
疎水性多孔質膜、内部液は公知の物質が使用できる。例
えば、pH測定用ガラス電極は市販品が、参照電極として
は銀/塩化銀電極が、疎水性多孔質膜としてはフッ化ポ
リビニリデンが、内部液としては塩化アンモニウム溶液
が、それぞれ好適に使用できる。このような酵素電極
に、被検体、アミン化合物、緩衝液からなる反応液を接
触させると、固定化酵素膜内で生成したアンモニアは、
疎水性多孔質膜を透過し内部液のpHを変化させ、このpH
変化にpH測定用ガラス電極が応答し、電位差を生じる。
この電位差値を測定することで酵素反応によるアンモニ
アの増加速度(量)を定量する。
When ammonia, which is a product of the oxidation reaction of an amine compound by a monoamine oxidase, is measured, for example, an enzyme electrode having a combination of an ammonia electrode and an immobilized enzyme membrane as shown in FIG. 3 is used. can do. The immobilized enzyme membrane is immobilized on the surface of the ammonia electrode using an O-ring or the like. pH measuring glass electrode, reference electrode,
Known substances can be used for the hydrophobic porous membrane and the internal liquid. For example, a commercially available pH measuring glass electrode, a silver / silver chloride electrode as a reference electrode, polyvinylidene fluoride as a hydrophobic porous film, and an ammonium chloride solution as an internal liquid can be preferably used. . When a reaction solution consisting of the analyte, the amine compound, and the buffer solution is brought into contact with such an enzyme electrode, the ammonia produced in the immobilized enzyme membrane is
Permeation through the hydrophobic porous membrane changes the pH of the internal liquid,
The glass electrode for pH measurement responds to the change, resulting in a potential difference.
By measuring this potential difference value, the rate of increase (amount) of ammonia due to the enzymatic reaction is quantified.

【0023】本発明の塩素イオンの定量方法による代表
的な塩素イオン濃度の定量を、図4を使用して説明す
る。緩衝液は、定流ポンプにより酵素反応セルに送られ
る。緩衝液で満たされた酵素反応セルに、試料注入管か
ら被検体を、次にアミン化合物注入管からアミン化合物
を、それぞれ一定量添加する。酵素反応セルには攪拌子
及び攪拌モーターが装備され、被検体、アミン化合物と
緩衝液を混合する。酵素反応セルには固定化モノアミン
酸化酵素膜を装着した酵素電極がとりつけられ、その出
力は、酸素または過酸化水素を測定する場合はポテンシ
ョスタットを経てレコーダーに記録される。アンモニア
を測定する場合は、電位差計を経てレコーダーに記録さ
れる。酵素電極の出力から、酸素の減少量、通常は減少
速度を、もしくは、過酸化水素またはアンモニアの増加
量、通常は増加速度を定量する。緩衝液、酵素反応セ
ル、酵素電極は、恒温槽内で一定の温度に保たれてい
る。測定後の液は、廃液ラインを経て排出される。
Typical quantification of chloride ion concentration by the method of quantifying chloride ion of the present invention will be described with reference to FIG. The buffer solution is sent to the enzyme reaction cell by a constant flow pump. To the enzyme reaction cell filled with the buffer solution, a certain amount of the analyte is added from the sample injection tube, and then a certain amount of the amine compound is added from the amine compound injection tube. The enzyme reaction cell is equipped with a stirrer and a stirring motor to mix the analyte, the amine compound and the buffer solution. An enzyme electrode equipped with an immobilized monoamine oxidase membrane is attached to the enzyme reaction cell, and its output is recorded by a recorder via a potentiostat when measuring oxygen or hydrogen peroxide. When measuring ammonia, it is recorded on a recorder via a potentiometer. From the output of the enzyme electrode, the amount of decrease in oxygen, usually the rate of decrease, or the amount of increase in hydrogen peroxide or ammonia, usually the rate of increase, is quantified. The buffer solution, the enzyme reaction cell, and the enzyme electrode are kept at a constant temperature in a constant temperature bath. The liquid after the measurement is discharged through the waste liquid line.

