JPH07270242A - Optical fiber radiation thermometer - Google Patents

Optical fiber radiation thermometer

Info

Publication number
JPH07270242A
JPH07270242A JP6085554A JP8555494A JPH07270242A JP H07270242 A JPH07270242 A JP H07270242A JP 6085554 A JP6085554 A JP 6085554A JP 8555494 A JP8555494 A JP 8555494A JP H07270242 A JPH07270242 A JP H07270242A
Authority
JP
Japan
Prior art keywords
optical fiber
measurement
wavelength
temperature
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6085554A
Other languages
Japanese (ja)
Other versions
JP3325700B2 (en
Inventor
Isao Hishikari
功 菱刈
Motohiko Kitazawa
元彦 北沢
Yoshinobu Minagawa
義宣 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP08555494A priority Critical patent/JP3325700B2/en
Publication of JPH07270242A publication Critical patent/JPH07270242A/en
Application granted granted Critical
Publication of JP3325700B2 publication Critical patent/JP3325700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering

Abstract

PURPOSE:To measure temperature without being affected by the optical fiber length by using two wavelegths. CONSTITUTION:Radiation energy from a measuring object 2 is detected with detection elements 71, 72 through an optical fiber 1 and two different filters 61, 62. By calculating the ratio of the outputs of the detection elements 71, 72 with a ratio operation means 80, the temperature is calculated with the operation means 80. One or both wavelength zones in the measuring wavelength zone are controlled by a control means 9 before the measurement so that the transmittances in the optical fiber 1 of each wavelength zone become equal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバを用いて
測温する放射温度計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer for measuring temperature using an optical fiber.

【0002】[0002]

【従来の技術】光ファイバを光導体とした放射温度計
は、たとえば「新編温度計測」(計測自動制御学会、平
成4年10月25日初版発行)第231頁の図4.29
に記載の通り、種々の利用形態がある。光ファイバを利
用すると、狭隘で折曲した箇所の測温が可能となるばか
りか、測定光路上に放射光を阻害するような媒体があっ
たとしても、これを回避することができる。しかも、光
ファイバの外形が小さいことから、装置への組み込みが
容易になるなど数々の優れた特性を有する。
2. Description of the Related Art A radiation thermometer using an optical fiber as an optical conductor is disclosed, for example, in "New Edition Temperature Measurement" (Measuring and Automatic Control Society, published on October 25, 1992, first edition), page 4.29 on page 231.
As described in, there are various usage forms. By using the optical fiber, not only the temperature at a narrowly bent portion can be measured but also this can be avoided even if there is a medium on the measurement optical path that obstructs the emitted light. Moreover, since the outer shape of the optical fiber is small, the optical fiber has various excellent characteristics such as easy incorporation into the device.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光ファ
イバは高純度石英を素材としているため、たとえ外形を
1mm以下に細くしても、可撓性に自ずから限界があ
り、強く折曲したとき、あるいは強い衝撃を与えたと
き、破断するおそれがあり、高い温度に晒された場合も
同様である。もちろん、光ファイバの外周を、ゴム、プ
ラスチックあるいは波形管などの弾性体で外装すること
で、この欠点を補えるが、外形が太くなり、かつコスト
を押し上げてしまう。
However, since the optical fiber is made of high-purity quartz, even if the outer diameter is made smaller than 1 mm, the flexibility is naturally limited, and when it is strongly bent, or There is a risk of breakage when given a strong impact, and the same applies when exposed to high temperatures. Of course, by covering the outer circumference of the optical fiber with an elastic body such as rubber, plastic, or a corrugated tube, this defect can be compensated, but the outer shape becomes thick and the cost is increased.

