JPH07270083A - Electromagnetic agitator for molten metal pouring ladle - Google Patents

Electromagnetic agitator for molten metal pouring ladle

Info

Publication number
JPH07270083A
JPH07270083A JP8105394A JP8105394A JPH07270083A JP H07270083 A JPH07270083 A JP H07270083A JP 8105394 A JP8105394 A JP 8105394A JP 8105394 A JP8105394 A JP 8105394A JP H07270083 A JPH07270083 A JP H07270083A
Authority
JP
Japan
Prior art keywords
molten metal
ladle
coil
iron core
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8105394A
Other languages
Japanese (ja)
Inventor
Kunio Okubo
国雄 大久保
Tomoharu Kobayashi
智晴 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP8105394A priority Critical patent/JPH07270083A/en
Publication of JPH07270083A publication Critical patent/JPH07270083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To increase an agitating force of molten metal and to prevent an increase in overheat and inductance of a core due to an eddy current by decreasing a leakage magnetic flux generated from a horizontal part of a pole end side of the metal side and increasing a magnetic flux density in the metal when an end of an electromagnetic agitator at the molten metal side pole is formed in a stair state of predetermined number of stages and approached to the metal. CONSTITUTION:An end 5 of a protrusion 12 of a core 1 of an electromagnetic agitator disposed on an outer periphery of a ladle 6 at the ladle 6 side is formed in a stair state, approached to molten metal 9. A coil 2a is so disposed as to be disposed along a gradient of the end 5. Water-cooled copper plates 3a, 3a' are brought into close contact with both upper and lower end faces of the protrusion 12 of the core 1, or a plurality of auxiliary coils are provided on a back surface side of a main coil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属および合金の溶解装
置において、取鍋内に保持された溶湯の局部的な凝固や
成分濃度の不均一化が生じることを防止するための電磁
撹拌装置の改良に関し、さらに詳しくは、断面が逆台形
の取鍋に設ける電磁撹拌装置の溶湯の撹拌力を高めるた
めの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic stirrer for a metal and alloy melting apparatus for preventing local solidification of molten metal held in a ladle and nonuniform concentration of components. More specifically, the present invention relates to an improvement for increasing the stirring force of molten metal of an electromagnetic stirring device provided in a ladle having an inverted trapezoidal cross section.

【0002】[0002]

【従来の技術】比較的大型の溶解装置では、溶解炉で溶
解した金属あるいは合金の溶湯を鋳型に鋳込む際に、溶
解炉の溶湯を鋳型まで運び鋳込むための中間容器として
取鍋を使用する。取鍋は、外壁である外皮が通常鋼板で
作られ、また溶湯と接する内壁部は通常耐火物製のレン
ガで内張りされて断熱構造にされ、保持している溶湯が
冷却し凝固しない構造にされている。溶解炉中にある溶
湯は、加熱源から与えられた熱エネルギ−による対流
や、高周波誘導加熱溶解炉のような電磁誘導加熱の場合
は渦電流による撹拌作用を伴うため、溶湯の合金成分は
常に均質に分布している。しかしながら、取鍋は溶解炉
中の溶湯を収容し鋳型まで運び鋳込むためのものであ
り、特別の撹拌手段を持たないため、溶解炉からの出湯
温度が低い場合あるいは取鍋内での溶湯の保持時間が長
い場合、溶湯が局部的に冷却して凝固したり、溶湯中の
合金成分の質量の違いによる不均質化、つまり濃度分布
を生じることになる。上記の局部的な凝固や濃度分布の
発生を防止するため、取鍋内の溶湯を撹拌する種々の手
段が講じられている。これら手段の1つである電磁撹拌
装置は、取鍋の外周に配置した鉄心に巻回したコイルに
交番電流を通電して溶湯中に侵入する交番磁界を発生さ
せて、(渦電流の作用により)溶湯を撹拌する。
2. Description of the Related Art In a relatively large melting apparatus, when a molten metal or alloy melted in a melting furnace is cast into a mold, a ladle is used as an intermediate container for carrying the molten metal in the melting furnace to the mold and casting it. To do. In the ladle, the outer wall, which is the outer skin, is usually made of steel sheet, and the inner wall part that contacts the molten metal is usually lined with refractory bricks to have an adiabatic structure so that the molten metal held does not cool and solidify. ing. Since the molten metal in the melting furnace is accompanied by convection due to the thermal energy provided by the heating source, and in the case of electromagnetic induction heating such as high-frequency induction heating melting furnace, it is accompanied by the stirring action by eddy current, so the alloy components of the molten metal are always It is evenly distributed. However, the ladle is for accommodating the molten metal in the melting furnace, carrying it to the mold and casting it, and does not have a special stirring means, so when the temperature of the molten metal discharged from the melting furnace is low or the molten metal in the ladle is When the holding time is long, the molten metal locally cools and solidifies, or non-uniformity due to difference in mass of alloy components in the molten metal, that is, concentration distribution occurs. In order to prevent the above-mentioned local solidification and the occurrence of concentration distribution, various means for stirring the molten metal in the ladle have been taken. An electromagnetic stirrer, which is one of these means, applies an alternating current to a coil wound around an iron core arranged on the outer periphery of a ladle to generate an alternating magnetic field that penetrates into the molten metal, ) Stir the melt.