【0024】塩素イオンの定量は、代表的には、被検体
の測定に先だち、塩化ナトリウム溶液、塩化カリウム溶
液等を用いて調製された塩素イオン濃度既知の標準溶液
を使用して、本発明の定量方法に従って、例えば、酸素
の減少速度(量)、もしくは過酸化水素、またはアンモ
ニアの増加速度(量)と塩素イオン濃度との検量線を作
成し、この検量線を用いて被検体の塩素イオン濃度を算
出する。尚、酸素の増加速度(量)または過酸化水素の
増加速度(量)の測定においては、各々の増加速度
(量)としては直接的には酸素量または過酸化水素量に
比例した電流値が得られるので、この電流値を用いて検
量線を作成し定量に供するのが一般的である。同様にア
ンモニアの増加速度(量)の測定においては、アンモニ
ア量に比例した電位差値を用いて検量線を作成し定量に
供する。
The quantification of chlorine ion is typically carried out by using a standard solution of known chloride ion concentration prepared using a sodium chloride solution, a potassium chloride solution or the like prior to the measurement of an analyte of the present invention. According to the quantification method, for example, a calibration curve of oxygen decrease rate (amount) or hydrogen peroxide or ammonia increase rate (amount) and chloride ion concentration is created, and this test curve is used to measure the chloride ion of the subject. Calculate the concentration. In the measurement of the rate of increase in oxygen (amount) or the rate of increase in hydrogen peroxide (amount), the current value proportional to the amount of oxygen or the amount of hydrogen peroxide is directly measured as the respective rate of increase (amount). Since this can be obtained, it is common to prepare a calibration curve using this current value and use it for quantification. Similarly, in measuring the rate of increase (amount) of ammonia, a calibration curve is prepared using the potential difference value proportional to the amount of ammonia and used for quantification.

【0025】本発明の塩素イオンの定量方法は、酵素電
極の安定性、正確性、定量性、操作性の点から、アスペ
ルギルス・ニガー(Aspergillus niger)由来のモノア
ミン酸化酵素をアセチルセルロース膜に固定化した固定
化酵素膜と酸素電極、もしくは過酸化水素電極を組み合
わせてなる酵素電極を用い、固定化酵素膜に被検体をベ
ンジルアミン存在下に接触させ、モノアミン酸化酵素に
よるベンジルアミンの酸化反応に伴う酸素の減少、また
は過酸化水素の増加量に対応して生ずる酵素電極の出力
を測定することにより実施されることが好ましい。
The method for quantifying chloride ion of the present invention comprises immobilizing an Aspergillus niger-derived monoamine oxidase on an acetyl cellulose membrane in terms of stability, accuracy, quantification and operability of an enzyme electrode. Using an enzyme electrode that is a combination of the immobilized enzyme membrane and an oxygen electrode or hydrogen peroxide electrode, the analyte is brought into contact with the immobilized enzyme membrane in the presence of benzylamine, and the oxidation reaction of benzylamine by monoamine oxidase is accompanied. It is preferably carried out by measuring the output of the enzyme electrode corresponding to the decrease in oxygen or the increase in hydrogen peroxide.

【0026】[0026]

【作用】モノアミン酸化酵素は、アミン化合物を基質と
した酸化的脱アミノ化によるアルデヒド化合物、アンモ
ニア、過酸化水素の生成反応を触媒するが、反応液中に
塩素イオンが存在すると、その濃度に依存して活性が変
化する。反応物である酸素、または、反応生成物である
過酸化水素、アンモニア等を測定することによって反応
液中に導入された被検体中の塩素イオン濃度を定量すこ
とができる。
[Function] Monoamine oxidase catalyzes the formation reaction of aldehyde compounds, ammonia, and hydrogen peroxide by oxidative deamination using an amine compound as a substrate, but when chlorine ion is present in the reaction solution, it depends on the concentration. Then the activity changes. By measuring oxygen as a reaction product or hydrogen peroxide, ammonia as a reaction product, the concentration of chlorine ions in the analyte introduced into the reaction solution can be quantified.