【0004】一方、光ファイバが破断すると、その端面
はギザツキ、光の表面反射が増大するので、光学的に研
磨する必要がある。測定中、応急の処置として、この作
業を行うのは、研磨に用いる用具が一般に普及していな
いこともあって容易ではない。しかも、光ファイバの長
さが変化することによる透過率の変化を補正するため、
再度目盛校正を行わなければならず、これも応急には難
しい。
On the other hand, when the optical fiber is broken, the end face of the optical fiber becomes jagged and the surface reflection of light increases, so it is necessary to optically polish it. It is not easy to perform this work as an emergency measure during measurement, because tools used for polishing are not generally used. Moreover, in order to correct the change in transmittance due to the change in the length of the optical fiber,
It is necessary to calibrate the scale again, which is also urgently difficult.

【0005】そこで、本願発明の目的は、放射温度計の
光路長の影響を受けにくい2色温度計を用い、光ファイ
バ固有の光学特性をあらかじめ補正し、以後ファイバ長
が変化しても、全く影響なく温度計測ができる光ファイ
バ放射温度計を提供することである。
Therefore, an object of the present invention is to use a two-color thermometer that is not easily affected by the optical path length of a radiation thermometer, and correct the optical characteristics peculiar to the optical fiber in advance. An object of the present invention is to provide an optical fiber radiation thermometer capable of measuring temperature without influence.

【0006】[0006]

【課題を解決するための手段】この発明は、測定対象か
ら光ファイバを介して入射する放射エネルギーを分光す
る分光手段と、この分光手段で分光されたれた光のうち
2つの異なる測定波長帯についての光を検出する検出素
子と、この検出素子の2つの測定波長帯についての出力
信号の比率を求め温度を演算する演算手段と、前記分光
手段で分光され検出素子に入射する2つの測定波長帯の
一方又は両方を調整とし両波長についての光ファイバの
透過率が等しくなるようにするための調整手段とを備え
るようにした光ファイバ放射温度計である。
The present invention relates to a spectroscopic unit that disperses radiant energy that is incident from a measurement target through an optical fiber, and two different measurement wavelength bands of the light that is spectroscopically dispersed by the spectroscopic unit. Element for detecting the light, a calculating means for calculating the temperature by obtaining the ratio of the output signals of the two measuring wavelength bands of the detecting element, and two measuring wavelength bands which are split by the spectroscopic means and are incident on the detecting element. An optical fiber radiation thermometer having one or both of them adjusted and adjusting means for making the transmittances of the optical fibers for both wavelengths equal.

【0007】[0007]

【実施例】図1は、この発明の一実施例を示す構成説明
図で、図において、1は光ファイバで、その集光部とし
ての先端部1aは、レンズ3等により測定対象2からの
放射エネルギーを集光する。この光ファイバ1の他端部
1bは光コネクタ等とされ、先端部1aからの放射エネ
ルギーを集光し、放射温度計4に導く。そして、この放
射エネルギーは、ハーフミラー5を介し、2方に分岐
し、互いに異なった測定波長帯λ1、λ2の光を透過す
る分光手段としてのフィルタ61、62を介し、検出素
子71、72で検出される。各検出素子71、72の各
出力は増幅手段A1、A2で増幅処理され、増幅手段A
1、A2の出力は比率演算手段80で比率がとられ、こ
の比率信号に基いて、演算手段8は演算を行い温度信号
を得るようにする。このとき、フィルタ61は、入射す
る光に対して調整手段9により所望の角度θ傾けること
ができ、透過する波長を可変として調整することがで
き、波長λ1、λ2における光ファイバ1の吸収係数が
等しくなるように選定し、光ファイバ1の長さの影響を
受けずに温度信号を得るようにすることができる。な
お、比率演算手段80や演算手段8等にマイクロコンピ
ュータを用い、デジタル的に2色演算等の処理をしても
よい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing the structure of an embodiment of the present invention. In the figure, reference numeral 1 is an optical fiber, and a tip portion 1a as a condensing portion is a lens 3 or the like from a measuring object 2 Collects radiant energy. The other end 1b of the optical fiber 1 serves as an optical connector or the like, collects the radiant energy from the tip 1a, and guides it to the radiation thermometer 4. Then, this radiant energy is split into two directions through the half mirror 5 and is passed through filters 61 and 62 as spectroscopic means that transmit light in different measurement wavelength bands λ1 and λ2, and is detected by the detection elements 71 and 72. To be detected. The outputs of the detection elements 71 and 72 are amplified by the amplification means A1 and A2, and the amplification means A
The ratios of the outputs of 1 and A2 are taken by a ratio calculating means 80, and the calculating means 8 performs a calculation based on the ratio signal to obtain a temperature signal. At this time, the filter 61 can be tilted at a desired angle θ with respect to the incident light by the adjusting means 9, and the transmitted wavelength can be variably adjusted, and the absorption coefficient of the optical fiber 1 at the wavelengths λ1 and λ2 can be adjusted. The temperature signals can be obtained without being affected by the length of the optical fiber 1 by selecting them to be equal. A microcomputer may be used for the ratio calculation means 80, the calculation means 8 and the like to digitally perform a process such as two-color calculation.