【0003】一般に、取鍋の断面形状はその内容積、す
なわち収容する溶湯の量によって決められ、円筒形、略
楕円形および本発明に係わる逆台形のものがある。図6
(A)は従来技術の一例である取鍋外周に配置した電磁
撹拌装置を示す一部破断断面図で、図6(B)は図6
(A)の取鍋を取り外した状態の電磁撹拌装置の一部破
断平面図である。本図において符号6は逆台形の取鍋で
あり、電磁撹拌装置を使用する場合は、好ましくは非磁
性体製の外皮7の内側に所定の厚さの耐火物8が設けら
れて、その内側に溶湯9が保持されている。上記取鍋6
の外周側には、薄い磁性体金属が複数枚積層された環状
部11と、円周方向に所定の等しい間隔を保って上記環
状部の内径側端部から半径方向内方に向かって突出した
複数の突出部12aとを有する鉄心1aと、該鉄心1a
のそれぞれの突出部12aに巻回したコイル2cとが、
図示しない支持枠に鉄心1aが固定された状態で配置さ
れている。本発明においては電磁撹拌装置の鉄心および
コイルの構造が重要な要件であるので、本発明に直接関
係しない電磁撹拌装置のその他の従来の部材については
説明を省略する。断面が逆台形である取鍋6の側壁7a
の外周側に所定の間隔を有して、鉄心1aの突出部12
aに巻回したコイル2cを配置しているが、鉄心1aの
突出部12aの内径側先端面12iが垂直に形成されて
いるため、該内径側先端面12iと溶湯外縁部9aとの
水平方向距離は下部になるほど大きくなっている。
Generally, the cross-sectional shape of a ladle is determined by its internal volume, that is, the amount of molten metal to be contained, and there are a cylindrical shape, a substantially elliptical shape and an inverted trapezoidal shape according to the present invention. Figure 6
FIG. 6A is a partially cutaway sectional view showing an electromagnetic stirrer arranged on the outer periphery of a ladle, which is an example of a conventional technique, and FIG.
It is a partially broken plan view of the electromagnetic stirring device with the ladle of (A) removed. In the figure, reference numeral 6 is an inverted trapezoidal ladle, and when an electromagnetic stirrer is used, a refractory 8 having a predetermined thickness is preferably provided on the inside of an outer skin 7 made of a non-magnetic material. The molten metal 9 is held in the. Ladle 6 above
On the outer peripheral side of the annular portion 11, a plurality of thin magnetic metal layers are laminated, and the annular portion 11 is radially inwardly projected from the inner diameter side end portion of the annular portion with a predetermined equal interval in the circumferential direction. Iron core 1a having a plurality of protrusions 12a, and the iron core 1a
And the coil 2c wound around each of the protrusions 12a of
The iron core 1a is arranged in a fixed state on a support frame (not shown). In the present invention, the structure of the iron core and the coil of the electromagnetic stirrer is an important requirement, so description of other conventional members of the electromagnetic stirrer that are not directly related to the present invention will be omitted. Side wall 7a of ladle 6 having an inverted trapezoidal cross section
The protrusion 12 of the iron core 1a with a predetermined space on the outer peripheral side.
The coil 2c wound around a is arranged, but since the inner diameter side tip surface 12i of the protrusion 12a of the iron core 1a is formed vertically, the inner diameter side tip surface 12i and the molten metal outer edge portion 9a are arranged in the horizontal direction. The distance is larger toward the bottom.

【0004】図7は永久磁石の磁極部からの磁束の分布
を示す模式図(出典:図説電気・電子用語辞典、p20
4、実教出版)である。矢印で示した複数の磁束Mfは
磁極の先端面Pfから離れるに伴い磁石Mの中心軸から
左右(図では上下)に放物線状に分散し、磁束密度は磁
極の先端面Pfから前方への距離が増すと急激に減少す
る。図6において、磁性体である鉄心1aの内径側先端
面12iが磁極になり(以下の説明では磁極という)、
該磁極から生じる磁束は、向きが同じ(符号が反対の)
対向磁極がないため、図7に示したと同様に突出部12
aの中心軸Cを基準にして放射状に分散される。取鍋6
の側壁7aが下方に向かって狭くなるように傾斜してい
るため、溶湯の上部に比べ溶湯の下部では磁極と溶湯と
の距離が大きいことから、溶湯の下部では中心軸Cに直
角な面の磁束密度が上部に比べて小さい。電磁コイルに
交番電流を流し発生した交番磁界により溶湯を撹拌する
場合の溶湯の撹拌力の大きさは、次の式(1)で示され
る。 F∝Bg2 (1) ここで、F :溶湯の電磁撹拌力 Bg:磁束密度 式(1)によれば、溶湯中の電磁撹拌力は溶湯中の磁束
密度の二乗に比例するため、上記のように磁極から離れ
た溶湯の下部では撹拌力が不足することになる。従っ
て、撹拌力を高めるためには溶湯中の磁束密度を大きく
する必要がある。
FIG. 7 is a schematic diagram showing the distribution of magnetic flux from the magnetic poles of a permanent magnet (Source: Illustrated Dictionary of Electrical and Electronic Terms, p20
4, Practical Publishing). A plurality of magnetic fluxes Mf indicated by arrows are distributed parabolicly from the central axis of the magnet M to the left and right (up and down in the figure) as the distance from the magnetic pole tip surface Pf increases, and the magnetic flux density is the distance from the magnetic pole tip surface Pf to the front. It increases sharply and decreases sharply. In FIG. 6, the tip end surface 12i on the inner diameter side of the iron core 1a which is a magnetic body serves as a magnetic pole (hereinafter referred to as a magnetic pole),
The magnetic flux generated from the magnetic poles has the same direction (opposite signs)
Since there is no opposing magnetic pole, the protrusion 12 is the same as that shown in FIG.
Radially dispersed with reference to the central axis C of a. Ladle 6
Since the side wall 7a of the molten metal is inclined so as to narrow downward, the distance between the magnetic pole and the molten metal is larger in the lower portion of the molten metal than in the upper portion of the molten metal. The magnetic flux density is smaller than the upper part. The magnitude of the stirring force of the molten metal when an alternating current is passed through the electromagnetic coil and the generated alternating magnetic field stirs the molten metal is expressed by the following equation (1). F∝Bg 2 (1) where F: electromagnetic stirring force of the molten metal Bg: magnetic flux density According to the formula (1), the electromagnetic stirring force in the molten metal is proportional to the square of the magnetic flux density in the molten metal. As described above, the stirring force is insufficient in the lower part of the molten metal which is separated from the magnetic pole. Therefore, in order to increase the stirring power, it is necessary to increase the magnetic flux density in the molten metal.