【0027】[0027]

【発明の効果】本発明の塩素イオンの定量方法は、固定
化酵素を使用しているため、酵素が繰り返し使用可能と
なった。また、固定化酵素と電極を組み合わせてなる酵
素電極を使用するため、簡便な操作で正確に塩素イオン
を定量することが可能になった。
INDUSTRIAL APPLICABILITY Since the method for quantifying chloride ion of the present invention uses an immobilized enzyme, the enzyme can be used repeatedly. Moreover, since an enzyme electrode composed of a combination of an immobilized enzyme and an electrode is used, it has become possible to accurately quantify chloride ion by a simple operation.

【0028】[0028]

【実施例】以下に実施例を示し、本発明を具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0029】参考例 モノアミン酸化酵素の調製 3.0% グルコース、0.3% 硝酸ナトリウム、0.1% リン酸
水素二カリウム、0.05%硫酸マグネシウム、0.05% 塩化
カリウム、0.001% 硫酸第一鉄、0.1% 酵母エキス、0.02
% 消泡剤から成る前培養培地(pH5.0)100mlの入った坂
口フラスコを10本用意し、アスペルギルス・ニガー(As
pergillus niger,ATCC28325)の胞子懸濁液
を接種し、30℃、攪拌回転数110rpmで一晩振とう培養し
た。この坂口フラスコ10本分の培養液を、20lの前培養
液を仕込んだジャーファーメンターに移し、30℃、攪拌
回転数200rpm、通気25l/minで一晩培養した後、集菌し
た。次いで、160lの前培養液を仕込んだジャーファーメ
ンターに植菌し、30℃、攪拌回転数200rpm、通気180l/m
inで一晩培養した後、集菌し、3.0% グルコース、0.1%
ブチルアミン、0.1% リン酸水素二カリウム、0.05%硫酸
マグネシウム、0.05%塩化カリウム、0.001% 硫酸第一
鉄、0.02% 消泡剤から成る本培養培地(pH5.0)を160l
仕込んだジャーファーメンターに菌体を植菌し、30℃、
攪拌回転数200rpm、通気180l/minで一晩本培養を行い集
菌した。
Reference Example Preparation of monoamine oxidase 3.0% glucose, 0.3% sodium nitrate, 0.1% dipotassium hydrogen phosphate, 0.05% magnesium sulfate, 0.05% potassium chloride, 0.001% ferrous sulfate, 0.1% yeast extract, 0.02
Prepare 10 Sakaguchi flasks containing 100 ml of pre-culture medium (pH 5.0) consisting of an antifoaming agent, and use Aspergillus niger (As
pergillus niger, ATCC28325) was inoculated and cultured with shaking at 30 ° C. and 110 rpm for stirring overnight. The culture broth for 10 Sakaguchi flasks was transferred to a jar fermenter charged with 20 liters of the preculture broth, and cultured overnight at 30 ° C., agitation speed 200 rpm, and aeration 25 liter / min, and then the cells were collected. Then, inoculate into a jar fermenter charged with 160 l of preculture liquid, 30 ℃, stirring rotation speed 200 rpm, aeration 180 l / m
After culturing overnight in in vitro, the cells were harvested, 3.0% glucose, 0.1%
160 l of main culture medium (pH 5.0) consisting of butylamine, 0.1% dipotassium hydrogen phosphate, 0.05% magnesium sulfate, 0.05% potassium chloride, 0.001% ferrous sulfate, 0.02% defoamer
Bacteria were inoculated into the jar fermenter that had been prepared, and at 30 ° C,
The cells were collected by performing main culture overnight at a stirring rotation speed of 200 rpm and aeration of 180 l / min.

【0030】得られた菌体の約5kg(湿菌体重量)を50
lの20mM リン酸緩衝液(pH7.5)に懸濁し、ダイノミル
細胞破砕機を用いて菌体破砕を行った。連続遠心分離機
により、破砕液から不溶物を除き、上清液を得た。
About 5 kg (wet cell weight) of the obtained cells is 50
The cells were suspended in 20 mM phosphate buffer (pH 7.5) (1), and the cells were disrupted using a Dynomill cell disruptor. An insoluble matter was removed from the disrupted liquid by a continuous centrifuge to obtain a supernatant liquid.