【0008】ここで、互いに異なる2個の測定波長帯λ
1、λ2の放射輝度比を求める2色温度計について考え
ると、波長λ、温度Tの分光放射輝度L(λ、T)は、
ウィーンの公式より L(λ、T)=2C1λ5 exp(−C2/λT) (1) で与えられるので、その比率出力R(T)は次式とな
る。
Here, two different measurement wavelength bands λ
Considering a two-color thermometer for obtaining the radiance ratio of 1 and λ2, the spectral radiance L (λ, T) at the wavelength λ and the temperature T is
According to the Wien's formula, L (λ, T) = 2C1λ 5 exp (−C2 / λT) (1), so the ratio output R (T) is as follows.

【0009】 R(T)=(λ2/λ1)5 exp{(1/λ2−1/λ1)・C2/T} (2) ここで、C2=0.014388mKである。R (T) = (λ2 / λ1) 5 exp {(1 / λ2-1 / λ1) · C2 / T} (2) Here, C2 = 0.014388 mK.

【0010】光ファイバの分光吸収係数に注目すると、
吸収係数がα、長さがxのとき、透過率はexp(−α
x)で表されるから、測定波長帯λ1、λ2における吸
収係数が夫々α1、α2で、長さxなる光ファイバを介
して温度T(K)の黒体を計測したときS(K)なる示
度を得たとすると、 R(S)=[exp(−α1x)/exp(−α2x)]・R(T) (3) なる関係が成立する。R(S1,2 )とR(T)にウィー
ンの公式を適用して整理すれば次式を得る。
Focusing on the spectral absorption coefficient of the optical fiber,
When the absorption coefficient is α and the length is x, the transmittance is exp (-α
x), the absorption coefficients in the measurement wavelength bands λ1 and λ2 are α1 and α2, respectively, and S (K) is obtained when the black body at the temperature T (K) is measured through the optical fiber having the length x. If the reading is obtained, the relationship of R (S) = [exp (−α1x) / exp (−α2x)] · R (T) (3) holds. Applying the Vienna formula to R (S1,2) and R (T) and rearranging, we obtain the following formula.

【0011】 (1/λ2−1/λ1)C2/S =(α2−α1)x+(1/λ2−1/λ1)C2/T (4) これを温度SおよびTについて求めると、 1/S−1/T=(α2−α1)x/{(1/λ2−1/λ1)C2} (5) を得る。これによれば、α2=α1、すなわち光ファイ
バの分光吸収係数、したがって、分光透過率が互いに等
しいとき、T=Sとなって光フアイバの長さxに関係な
く測定誤差は発生しないことになる。
(1 / λ2-1 / λ1) C2 / S = (α2-α1) x + (1 / λ2-1 / λ1) C2 / T (4) When this is obtained for the temperatures S and T, 1 / S −1 / T = (α2−α1) x / {(1 / λ2−1 / λ1) C2} (5) is obtained. According to this, when α2 = α1, that is, when the spectral absorption coefficient of the optical fiber, that is, the spectral transmittances are equal to each other, T = S and the measurement error does not occur regardless of the length x of the optical fiber. .