【0005】このための方法としては、電磁撹拌装置と
して、 1)大型の電磁コイルを使用する、 2)電磁コイルに流す電流値を大きくする、 3)鉄心の先端面と溶湯との距離を小さくする、 などの対策が考えられる。上記1)の対策は装置の大型
化につながり効率的でも経済的でもなく、また上記2)
の対策は所定の容量のコイルに無理に大電流を流すと発
熱や短絡を引き起こし事故の原因となることから、これ
ら1)と2)の両対策は現実的ではない。3)の対策と
しては、先行技術である意匠819953号公報(意願
昭62−12976号:平成3年7月12日登録)が開
示している電磁撹拌機の鉄心構造がある。図8は上記先
行技術による電磁撹拌機の鉄心構造を示す一部破断断面
図である。符号16は断面形状が逆台形のるつぼで、該
るつぼ16の外周側に所定の間隔を有して電磁撹拌機が
配置されている。上記るつぼ16の傾斜した側壁17a
に平均して平行になるように鉄心21のるつぼ16側の
磁極先端部22iが階段状に3段に形成されている。上
記先行技術におけるるつぼは、それ自体が金属あるいは
合金の固体装入物を溶解するためのものであり、本発明
における中間容器としての取鍋とは異なるが、両者は溶
湯を収容する点で実質的には類似している。鉄心21の
磁極先端部22iを階段状にして溶湯の下部においても
磁極との距離を小さくすることによって、撹拌のための
磁力の効率は増している。
As a method for this, as the electromagnetic stirring device, 1) use a large electromagnetic coil, 2) increase the value of the current flowing in the electromagnetic coil, 3) decrease the distance between the tip surface of the iron core and the molten metal. Measures such as yes are possible. The measures of 1) above are not efficient or economical because they lead to the enlargement of the device, and 2) above.
Since the above-mentioned measures 1) and 2) are unrealistic, if a large current is forcibly applied to a coil having a predetermined capacity, it will cause heat generation or a short circuit, resulting in an accident. As a countermeasure against 3), there is an iron core structure of an electromagnetic stirrer disclosed in Japanese Patent No. 819953 (Japanese Patent Application No. 62-12976: registered July 12, 1991), which is a prior art. FIG. 8 is a partially broken cross-sectional view showing the iron core structure of the above-described prior art electromagnetic stirrer. Reference numeral 16 is a crucible having an inverted trapezoidal cross section, and an electromagnetic stirrer is arranged on the outer peripheral side of the crucible 16 with a predetermined interval. Inclined side wall 17a of the crucible 16
The magnetic pole tips 22i on the crucible 16 side of the iron core 21 are formed in three steps in a stepwise manner so as to be parallel to each other on average. The crucible in the above-mentioned prior art is for melting a solid charge of a metal or an alloy itself, and is different from the ladle as the intermediate container in the present invention, but both are substantially in the point of containing the molten metal. Are similar. The efficiency of the magnetic force for stirring is increased by making the magnetic pole tip 22i of the iron core 21 stepwise so as to reduce the distance to the magnetic pole even in the lower part of the molten metal.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記のよう
に溶湯側の磁極先端部を段数の少ない階段状にして溶湯
に近づけると、階段状の磁極先端部側に個々の表面積が
比較的大きな新たな水平部の表面22f(図8参照)が
形成されて、この表面から発生する磁束、すなわち洩れ
磁束が生じて、溶湯に達する磁束が少なくなると共に、
渦電流による鉄心の過熱やインダクタンスの増大が生じ
るという欠点を生じていた。本発明は、鉄心の過熱を防
止し、インダクタンスを小さく保つと共に、洩れ電流を
少なくして溶湯に達する磁束密度をさらに増大して撹拌
力を増すことを課題にした。
However, when the magnetic pole tip on the molten metal side is made closer to the molten metal by forming the magnetic pole tip on the molten metal side in a stepwise manner as described above, each of the stepped magnetic pole tip portions has a relatively large surface area. A horizontal horizontal surface 22f (see FIG. 8) is formed, and a magnetic flux generated from this surface, that is, a leakage magnetic flux is generated to reduce the magnetic flux reaching the molten metal.
There have been drawbacks such as overheating of the iron core and increase of inductance due to eddy currents. An object of the present invention is to prevent overheating of the iron core, keep the inductance small, reduce the leakage current to further increase the magnetic flux density reaching the molten metal, and increase the stirring force.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は以下の通りである。複数の薄いけい素
鋼板を積層した、環状あるいは半円の環状でその円周方
向に所定の等しい間隔で内方に突出した突出部の、 1)溶湯側の磁極先端部を多数の段数の階段状に形成
し、 2)コイルをこの階段状の鉄心の突出部の上端部を結ぶ
仮想線に平行に巻回し傾斜させ、且つコイルの内径側端
部をほぼ仮想線に沿って位置させ、 3)突出部の上下の両端面に水冷銅板を密接させ、 4)上記突出部の上記コイルの背面側(鉄心の環状部
側)に複数の補助コイルを設け、さらに、 5)上記鉄心の環状部の内径側の曲面に銅製水冷シ−ル
ド板を密接して、上記課題を解決した。
The structure of the present invention for solving the above problems is as follows. An annular or semi-circular annular protrusion formed by laminating a plurality of thin silicon steel plates and protruding inward at predetermined equal intervals in the circumferential direction thereof. 1) A stair with a large number of steps at the magnetic pole tip on the molten metal side. 2) the coil is wound parallel to an imaginary line connecting the upper ends of the projecting portions of the staircase-shaped iron core and inclined, and the inner diameter side end of the coil is positioned substantially along the imaginary line. ) A water-cooled copper plate is brought into close contact with both upper and lower end surfaces of the protrusion, 4) a plurality of auxiliary coils are provided on the back side of the coil of the protrusion (on the side of the annular portion of the iron core), and 5) on the annular portion of the iron core. The above problem was solved by closely contacting a copper water-cooled shield plate with the curved surface on the inner diameter side of.