【0031】破砕上清液に、予め20mMリン酸緩衝液(pH
7.0)で平衡化しておいたDEAE-セルロース(ワット
マン社製)を3l加え、静かに攪拌しながら、4℃で一
晩放置した。この溶液を吸引濾過し、タンパク質の吸着
した樹脂を得、よく洗浄した後にカラムに充填した。0.
2Mの硫酸アンモニウムを含む20mMリン酸緩衝液を用いて
吸着したタンパク質を溶出し、活性画分を回収し、ゲル
濾過カラムクロマトグラフィーにより脱塩を行った。
20 mM phosphate buffer (pH
3 l of DEAE-cellulose (manufactured by Whatman) that had been equilibrated in 7.0) was added, and the mixture was left overnight at 4 ° C with gentle stirring. This solution was subjected to suction filtration to obtain a protein-adsorbed resin, which was thoroughly washed and then packed in a column. 0.
The adsorbed protein was eluted with 20 mM phosphate buffer containing 2 M ammonium sulfate, the active fraction was recovered, and desalted by gel filtration column chromatography.

【0032】次に、脱塩した活性画分を20mMリン酸緩衝
液で平衡化した1lのDEAE-セルロースカラムに通
し、タンパク質を吸着させ、同様の緩衝液でカラムを洗
浄した後、硫酸アンモニウム濃度を0Mから0.2Mまで直線
的に増加させてタンパク質を溶出し、活性画分を回収し
た。
Next, the desalted active fraction was passed through a 1 liter DEAE-cellulose column equilibrated with 20 mM phosphate buffer to adsorb proteins, and after washing the column with the same buffer, the ammonium sulfate concentration was adjusted. The protein was eluted with a linear increase from 0 M to 0.2 M and the active fraction was collected.

【0033】活性画分を限外濾過により濃縮し、0.1M硫
酸アンモニウムを含む10mMリン酸緩衝液で平衡化した
3lのセファクリルS-400(ファルマシア社製)カラム
に通し、活性画分を回収し、最終精製標品とした。
The active fraction was concentrated by ultrafiltration and equilibrated with 10 mM phosphate buffer containing 0.1 M ammonium sulfate.
It was passed through a 3 l Sephacryl S-400 (manufactured by Pharmacia) column to collect the active fraction, which was used as a final purified sample.

【0034】約5kg(湿菌体重量)の菌体から、900ユ
ニット(比活性=1.5ユニット/mgタンハ゜ク質)のモノアミン酸化
酵素を得た。
From about 5 kg (wet cell weight) of bacterial cells, 900 units (specific activity = 1.5 units / mg protein) of monoamine oxidase were obtained.

【0035】実施例1 固定化酵素膜の製造 250mgのトリアセチルセルロースを5mlのジクロロメタン
中に添加し、約15分間攪拌し溶解した。この溶液に、攪
拌しながら、0.05mlの50%グルタルアルデヒド溶液を加
えた。この溶液を15分間攪拌した後、1mlの1,8−ジ
アミノ−4−アミノメチルオクタンを添加し、よく混合
し、ガラス板上に薄く展開した。室温で2日間風乾した
後、脱イオン水に浸して膜を剥離させ、脱イオン水で5
回洗浄した。この膜を100mlの1%グルタルアルデヒドを
含む0.1M リン酸緩衝液, pH6.8に浸漬し、室温で1時間
処理した後、脱イオン水で5回洗浄した。
Example 1 Production of Immobilized Enzyme Membrane 250 mg of triacetyl cellulose was added to 5 ml of dichloromethane and dissolved by stirring for about 15 minutes. To this solution, with stirring, 0.05 ml of 50% glutaraldehyde solution was added. After stirring this solution for 15 minutes, 1 ml of 1,8-diamino-4-aminomethyloctane was added, mixed well and spread thinly on a glass plate. After air-drying at room temperature for 2 days, soak in deionized water to peel off the film,
Washed twice. This membrane was immersed in 100 ml of a 0.1 M phosphate buffer containing 1% glutaraldehyde, pH 6.8, treated at room temperature for 1 hour, and then washed 5 times with deionized water.