【0012】光フアイバの分光吸収特性を、「光通信要
覧」(1984年8月科学新聞社発行)第34頁の図
2.3.1(超高感度光ファイバの損失特性)から引用
して図2に示す。これによると、分光吸収としての損失
(dB)は、測定波長が0.6μmより長くなるにつれ
て減少し、1.4〜1.6μm帯で最低となって、1.
6μm以上では再び増加する。しかも、(2)式より理
解されるように、2色温度計の感度は、2つの測定波長
λ2、λ1が互いに離れているほうが大きくなる。それ
ゆえ、図2を参考に、互いに離れた波長帯で、かつ、損
失の等しい波長帯を選定することが望ましい。このよう
な観点から、たとえば、λ1=1.30μm、λ2=
1.62μm、又は、λ1=1.40μm、λ2=1.
60μmなど種々の組み合わせが選定できる。このよう
に選定し、α1=α2が実現できれば、基本的には、光
ファイバ長の変化による指示誤差は生じない。
The spectral absorption characteristics of the optical fiber are quoted from FIG. 2.3.1 (loss characteristics of ultra-sensitive optical fiber) on page 34 of "Optical Communication Manual" (published by Kagaku Shimbun, August 1984). As shown in FIG. According to this, the loss (dB) as the spectral absorption decreases as the measurement wavelength becomes longer than 0.6 μm and becomes the lowest in the 1.4 to 1.6 μm band.
When it is 6 μm or more, it increases again. In addition, as understood from the equation (2), the sensitivity of the two-color thermometer becomes larger when the two measurement wavelengths λ2 and λ1 are separated from each other. Therefore, referring to FIG. 2, it is desirable to select wavelength bands that are separated from each other and have the same loss. From such a viewpoint, for example, λ1 = 1.30 μm, λ2 =
1.62 μm, or λ1 = 1.40 μm, λ2 = 1.
Various combinations such as 60 μm can be selected. If .alpha.1 = .alpha.2 can be realized by selecting in this way, basically, an instruction error due to a change in the optical fiber length does not occur.

【0013】しかしながら、実際上、光ファイバのロッ
ト間の微妙なバラツキ、あるいは、測定波長帯を制御す
る光フィルタのロット間のバラツキは避けられず、必ず
しもα1=α2は成立しない。α1≠α2のとき、
(5)式から明らかなように、光ファイバ長xによる指
示変化を発生する。たとえば、長さ1Kmの光ファイバ
を用いてT=1300Kの場合、互いの損失の差異が±
1%でも(5)式から、λ1=1.30μm、λ2=
1.62μmのとき、TとSの差は±7.2K、同じ
く、λ1=1.40μm、λ2=1.60μmのとき、
TとSの差は±12.4Kとなり、しかも、これらの誤
差は、(5)式から明らかなごとく長さに比例するか
ら、精密な温度計測を実現するため、この誤差は無視で
きない。
However, in reality, subtle variations between lots of optical fibers or lots of optical filters that control the measurement wavelength band cannot be avoided, and α1 = α2 does not always hold. When α1 ≠ α2,
As is clear from the equation (5), an instruction change is generated depending on the optical fiber length x. For example, in the case of T = 1300K using an optical fiber having a length of 1 km, the difference between the losses is ±
Even with 1%, from equation (5), λ1 = 1.30 μm, λ2 =
When 1.62 μm, the difference between T and S is ± 7.2 K, and similarly, when λ1 = 1.40 μm and λ2 = 1.60 μm,
The difference between T and S is ± 12.4K, and these errors are proportional to the length as is clear from the equation (5). Therefore, this error cannot be ignored in order to realize precise temperature measurement.