【0008】[0008]

【作用】上記の本発明の構成による作用は以下の通りで
ある。 1)電磁撹拌装置の磁極先端部と溶湯との距離を小さく
して、またコイルの巻回方向を磁極先端部の傾斜と同一
にし且つ磁極周辺の鉄心の露出量を小さくして、溶湯内
に達する磁束密度を増大すると共に洩れ磁束を少なくし
て、さらに鉄心の過熱およびインダクタンスの増大を防
止する。 2)水冷銅板で鉄心の突出部の上端面と下端面とから冷
却して鉄心の過熱を防止する。 3)上記コイルの背面側に設けた補助コイルにより、電
源装置の性能とコイル特性の適合性を増し最適条件の設
定を容易にする。 4)鉄心の環状部の内径側面に銅製水冷シ−ルド板を設
けてインダクタンスを低下させる。
The operation of the above-described structure of the present invention is as follows. 1) Reduce the distance between the magnetic pole tip of the electromagnetic stirrer and the molten metal, make the winding direction of the coil the same as the inclination of the magnetic pole tip, and reduce the exposed amount of the iron core around the magnetic pole, The magnetic flux density to be reached is increased and the leakage magnetic flux is reduced to prevent the core from overheating and the inductance from increasing. 2) A water-cooled copper plate is used to cool from the upper end surface and the lower end surface of the protrusion of the iron core to prevent the iron core from overheating. 3) The auxiliary coil provided on the back side of the coil enhances the performance of the power supply device and the compatibility of the coil characteristics and facilitates the setting of optimum conditions. 4) A copper water-cooled shield plate is provided on the inner diameter side surface of the annular portion of the iron core to reduce the inductance.

【0009】[0009]

【実施例】【Example】

実施例1:図1(A)は本発明による電磁撹拌装置を配
置した取鍋の一部破断断面図であり、図1(B)は図1
(A)の取鍋を取り外した一部破断部分平面図である。
以下の説明において参照する図において、図6と図8と
に示した部材と同じ部材には同じ符号を付し重複する説
明は省略する。複数枚のけい素鋼板が積層された鉄心1
は円形の環状部11と、この環状部11の内径側に所定
の等しい間隔で設けられた突出部12と、を有してい
る。この突出部12の溶湯9側の先端部5は、5段から
10段までの複数の段(この例では5段)の階段状に形
成され、突出部12と一体に連続している環状部11の
外径側端部である背面(外周側表面)13は平坦な曲面
で垂直に揃えられている。
Example 1: FIG. 1 (A) is a partially broken sectional view of a ladle in which an electromagnetic stirring device according to the present invention is arranged, and FIG. 1 (B) is shown in FIG.
It is a partially broken partial top view which removed the ladle of (A).
In the drawings referred to in the following description, the same members as those shown in FIGS. 6 and 8 are designated by the same reference numerals, and the duplicated description will be omitted. Iron core 1 with multiple silicon steel sheets laminated
Has a circular annular portion 11 and projecting portions 12 provided on the inner diameter side of the annular portion 11 at predetermined equal intervals. The tip portion 5 of the protruding portion 12 on the molten metal 9 side is formed in a stepped shape of a plurality of steps from 5 steps to 10 steps (5 steps in this example), and is an annular portion which is integrally continuous with the protruding portion 12. A back surface (outer peripheral surface) 13 which is an end portion on the outer diameter side of 11 is vertically aligned with a flat curved surface.

【0010】断面図である図1(A)において、取鍋6
の側壁7aと鉄心1の先端部5の各段の上端部5bを結
ぶ仮想線Iは平行であり、従って溶湯外縁部9aとこの
仮想線Iも平行であり、溶湯外縁部9aと磁極である
(鉄心の)突出部12の先端部5と間の距離は磁極の上
端から下端まで概ね等しくされている。この結果、図6
に示した従来の技術による溶湯外周部と磁極の先端部の
距離A−Pに比べ、図1(A)に示した本発明による溶
湯外縁部と磁極の先端部の距離A′−Pは小さくなり、
磁束の分散が少なくなり、溶湯外縁部における磁束密度
が10〜15%増大した。このようにして、従来に比べ
溶湯中の磁束密度を10〜15%増大した結果、式
(1)による溶湯の撹拌力は20〜30%増大した。こ
の場合、前記の登録された意匠によるの3段の階段状に
比べ5段から10段と段数が増しているため、個々の段
の水平部5dの表面積が小さく、洩れ磁束を減少するこ
とができた。
In FIG. 1A, which is a sectional view, a ladle 6 is provided.
The virtual line I connecting the side wall 7a of the core and the upper end 5b of each step of the tip 5 of the iron core 1 is parallel. Therefore, the molten metal outer edge 9a is also parallel, and the molten metal outer edge 9a is the magnetic pole. The distance between the tip 5 of the protrusion 12 (of the iron core) and the tip 5 is substantially equal from the upper end to the lower end of the magnetic pole. As a result, FIG.
The distance A'-P between the outer edge of the molten metal and the tip of the magnetic pole according to the present invention shown in FIG. 1A is smaller than the distance AP between the outer periphery of the molten metal and the tip of the magnetic pole shown in FIG. Becomes
The dispersion of magnetic flux was reduced, and the magnetic flux density at the outer edge of the molten metal was increased by 10 to 15%. In this way, the magnetic flux density in the molten metal is increased by 10 to 15% as compared with the conventional case, and as a result, the stirring force of the molten metal according to the formula (1) is increased by 20 to 30%. In this case, since the number of steps is increased from 5 to 10 as compared with the above-described three-step staircase according to the registered design, the surface area of the horizontal portion 5d of each step is small and the leakage magnetic flux can be reduced. did it.