【0036】5mlのモノアミン酸化酵素(1ユニット/m
l)を含む0.1M リン酸緩衝液, pH6.8にグルタルアルデ
ヒド処理をした膜を浸漬し、4℃で1時間反応させた。0.
1M リン酸緩衝液, pH6.8で十分に洗浄し、固定化モノア
ミン酸化酵素膜を得た。
5 ml of monoamine oxidase (1 unit / m
The membrane treated with glutaraldehyde was immersed in 0.1 M phosphate buffer (pH 6.8) containing l) and reacted at 4 ° C for 1 hour. 0.
The membrane was thoroughly washed with 1M phosphate buffer, pH 6.8 to obtain an immobilized monoamine oxidase membrane.

【0037】実施例2 実施例1で製造した固定化酵素膜を酸素電極に装着し、
図1に示した構造の酵素電極を作製した。この酵素電極
を組み込んで図4に示した装置を作製した。緩衝液、酵
素反応セル、酵素電極は37℃に保った。試料として、0
、20、40、60、80、100、120、140、160、180、200、3
00、400、500mMの塩化ナトリウム溶液を調製し、測定を
行った。1.9mlの0.1M リン酸緩衝液,pH6.8を酵素反応
セルに注入し、0.05mlの試料を酵素反応セル内に注入し
た。次いで、0.1mlの0.1M ベンジルアミン水溶液(リン
酸でpHを6.8に調整した)を酵素反応セルに添加し、酵
素電極の出力(電流)を3分間測定し、1分間当たりの
電流値変化量(ΔμA)を算出した。横軸に塩素イオン
濃度、縦軸にΔμAの逆数(1/ΔμA)をとりプロッ
トした。図5にその結果を示す。図5から明らかなよう
に、塩素イオン濃度0〜500mMの範囲で良好な直線関係が
得られた。
Example 2 The immobilized enzyme membrane prepared in Example 1 was attached to an oxygen electrode,
An enzyme electrode having the structure shown in FIG. 1 was produced. The device shown in FIG. 4 was produced by incorporating this enzyme electrode. The buffer, enzyme reaction cell, and enzyme electrode were kept at 37 ° C. As a sample, 0
, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 3
00, 400 and 500 mM sodium chloride solutions were prepared and measured. 1.9 ml of 0.1 M phosphate buffer, pH 6.8 was injected into the enzyme reaction cell, and 0.05 ml of sample was injected into the enzyme reaction cell. Next, 0.1 ml of 0.1 M benzylamine aqueous solution (pH adjusted to 6.8 with phosphoric acid) was added to the enzyme reaction cell, the output (current) of the enzyme electrode was measured for 3 minutes, and the amount of change in current value per minute was measured. (ΔμA) was calculated. The horizontal axis shows the chloride ion concentration, and the vertical axis shows the reciprocal of ΔμA (1 / ΔμA). The result is shown in FIG. As is clear from FIG. 5, a good linear relationship was obtained in the chloride ion concentration range of 0 to 500 mM.

【0038】実施例3 実施例1で製造した固定化酵素膜を過酸化水素電極に装
着して作製した図2に示した構造の酵素電極を用いた以
外は以外は実施例2に記載した方法により測定し、1/
ΔμAを算出した。横軸に塩素イオン濃度、縦軸にΔμ
Aの逆数(1/ΔμA)をとりプロットした。図6にそ
の結果を示す。図6から明らかなように、塩素イオン濃
度0〜500mMの範囲で良好な直線関係が得られた。
Example 3 The method described in Example 2 except that the immobilized enzyme membrane prepared in Example 1 was attached to a hydrogen peroxide electrode and the enzyme electrode having the structure shown in FIG. 2 was used. Measured by 1 /
ΔμA was calculated. Chlorine ion concentration on the horizontal axis, Δμ on the vertical axis
The reciprocal of A (1 / ΔμA) was taken and plotted. The results are shown in FIG. As is clear from FIG. 6, a good linear relationship was obtained in the chloride ion concentration range of 0 to 500 mM.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本図は本発明の塩素イオンの定量方法で、酸
素濃度を測定する場合に用いる酵素電極の概略断面構成
図である。
FIG. 1 is a schematic cross-sectional configuration diagram of an enzyme electrode used when measuring oxygen concentration in the method for quantifying chlorine ions of the present invention.