【0014】そこで測定波長帯λ1、λ2の一方もしく
は双方の波長帯を調整できる構成とし、測定を行う前
に、あらかじめ、各測定波長帯λ1、λ2の光ファイバ
1における吸収係数α1、α2について、α1=α2が
成立するように測定波長帯を調整することを本願発明の
目的としている。
Therefore, one or both of the measurement wavelength bands λ1 and λ2 can be adjusted, and before the measurement, the absorption coefficients α1 and α2 of the optical fiber 1 of the measurement wavelength bands λ1 and λ2 are It is an object of the present invention to adjust the measurement wavelength band so that α1 = α2 holds.

【0015】つまり、図1において、フィルタ61を干
渉膜フィルタとし、調整手段9により角度θ傾けると、
その透過中心波長λmは λm=2nh・[1−(sin θ/n)2 1/2 /m (6) で与えられる。ここで、厚みh,屈折率n,次数mとし
た。これによれば、透過中心波長λmは光軸の傾きθの
関数ゆえ、この傾きを調整することにより、透過中心波
長λmを変えることができる。たとえば、nが1.5〜
2のとき、θを±45度調整すると、透過中心波長λm
は、12〜6%変動する。このことは、θが0度のと
き、たとえば波長λm=1.6μmとすれば、0.19
〜0.1μmまで変化することができることになり、図
2から明らかなごとく、透過率の調整が実用的に可能と
なる。
That is, in FIG. 1, when the filter 61 is an interference film filter and the adjusting means 9 tilts the angle θ,
The transmission center wavelength λm is given by λm = 2nh · [1- (sin θ / n) 2 ] 1/2 / m (6). Here, the thickness is h, the refractive index is n, and the order is m. According to this, since the transmission center wavelength λm is a function of the inclination θ of the optical axis, the transmission center wavelength λm can be changed by adjusting this inclination. For example, n is 1.5 to
When 2, is adjusted by ± 45 degrees, transmission center wavelength λm
Fluctuates by 12-6%. This means that when θ is 0 degrees, for example, if the wavelength λm = 1.6 μm, then 0.19.
As a result, the transmittance can be adjusted practically as can be seen from FIG.

【0016】このように、(6)式の関係を利用して、
両波長の透過率を等しくするように調整する。つまり、
この波長λmが、図1におけるフィルタ61の波長λ1
であり、この波長λ1の光ファイバ1における透過率α
1と、フィルタ62の波長λ2の光ファイバ1における
透過率α2の関係がα1=α2となるように、あらかじ
め測定開始前に、測定波長帯を調整すれば、光ファイバ
1の長さによる影響はなくなる。なお、フィルタ62の
角度も同様に調整するようにし、両波長とも調整するよ
うにしてもよい。
In this way, using the relationship of the equation (6),
The transmittances of both wavelengths are adjusted to be equal. That is,
This wavelength λm is the wavelength λ1 of the filter 61 in FIG.
And the transmittance α in the optical fiber 1 of this wavelength λ1
1 and the transmittance α2 of the filter 62 at the wavelength λ2 of the optical fiber 1 is α1 = α2, the measurement wavelength band is adjusted before the measurement is started. Disappear. The angle of the filter 62 may be adjusted in the same manner, and both wavelengths may be adjusted.