【0011】実施例2:実施例1による構成は磁極と溶
湯との距離を小さくする点で溶湯内の磁束密度を従来に
比べて大きくしたが、一方で、コイルから磁極先端まで
の距離を増して磁極先端面以外から磁束が発生するた
め、洩れ磁束の増大、鉄心の発熱およびインダクタンス
の増大などについて不十分な点を残している。この点を
さらに改良するためコイルの巻回方向を磁極先端の上端
部を結ぶ仮想線に平行に且つコイルの溶湯側先端部を階
段状の磁極先端部に近づけてコイルより溶湯に近い鉄心
の露出面積を小さくした。図2は上記のようにコイルの
巻回位置を変えた電磁撹拌装置を取鍋の外周に配置した
一部破断断面図である。この手段によって溶湯側の階段
状の磁極の先端部5側鉄心のほとんどの部分が傾斜され
たコイル2aにより覆われて、該コイル2aの巻線方向
に直角でない磁束は発生しにくくなる。すなわち、階段
状磁極の水平面からの洩れ磁束が生じにくくなる。この
場合の鉄心の露出量は、階段状の磁極の上端部を結ぶ仮
想線Iとコイルの溶湯側先端面との水平方向距離Hを0
〜20mmの範囲にすることにより好ましい値に設定で
きる。コイルの溶湯側先端面が仮想線Iより溶湯に近い
場合、溶湯と磁極との距離が大きくなり溶湯中の磁束密
度が減少する。また、水平方向距離Hが20mmより大
きくなると、鉄心の過熱とインダクタンスの増大が著し
くなる。
Embodiment 2 In the structure according to Embodiment 1, the magnetic flux density in the molten metal is made larger than that of the conventional one in that the distance between the magnetic pole and the molten metal is made smaller, while the distance from the coil to the magnetic pole tip is increased. As a magnetic flux is generated from a portion other than the magnetic pole tip surface, insufficient points remain for increasing leakage magnetic flux, heat generation of the iron core, and increasing inductance. In order to further improve this point, the winding direction of the coil is parallel to the imaginary line connecting the upper ends of the magnetic pole tips, and the molten metal side tip of the coil is brought closer to the stepped magnetic pole tip to expose the core closer to the molten metal than the coil. The area was reduced. FIG. 2 is a partially cutaway sectional view in which the electromagnetic stirrer in which the coil winding position is changed as described above is arranged on the outer periphery of the ladle. By this means, most of the iron core on the tip 5 side of the stepped magnetic pole on the molten metal side is covered with the inclined coil 2a, and it becomes difficult to generate magnetic flux that is not perpendicular to the winding direction of the coil 2a. That is, the leakage magnetic flux from the horizontal surface of the stepped magnetic pole is less likely to occur. In this case, the exposed amount of the iron core is 0 when the horizontal distance H between the imaginary line I connecting the upper ends of the staircase-shaped magnetic poles and the molten metal side end surface is 0.
It can be set to a preferable value by setting it in a range of up to 20 mm. When the end surface of the coil on the melt side is closer to the melt than the imaginary line I, the distance between the melt and the magnetic pole becomes large, and the magnetic flux density in the melt decreases. Further, when the horizontal distance H is larger than 20 mm, the iron core is overheated and the inductance is significantly increased.

【0012】本図の構成により図8の従来技術に比べ
て、漏れ磁束は大きく減少するためコイルのインダクタ
ンスは15〜30%減少した。容量の大きなコイルを使
用する場合は鉄心の半径方向長さが大きくなり、上記の
ようにコイルを傾斜させても鉄心の発熱量は大きくなり
易い。過熱が生じる恐れのある場合は、図2に示したよ
うに鉄心の上下両端面に水冷された銅または銅合金によ
る水冷銅板3a、3a′を密接させて過熱を防止する。
図3は一例としての鉄心の下端面に密接させる水冷銅板
の平面図である。水冷銅板3aは、3方の辺に例えば断
面が角形の銅管33がろう付けされた銅板32で構成さ
れ、銅管33中を流れる水により冷却される。
With the configuration shown in this figure, the leakage flux is greatly reduced as compared with the prior art shown in FIG. 8, so that the inductance of the coil is reduced by 15 to 30%. When a coil with a large capacity is used, the length of the iron core in the radial direction becomes large, and even if the coil is inclined as described above, the amount of heat generated by the iron core tends to become large. When there is a risk of overheating, the water-cooled copper plates 3a, 3a 'made of water-cooled copper or copper alloy are brought into close contact with the upper and lower end surfaces of the iron core to prevent overheating, as shown in FIG.
FIG. 3 is a plan view of a water-cooled copper plate brought into close contact with the lower end surface of the iron core as an example. The water-cooled copper plate 3a is composed of a copper plate 32 brazed with copper pipes 33 having a rectangular cross section on three sides, and is cooled by water flowing in the copper pipes 33.