【図2】 本図は本発明の塩素イオンの定量方法で、過
酸化水素濃度を測定する場合に用いる酵素電極の概略断
面構成図である。
FIG. 2 is a schematic cross-sectional configuration diagram of an enzyme electrode used for measuring the concentration of hydrogen peroxide by the method for quantifying chlorine ions of the present invention.

【図3】 本図は本発明の塩素イオンの定量方法で、ア
ンモニア濃度を測定する場合に用いる酵素電極の概略断
面構成図である。
FIG. 3 is a schematic cross-sectional configuration diagram of an enzyme electrode used when measuring the concentration of ammonia in the method for quantifying chlorine ions of the present invention.

【図4】 本図は本発明の塩素イオンの定量方法を実施
する装置の概略図である。
FIG. 4 is a schematic view of an apparatus for carrying out the method for quantifying chloride ion of the present invention.

【図5】 本図は本発明の塩素イオンの定量方法で、酸
素濃度を測定した場合の塩素イオンと1分間当たりの電
流値変化の逆数(1/ΔμA)との関係を示す図であ
る。
FIG. 5 is a diagram showing the relationship between chlorine ions and the reciprocal of the change in current value per minute (1 / ΔμA) when the oxygen concentration is measured by the method for quantifying chlorine ions of the present invention.

【図6】 本図は本発明の塩素イオンの定量方法で、過
酸化水素濃度を測定した場合の塩素イオンと1分間当た
りの電流値変化の逆数(1/ΔμA)との関係を示す図
である。
FIG. 6 is a diagram showing the relationship between chlorine ions and the reciprocal of the change in current value per minute (1 / ΔμA) when the hydrogen peroxide concentration was measured by the method for quantifying chlorine ions of the present invention. is there.

【符号の説明】[Explanation of symbols]

1 固定化酵素膜 2 酸素透過膜 3 作用電極 4 対極 5 電解質溶液 6 電源(0.5〜0.8V) 7 ポテンショスタット 8 固定化酵素膜 9 多孔性高分子膜 10 作用電極 11 対極 12 電解質溶液 13 電源(0.3〜0.5V) 14 ポテンショスタット 15 固定化酵素膜 16 疎水性多孔質膜 17 pH測定用ガラス電極 18 参照電極 19 内部液 20 電位差計 21 緩衝液 22 定流ポンプ 23 酵素反応セル 24 試料注入管 25 アミン化合物注入管 26 攪拌子 27 攪拌用モーター 28 固定化酵素膜を装着した酵素電極 29 ポテンショスタットまたは電位差計 30 レコーダー 31 恒温槽 32 廃液ライン 1 Immobilized enzyme membrane 2 Oxygen permeable membrane 3 Working electrode 4 Counter electrode 5 Electrolyte solution 6 Power supply (0.5-0.8V) 7 Potentiostat 8 Immobilized enzyme membrane 9 Porous polymer membrane 10 Working electrode 11 Counter electrode 12 Electrolyte solution 13 Power supply ( 0.3-0.5V) 14 Potentiostat 15 Immobilized enzyme membrane 16 Hydrophobic porous membrane 17 pH measuring glass electrode 18 Reference electrode 19 Internal solution 20 Potentiometer 21 Buffer solution 22 Constant flow pump 23 Enzyme reaction cell 24 Sample injection tube 25 Amine compound injection pipe 26 Stirrer 27 Stirring motor 28 Enzyme electrode with immobilized enzyme membrane 29 Potentiostat or potentiometer 30 Recorder 31 Constant temperature bath 32 Waste liquid line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モノアミン酸化酵素を膜状高分子化合物
に固定化した固定化酵素膜と電極を組み合わせてなる酵
素電極を用い、当該酵素電極の固定化酵素膜に塩素イオ
ンを含有する被検体をアミン化合物の存在下に接触さ
せ、モノアミン酸化酵素によるアミン化合物の酸化反応
に伴う反応物の減少量または反応生成物の増加量に対応
して生ずる酵素電極の出力を測定することにより塩素イ
オン量を決定することを特徴とする塩素イオンの定量方
法。
1. An enzyme electrode comprising a combination of an immobilized enzyme membrane in which a monoamine oxidase is immobilized on a membrane polymer compound and an electrode is used, and an analyte containing chlorine ions is immobilized on the immobilized enzyme membrane of the enzyme electrode. Chloride ion content was measured by contacting in the presence of an amine compound and measuring the output of the enzyme electrode generated in response to the decrease amount of the reaction product or the increase amount of the reaction product accompanying the oxidation reaction of the amine compound by the monoamine oxidase. A method for quantifying chlorine ion, which comprises determining.
JP6062611A 1994-03-31 1994-03-31 Determination of chloride ion Pending JPH07270379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062611A JPH07270379A (en) 1994-03-31 1994-03-31 Determination of chloride ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062611A JPH07270379A (en) 1994-03-31 1994-03-31 Determination of chloride ion