【0017】次に、図3(a)に他の一実施例の要部を
示す。図示しない光ファイバから入射する放射エネルギ
ーをハーフミラー5を介して2方に分岐し、一方の光は
波長λ2の光を透過するフィルタ62を介して検出素子
72に入射させ、他方の光は、プリズム、グレーティン
グ(回折格子)等の連続スペクトルを発生する分光手段
60で分光し、この分光手段60の角度を可変とし調整
手段91で傾けることで、所定の波長λ1の光をスリッ
ト10aを介し検出素子71に入射させる。この分光手
段60による波長λ1の光ファイバ1における透過率α
1と、フィルタ62の波長λ2の光ファイバ1における
透過率α2の関係がα1=α2となるように測定波長帯
を調整すれば、光ファイバ1の長さによる影響はなくな
る。
Next, FIG. 3A shows a main part of another embodiment. Radiant energy incident from an optical fiber (not shown) is branched into two via the half mirror 5, one light is incident on the detection element 72 via the filter 62 which transmits light of wavelength λ2, and the other light is Light having a predetermined wavelength λ1 is detected through the slit 10a by dispersing the light with a spectroscopic means 60 that generates a continuous spectrum such as a prism or a grating (diffraction grating), and making the angle of the spectroscopic means 60 variable and tilting with the adjusting means 91. It is incident on the element 71. The transmittance α of the optical fiber 1 having the wavelength λ1 by the spectroscopic means 60
If the measurement wavelength band is adjusted so that the relationship between 1 and the transmittance α2 of the filter 62 at the wavelength λ2 in the optical fiber 1 is α1 = α2, the influence of the length of the optical fiber 1 is eliminated.

【0018】また、図3(b)で変形例を示すように、
入射する放射エネルギーの光を、プリズム、グレーティ
ング(回折格子)等の連続スペクトルを発生する分光手
段60で分光し、所定位置の検出素子71にスリット1
0aを介し波長λ1の光を入射させ、また、別の所定位
置の検出素子72にスリット10bを介し波長λ2の光
を入射させる。これら検出素子71,72の位置を調整
手段92で可変とし調整することにより、分光手段60
で分光された光の特定波長λ1、λ2の光を検出素子7
1、72に入射する。この分光手段60による波長λ1
の光ファイバ1における透過率α1と、波長λ2の光フ
ァイバ1における透過率α2の関係がα1=α2となる
ように測定波長帯を調整すれば、光ファイバ1の長さに
よる影響はなくなる。
Further, as shown in a modified example in FIG. 3 (b),
Light of incident radiant energy is dispersed by a spectroscopic means 60 such as a prism or a grating (diffraction grating) that generates a continuous spectrum, and a slit 1 is formed on a detection element 71 at a predetermined position.
The light of wavelength λ1 is made to enter via 0a, and the light of wavelength λ2 is made to enter the detection element 72 at another predetermined position via slit 10b. By adjusting and adjusting the positions of these detection elements 71 and 72 by the adjusting means 92, the spectroscopic means 60
Of the light having specific wavelengths λ1 and λ2 dispersed by the detecting element 7
It is incident on 1, 72. Wavelength λ1 by this spectroscopic means 60
If the measurement wavelength band is adjusted so that the relationship between the transmittance α1 in the optical fiber 1 and the transmittance α2 in the optical fiber 1 having the wavelength λ2 is α1 = α2, the influence of the length of the optical fiber 1 is eliminated.