【0013】実施例3:上記の各実施例においては鉄心
の全ての突出部にコイルが配置された電磁撹拌装置につ
いて説明したが、本発明による電磁撹拌装置の撹拌効果
をさらに増すために半周だけにコイルを配置した例を以
下に示す。図4は鉄心の突出部にコイルを巻回した半円
環状鉄心の概略平面配置図である。この場合鉄心1cの
環状部11はほぼ180°の半円に形成され、突出部1
2も環状部11の範囲内で等間隔に形成されている。こ
の半円環状の電磁撹拌装置では、全周にコイルを配置し
た電磁撹拌装置で生じるような向きが反対(符号が同
じ)の対向磁極からの磁力による減衰が生じにくいた
め、発生した磁束が有効に溶湯に作用して大きな撹拌力
が得られる。図4において、半円環状に形成された鉄心
1cを示したが、鉄心は全周(環状)に形成し、所定の
間隔で全周に設けられた突出部のうち半周の範囲の突出
部だけにコイルを巻回することによっても同様の効果が
得られる。
Embodiment 3: In each of the above-mentioned embodiments, the magnetic stirrer in which the coils are arranged on all the projecting portions of the iron core has been described. However, in order to further enhance the stirring effect of the electromagnetic stirrer according to the present invention, only half a circumference is provided. An example of arranging the coil in is shown below. FIG. 4 is a schematic plan layout view of a semi-annular iron core in which a coil is wound around a projecting portion of the iron core. In this case, the annular portion 11 of the iron core 1c is formed in a semicircle of approximately 180 °, and the protrusion 1
2 are also formed in the range of the annular part 11 at equal intervals. In this semi-annular electromagnetic stirrer, magnetic flux generated by the magnetic stirrer is effective because the magnetic force from the opposing magnetic poles with opposite directions (the same sign) does not occur as in the electromagnetic stirrer with coils all around. A large stirring force can be obtained by acting on the molten metal. In FIG. 4, the iron core 1c formed in a semi-annular shape is shown, but the iron core is formed in the entire circumference (annular shape), and only the protruding portion in the range of a half circumference is formed among the protruding portions provided in the entire circumference at a predetermined interval. The same effect can be obtained by winding the coil around.

【0014】実施例4:電磁力による撹拌装置は通常低
周波インバ−タ(0.5〜9.9Hz)により作動され
るが、この電源装置からの電圧および電流と、巻数、外
形や線径などによるコイルの特性との組合せが最適でな
い場合がある。上記組合せの不一致を解消する手段とし
て、実施例1から実施例3に示したコイルを主コイルと
し、これとは別に補助コイルを設けた。図5(A)はこ
の構成の実施例を示す一部破断断面図であり、図5
(B)は図5(A)の取鍋を取り外した一部破断平面図
である。符号2a′は主コイルであり、該主コイル2
a′の取鍋6と反対側の外表面に近接して複数(本図で
は2個)の補助コイル2b、2bを設けている。補助コ
イル2bの巻回方向は主コイルの巻回方向と平行にされ
ている。鉄心1の環状部11の内径側面13aには、銅
製水冷シ−ルド板3bを貼り付けている。複数の補助コ
イル2bの巻回方法は、同一巻数と同一外形寸法で巻く
場合、環状鉄心の円周方向に広く半径方向に狭く巻くこ
とが好ましい。また、隣り合う補助コイル間の間隔はよ
り小さい方が好ましい。上記の補助コイルの巻数を調整
することにより、電源側の性能と主コイルおよび補助コ
イルの特性との整合性が広い範囲で得られ、電磁撹拌装
置の設計における自由度(フレキシビリティ−)を向上
できる。また、銅製水冷シ−ルド板は鉄心からの漏れ磁
束を減少してインダクタンスを上記各実施例に比べてさ
らに数%低下させることを可能にした。
Example 4: An agitator using electromagnetic force is normally operated by a low frequency inverter (0.5 to 9.9 Hz), and the voltage and current from this power supply unit, the number of turns, the outer shape and the wire diameter are used. In some cases, the combination with the characteristics of the coil is not optimal. As a means for eliminating the mismatch of the above combinations, the coils shown in the first to third embodiments are used as the main coil, and an auxiliary coil is provided separately from the main coil. FIG. 5A is a partially cutaway sectional view showing an embodiment of this configuration.
5B is a partially cutaway plan view with the ladle of FIG. 5A removed. Reference numeral 2a ′ is a main coil, and the main coil 2
A plurality of (two in the figure) auxiliary coils 2b and 2b are provided in the vicinity of the outer surface of the a'on the side opposite to the ladle 6. The winding direction of the auxiliary coil 2b is parallel to the winding direction of the main coil. A copper water-cooled shield plate 3b is attached to the inner diameter side surface 13a of the annular portion 11 of the iron core 1. As for the winding method of the plurality of auxiliary coils 2b, when winding is performed with the same number of turns and the same outer dimensions, it is preferable that the auxiliary coil 2b is wound widely in the circumferential direction of the annular core and narrowly in the radial direction. Further, it is preferable that the distance between the adjacent auxiliary coils is smaller. By adjusting the number of turns of the above auxiliary coil, the matching between the performance on the power supply side and the characteristics of the main coil and auxiliary coil can be obtained in a wide range, and the degree of freedom (flexibility) in the design of the electromagnetic stirring device is improved. it can. Also, the copper water-cooled shield plate reduces the leakage magnetic flux from the iron core, thereby making it possible to further reduce the inductance by several% as compared with the above-mentioned embodiments.

【0015】[0015]

【発明の効果】取鍋外周に配置する電磁撹拌装置の取鍋
方向の磁極先端を階段状に形成して溶湯に近づけ、この
磁極先端の傾きに沿うようにコイルを配置し、鉄心の上
下両端面に水冷銅板を密接させ、あるいはコイルの背面
側に補助コイルを設けるなどして、インダクタンスの増
大および鉄心が過熱すること無しに溶湯中の磁束密度を
増大して溶湯の撹拌力を増大した。
The magnetic stirrer poles of the electromagnetic stirrer arranged on the outer periphery of the ladle are formed stepwise so as to approach the molten metal, and the coils are arranged along the inclination of the magnetic pole tip, and the upper and lower ends of the iron core are arranged. A water-cooled copper plate was brought into close contact with the surface or an auxiliary coil was provided on the back side of the coil to increase the magnetic flux density in the molten metal and increase the stirring force of the molten metal without increasing the inductance and overheating the iron core.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明による電磁撹拌装置を配置した
取鍋の一部破断断面図であり、(B)は(A)の取鍋を
取り外した一部破断平面図である。
FIG. 1A is a partially cutaway sectional view of a ladle in which an electromagnetic stirring device according to the present invention is arranged, and FIG. 1B is a partially cutaway plan view of the ladle shown in FIG. 1A.