Publications (1)

Publication Number Publication Date
JPH07270379A true JPH07270379A (en) 1995-10-20

Family

ID=13205292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062611A Pending JPH07270379A (en) 1994-03-31 1994-03-31 Determination of chloride ion

Country Status (1)

Country Link
JP (1) JPH07270379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676655B1 (en) * 2005-04-29 2007-02-01 이형춘 Automatic analysis of volatile basic nitrogen using automated flow injection analysis system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676655B1 (en) * 2005-04-29 2007-02-01 이형춘 Automatic analysis of volatile basic nitrogen using automated flow injection analysis system

Similar Documents

Publication Publication Date Title
Vadgama Enzyme electrodes as practical biosensors
Conrath et al. A novel enzyme sensor for the determination of inorganic phosphate
Mascini et al. Glucose electrochemical probe with extended linearity for whole blood
Mizutani et al. Determination of glutamate pyruvate transaminase and pyruvate with an amperometric pyruvate oxidase sensor
EP0020623A1 (en) Analytical process and means for measuring the amount of hydrogen peroxide in aqueous media and of organic substrates generating hydrogen peroxide by enzymatic oxidation.
Tombach et al. Amperometric creatinine biosensor for hemodialysis patients
Wollenberger et al. A specific enzyme electrode for L-glutamate-development and application
Zhang et al. Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator
De Beer et al. Gradients in immobilized biological systems
Sacchi et al. Determination of D-amino acids using a D-amino acid oxidase biosensor with spectrophotometric and potentiometric detection
Carsol et al. Diamine oxidase and putrescine oxidase immobilized reactors in flow injection analysis: a comparison in substrate specificity
Campanella et al. Suitable potentiometric enzyme sensors for urea and creatinine
US5306413A (en) Assay apparatus and assay method
Winartasaputra et al. Amperometric enzymic determination of triglycerides in serum
Okada et al. Ammonium ion sensor based on immobilized nitrifying bacteria and a cation-exchange membrane
JPH07270379A (en) Determination of chloride ion
Marrazza et al. L-and D-lactate assay in real milk samples with immobilized enzyme reactors and graphite electrode
Campanella et al. Determination of inorganic phosphate in drug formulations and biological fluids using a plant tissue electrode
Shi et al. On‐line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system
Li et al. Immobilization of L-glutamate oxidase and peroxidase for glutamate determination in flow injection analysis system
JPH08327581A (en) Method for measuring lactic acid in nutritionally noted organic substance and biosensor for executing method thereof
Jaenchen et al. An Electrochemical Determination of Uric Acid in Sera by a Flow-Through Equipment with and Without Uricase
JP3480884B2 (en) Online biosensor
JP2621171B2 (en) Enzyme membrane for enzyme electrode using a novel thermostable pyruvate oxidase
JP6459400B2 (en) Enzyme immobilized body, analyzer equipped with the same, and method for measuring L-threonine