【0019】ところで、測定開始前に、あらかじめ理論
で求めた測定波長帯が実現されるように調整する必要が
あるが、実際に調整を行うには、図4で示すように、た
とえば図1で示した光ファイバ1の先端部1aを所定温
度T(K)の黒体炉11の空洞部に挿入し、黒体炉11
の温度を熱電対等の温度センサ12で検出し、測定手段
13で温度Tを測定し、指示手段13aで表示する。ま
た、光ファイバ1からの放射エネルギーは、たとえば図
1で示すハーフミラー5、フィルタ61、62、検出素
子71、72、増幅手段A1、A2、比率演算手段8
0、演算手段8等を含む放射温度計4に相当する測定手
段14で測定され、温度Sを指示手段14aに表示す
る。そして、調整手段9を調整して、各測定手段13、
14の指示手段13a,14aの指示温度T、Sが一致
するうにし、その後、光ファイバ1を測定に用いれば、
正しい温度Tが、光ファイバ1の長さに関係なく測定す
ることができる。
Before the measurement is started, it is necessary to make adjustments so that the theoretically determined measurement wavelength band is realized. To actually make the adjustments, as shown in FIG. 4, for example, in FIG. The tip 1a of the optical fiber 1 shown is inserted into the cavity of the black body furnace 11 at a predetermined temperature T (K),
The temperature is detected by the temperature sensor 12 such as a thermocouple, the measuring means 13 measures the temperature T, and the indicating means 13a displays it. The radiant energy from the optical fiber 1 is, for example, the half mirror 5, the filters 61 and 62, the detecting elements 71 and 72, the amplifying means A1 and A2, and the ratio calculating means 8 shown in FIG.
The temperature S is measured by the measuring unit 14 corresponding to the radiation thermometer 4 including 0 and the calculating unit 8 and the temperature S is displayed on the indicating unit 14a. Then, the adjusting means 9 is adjusted so that each measuring means 13,
If the indicating temperatures T and S of the indicating means 13a and 14a of 14 are made to coincide with each other and then the optical fiber 1 is used for measurement,
The correct temperature T can be measured regardless of the length of the optical fiber 1.

【0020】なお、以上2波長の放射温度計について説
明したが、3波長以上を利用した放射温度計についても
同様に適用して、光ファイバの長さに関係なく正しい温
度測定を行うことができる。
Although the radiation thermometer with two wavelengths has been described above, the same can be applied to a radiation thermometer using three or more wavelengths, and correct temperature measurement can be performed regardless of the length of the optical fiber. .

【0021】[0021]

【発明の効果】以上述べたように、この発明は、光ファ
イバを介し、2つの異なる測定波長帯の検出出力から2
色演算を行うとともに、測定を行う前に、測定波長帯の
一方もしくは双方の測定波長帯を調整し、各測定波長帯
の光ファイバにおける透過率が等しくなるようにしたも
のである。このように、透過率が等しい測定波長帯を用
いて2色演算を行っているので、光ファイバの透過率の
影響を受けることなく高精度の測温を行うことができ、
しかも、長さについての考慮は不要で、ファイバ長の変
化の影響を受けずに、連続的に長い時間測定が安定的、
高精度に可能となる。
As described above, according to the present invention, the detection output of two different measurement wavelength bands is output through the optical fiber.
In addition to performing color calculation, one or both measurement wavelength bands are adjusted before the measurement so that the transmittances of the optical fibers in the respective measurement wavelength bands become equal. In this way, since the two-color calculation is performed using the measurement wavelength band having the same transmittance, it is possible to perform highly accurate temperature measurement without being affected by the transmittance of the optical fiber.
Moreover, it is not necessary to consider the length, and the measurement is stable for a long time continuously without being affected by the change of the fiber length.
It becomes possible with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す構成説明図である。FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【図2】この発明の一実施例を示す特性説明図である。FIG. 2 is a characteristic explanatory view showing an embodiment of the present invention.

【図3】この発明の一実施例を示す構成説明図である。FIG. 3 is a structural explanatory view showing an embodiment of the present invention.