【図2】コイルの巻回位置を変えた電磁撹拌装置を取鍋
の外周に配置した一部破断断面図である。
FIG. 2 is a partially cutaway sectional view in which an electromagnetic stirrer in which the winding position of a coil is changed is arranged on the outer circumference of a ladle.

【図3】突出部の下端面に使用する水冷銅板の平面図で
ある。
FIG. 3 is a plan view of a water-cooled copper plate used for the lower end surface of the protrusion.

【図4】半円状の電磁撹拌装置の鉄心構造を取鍋の外周
に配置した概略平面配置図である。
FIG. 4 is a schematic plan layout view in which an iron core structure of a semicircular electromagnetic stirring device is arranged on the outer periphery of a ladle.

【図5】(A)は取鍋の外周に配置した補助コイルを設
けた鉄心構造の一部破断断面図であり、(B)は(A)
の取鍋を取り外した一部破断平面図である。
5A is a partially cutaway sectional view of an iron core structure provided with an auxiliary coil arranged on the outer periphery of a ladle, and FIG. 5B is a sectional view of FIG.
It is a partially broken plan view with the ladle of FIG.

【図6】(A)は従来技術による電磁撹拌装置の鉄心構
造を取鍋の外周に配置した一部破断断面図であり、
(B)は(A)の取鍋を取り外した状態の一部破断平面
図である。
FIG. 6 (A) is a partially cutaway cross-sectional view in which the iron core structure of the electromagnetic stirring device according to the prior art is arranged on the outer periphery of the ladle,
(B) is a partially cutaway plan view of the state in which the ladle of (A) is removed.

【図7】永久磁石の磁極部からの磁束の分布を示す模式
図である。
FIG. 7 is a schematic diagram showing a distribution of magnetic flux from a magnetic pole portion of a permanent magnet.

【図8】は先行技術による電磁撹拌機の鉄心構造を取鍋
外周に配置した一部破断断面図である。
FIG. 8 is a partially cutaway cross-sectional view in which the iron core structure of the electromagnetic stirrer according to the prior art is arranged on the outer circumference of the ladle.

【符号の説明】[Explanation of symbols]

1 鉄心 2a、2c コイル 2a′ 主コイル 2b 補助コイル 3a、3a′ 水冷銅板 3b 銅製水冷シ−ルド板 5 先端部 6 取鍋 7 外皮 8 耐火物 9 溶湯 9a 溶湯外縁部 11 環状部 12 突出部 13 背面 13a 内径側面 C 中心軸 I 仮想線 DESCRIPTION OF SYMBOLS 1 Iron core 2a, 2c Coil 2a 'Main coil 2b Auxiliary coil 3a, 3a' Water-cooled copper plate 3b Copper water-cooled shield plate 5 Tip part 6 Ladle 7 Outer skin 8 Refractory material 9 Molten metal 9a Molten metal outer edge part 11 Annular part 12 Projection part 13 Back surface 13a Inner diameter side surface C Central axis I Virtual line