【図4】この発明の一実施例を示す構成説明図である。FIG. 4 is a structural explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ 1a 先端部 2 測定対象 3 繰り出し装置 4 放射温度計 5 ハーフミラー 60、61、62 分光手段 71、72 検出素子 80 比率演算手段 8 演算手段 9、91、92 調整手段 10a、10b スリット 11 黒体炉 12 温度センサ 13、14 測定手段 A1、A2 増幅手段 DESCRIPTION OF SYMBOLS 1 Optical fiber 1a Tip part 2 Measurement object 3 Feeding device 4 Radiation thermometer 5 Half mirrors 60, 61, 62 Spectral means 71, 72 Detection element 80 Ratio calculation means 8 Calculation means 9, 91, 92 Adjustment means 10a, 10b Slit 11 Blackbody furnace 12 Temperature sensor 13, 14 Measuring means A1, A2 Amplifying means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定対象から光ファイバを介して入射する
放射エネルギーを分光する分光手段と、この分光手段で
分光されたれた光のうち2つの異なる測定波長帯につい
ての光を検出する検出素子と、この検出素子の2つの測
定波長帯についての出力信号の比率を求め温度を演算す
る演算手段と、前記分光手段で分光され検出素子に入射
する2つの測定波長帯の一方又は両方を調整し両波長に
ついての光ファイバの透過率が等しくなるようにするた
めの調整手段とを備えたことを特徴とする光ファイバ放
射温度計。
1. A spectroscopic unit that disperses radiant energy that is incident from an object to be measured through an optical fiber, and a detection element that detects light in two different measurement wavelength bands among the light that is spectroscopically dispersed by the spectroscopic unit. , Adjusting one or both of the two measuring wavelength bands which are split by the spectroscopic means and are incident on the detecting element, and the calculating means for calculating the temperature of the output signal for the two measuring wavelength bands of the detecting element. An optical fiber radiation thermometer, comprising: an adjusting means for adjusting the transmittances of the optical fibers for wavelengths to be equal.
JP08555494A 1994-03-31 1994-03-31 Optical fiber radiation thermometer Expired - Lifetime JP3325700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08555494A JP3325700B2 (en) 1994-03-31 1994-03-31 Optical fiber radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08555494A JP3325700B2 (en) 1994-03-31 1994-03-31 Optical fiber radiation thermometer

Publications (2)

Publication Number Publication Date
JPH07270242A true JPH07270242A (en) 1995-10-20
JP3325700B2 JP3325700B2 (en) 2002-09-17

Family

ID=13862051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08555494A Expired - Lifetime JP3325700B2 (en) 1994-03-31 1994-03-31 Optical fiber radiation thermometer

Country Status (1)

Country Link
JP (1) JP3325700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023635A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Temperature measuring device, temperature measuring method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023635A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Temperature measuring device, temperature measuring method, and program

Also Published As

Publication number Publication date
JP3325700B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US4576486A (en) Optical fiber thermometer
US4572669A (en) Method and apparatus for a Fabry-Perot multiple beam fringe sensor
US5125739A (en) Triple spectral area pyrometer
US6344625B1 (en) Method and apparatus for monitoring the size variation and the focus shift of a weld pool in laser welding
US5729347A (en) Optical wavelength measurement system
US6555780B1 (en) Method for monitoring the size variation and the focus shift of a weld pool in laser welding
EP1120637A2 (en) Method and means for calibrating a grating monochromator
US6816803B1 (en) Method of optical pyrometry that is independent of emissivity and radiation transmission losses
JP3325700B2 (en) Optical fiber radiation thermometer
US6799137B2 (en) Wafer temperature measurement method for plasma environments
JP3219879B2 (en) Wavelength detector
JP3405589B2 (en) Optical fiber type temperature measuring device
US4605314A (en) Spectral discrimination pyrometer
KR20040010172A (en) Emissivity distribution measuring method and apparatus
US3669547A (en) Optical spectrometer with transparent refracting chopper
JPS6266130A (en) Minute cavity radiator device
WO2021080002A1 (en) Radiation thermometer, temperature measurement method, and temperature measurement program
JPH10104084A (en) Multicolor thermometer
JPS61189424A (en) Photometer
US7518113B2 (en) Pressure sensor
Sapritsky et al. Radiation Thermometry of Blackbodies
JPS6138806B2 (en)
JPS60151524A (en) Ambient temperature correcting method of fiber type radiation thermometer
JPS63234125A (en) Optical temperature measuring instrument
JP2005321199A (en) Transmission wavelength adjusting method of interference filter and transmission wavelength adjusting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140705

Year of fee payment: 12

EXPY Cancellation because of completion of term