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶解炉で溶融した金属あるいは合金の溶
湯を鋳型に鋳込むため、溶湯を溶解炉から収容し鋳型ま
で運ぶ断面が逆台形の取鍋の外周側に近接して配置さ
れ、取鍋内に収容した溶湯の凝固と成分の不均質化を防
止するため、交番磁界を発生して溶湯を撹拌する複数の
磁性体薄板を重ね、環状で且つ円周方向に所定の等しい
間隔を保って環状部の内径側から半径方向内側に突出部
を設けた鉄心と、前記突出部に絶縁電線を巻回したコイ
ルとを備えた電磁撹拌装置において、 前記突出部の内径側先端部が上下方向に5段乃至10段
の階段状に、且つ、各段の上端部を結ぶ仮想線が前記取
鍋の外皮表面と平行に形成され、前記突出部の前記内径
側先端部と前記取鍋内の溶湯外縁部との水平方向距離が
小さく、溶湯内に生じる磁束密度が大きくされて、溶湯
の撹拌力が大きくされると共に、洩れ磁束が少なくされ
て前記鉄心の過熱やインダクタンスの増大を防止するこ
とを特徴とする注湯用取鍋の電磁撹拌装置。
1. A molten metal or alloy melted in a melting furnace is cast into a mold, so that the cross section for accommodating the molten metal from the melting furnace to the mold is arranged close to the outer peripheral side of an inverted trapezoidal ladle. In order to prevent solidification and inhomogeneity of the components of the molten metal contained in the pan, a plurality of magnetic thin plates that generate an alternating magnetic field and stir the molten metal are layered together and kept in a circular shape and at equal intervals in the circumferential direction. In an electromagnetic stirrer comprising an iron core provided with a protruding portion radially inward from the inner diameter side of the annular portion, and a coil in which an insulated wire is wound around the protruding portion, the inner diameter side end portion of the protruding portion is in the vertical direction. 5 to 10 steps, and an imaginary line connecting the upper ends of the steps is formed parallel to the outer surface of the ladle, and the inner end of the protruding portion and the inside of the ladle are formed. The horizontal distance from the outer edge of the molten metal is small, and the magnetic flux density generated in the molten metal is large. Rot and, together with the stirring force of molten metal is increased, leakage magnetic stirrer ladle for pouring, characterized in that to prevent overheating and inductance increase in the magnetic flux is small has been the core.
【請求項2】 前記コイルの前記取鍋側端面と、その反
対側端面とが前記仮想線と平行になるように絶縁電線を
巻回した請求項1記載の注湯用取鍋の電磁撹拌装置。
2. The electromagnetic stirrer for a pouring ladle according to claim 1, wherein the insulated wire is wound such that an end surface of the coil on the ladle side and an end surface on the opposite side thereof are parallel to the virtual line. .
【請求項3】 前記鉄心の上端面および下端面にそれぞ
れ水冷された銅板を密接した請求項1または2記載の注
湯用取鍋の電磁撹拌装置。
3. The electromagnetic stirrer for a pouring ladle according to claim 1, wherein a water-cooled copper plate is closely attached to the upper end surface and the lower end surface of the iron core.
【請求項4】 前記鉄心の前記環状部内径側に設けられ
た前記突出部のうち、ほぼ半周の範囲にある前記突出部
のみに前記コイルが巻回された請求項1から3までのい
ずれか一つの項に記載の注湯用取鍋の電磁撹拌装置。
4. The coil according to any one of claims 1 to 3, wherein the coil is wound only on the protruding portion in a range of a half circumference of the protruding portion provided on the inner diameter side of the annular portion of the iron core. An electromagnetic stirring device for a ladle for pouring as described in one item.
【請求項5】 前記鉄心が円周方向でほぼ180゜の範
囲で形成された概ね半円状であり、前記突出部がほぼ1
80゜の範囲に設けられている請求項1から3までのい
ずれか一つの項に記載の注湯用取鍋の電磁撹拌装置。
5. The iron core has a substantially semi-circular shape formed in a range of approximately 180 ° in the circumferential direction, and the projecting portion has approximately 1
The electromagnetic stirring device for a pouring ladle according to any one of claims 1 to 3, which is provided in a range of 80 °.
【請求項6】 前記突出部に巻回した前記コイルの前記
環状部側に近接して、前記コイルの絶縁電線の巻回方向
と平行に絶縁電線が巻回された複数の補助コイルを、ま
た前記鉄心の前記環状部の内径側面に銅製水冷シ−ルド
板を配置した請求項1から5までのいずれか一つの項に
記載の注湯用取鍋の電磁撹拌装置。
6. A plurality of auxiliary coils each having an insulated electric wire wound in parallel with the winding direction of the insulated electric wire of the coil, in the vicinity of the annular portion side of the coil wound around the protruding portion, The electromagnetic stirrer for a pouring ladle according to any one of claims 1 to 5, wherein a copper water-cooled shield plate is arranged on the inner diameter side surface of the annular portion of the iron core.
JP8105394A 1994-03-29 1994-03-29 Electromagnetic agitator for molten metal pouring ladle Pending JPH07270083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8105394A JPH07270083A (en) 1994-03-29 1994-03-29 Electromagnetic agitator for molten metal pouring ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8105394A JPH07270083A (en) 1994-03-29 1994-03-29 Electromagnetic agitator for molten metal pouring ladle

Publications (1)

Publication Number Publication Date
JPH07270083A true JPH07270083A (en) 1995-10-20

Family

ID=13735678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105394A Pending JPH07270083A (en) 1994-03-29 1994-03-29 Electromagnetic agitator for molten metal pouring ladle

Country Status (1)

Country Link
JP (1) JPH07270083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349293A (en) * 2005-06-17 2006-12-28 Kenzo Takahashi Melting furnace with stirrer, and stirrer for melting furnace
WO2018096368A1 (en) * 2016-11-26 2018-05-31 Altek Europe Limited Improvements in and relating to stirring of molten metals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349293A (en) * 2005-06-17 2006-12-28 Kenzo Takahashi Melting furnace with stirrer, and stirrer for melting furnace
WO2018096368A1 (en) * 2016-11-26 2018-05-31 Altek Europe Limited Improvements in and relating to stirring of molten metals
US11454447B2 (en) 2016-11-26 2022-09-27 Altek Europe Limited Stirring of molten metals

Similar Documents

Publication Publication Date Title
US4294304A (en) Electromagnetic centrifuging inductor for rotating a molten metal about its casting axis
JP2004530275A (en) Furnace with induction coil at bottom
EP0549984A2 (en) Levitating and fusing device
EP0754515B1 (en) Method and apparatus for giving vibration to molten metal in twin roll continuous casting machine
US7796674B2 (en) Cold crucible induction furnace
EP3849726B1 (en) Electromagnetic stirring device in a mould for casting aluminium or aluminium alloys, stirring method in a mould for casting aluminium or aluminium alloys, mould and casting machine for casting aluminium or aluminium alloys
JPH07270083A (en) Electromagnetic agitator for molten metal pouring ladle
US3335212A (en) Induction melting furnace
JP2692367B2 (en) Ladle bath water heating device
JP3122321B2 (en) Continuous casting equipment and melting furnace by induction heating with magnetic flux interruption device
KR20030016869A (en) A electromagnet stirrer in continuous casting machine
JP3055243B2 (en) Ladle molten metal heating device
JP3687289B2 (en) Unit pole configuration of the electromagnetic stirrer attached to the ladle
JPH10206027A (en) Cold crucible induction melting crucible
JP2007218483A (en) Cold crucible induction melting device
US20090021336A1 (en) Inductor for the excitation of polyharmonic rotating magnetic fields
KR200253509Y1 (en) A electromagnet stirrer in continuous casting machine
US3878311A (en) Channel-type electric induction heating furnace
JP2000088467A (en) Floating melting apparatus
JPH07103660A (en) Cold wall induction melting furnace
EP0641146B1 (en) Magnetic suspension melting apparatus
US3335250A (en) Arrangement for electromagnetic stirring of melted metals
US5192488A (en) Apparatus for heating molten in a ladle
JP2000176608A (en) Mold for continuous casting
GB2268103A (en) Apparatus for heating molten metal in a ladle including a vacuum container having a cover for receiving the ladle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224