JPH07269420A - Evaporated fuel supply control device for engine - Google Patents

Evaporated fuel supply control device for engine

Info

Publication number
JPH07269420A
JPH07269420A JP8769894A JP8769894A JPH07269420A JP H07269420 A JPH07269420 A JP H07269420A JP 8769894 A JP8769894 A JP 8769894A JP 8769894 A JP8769894 A JP 8769894A JP H07269420 A JPH07269420 A JP H07269420A
Authority
JP
Japan
Prior art keywords
fuel
air
amount
supply
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8769894A
Other languages
Japanese (ja)
Other versions
JP3491331B2 (en
Inventor
Futoshi Nishioka
太 西岡
Michio Matsushima
道男 松島
Shuji Terao
秀志 寺尾
Yasuyoshi Hori
保義 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP08769894A priority Critical patent/JP3491331B2/en
Publication of JPH07269420A publication Critical patent/JPH07269420A/en
Application granted granted Critical
Publication of JP3491331B2 publication Critical patent/JP3491331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To secure a large amount of purging under a rich condition by reducing an air-fuel ratio under a lean condition compared to the ruch condition where a large amount of evaporated fuel can be purged to an intake system, and setting a large reduction degree under the lean condition compared to that in the rich condition with a low intake amount. CONSTITUTION:At the time of purge control, purge executing condition is effected in the case that air-fuel ratio feedback control is executed and water temperature in an engine 1 is, for instance, 40 deg.C. Next, it is judged whether or not a lean burn execution condition is effected, which condition is that the engine water temperature is, for instance, 80 deg.C. When the answer is YES, a purge duty (Pduty) is set based on a map of an engine speed and charging efficiency (load). The Pduty is output to a purge solenoid valve 10 for purging evaporated fuel. When the lean burn execution condition is not effected, the Pduty is kept constant. When the purge execution condition is not effected, the Pduty is set zero for closing the purge solenoid valve 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料タンク等で発生す
る蒸発燃料の吸気系への供給量の制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of the supply amount of evaporated fuel generated in a fuel tank or the like to an intake system.

【0002】[0002]

【従来の技術】車両用エンジンでは、燃料タンク内に発
生する蒸発燃料をキャニスタにトラップ(吸着捕捉)
し、このトラップした蒸発燃料を運転時にキャニスタか
らパージ(離脱放出)してこれをエンジンの吸気系に供
給するようにして大気中への蒸発燃料の放散による大気
汚染を防止している。その場合に、パージした蒸発燃料
はパージ通路を介して吸気通路の集合部(サージタン
ク)に導入するのが普通である。
2. Description of the Related Art In a vehicle engine, a canister traps vaporized fuel generated in a fuel tank (adsorption trapping).
Then, the trapped vaporized fuel is purged (released and released) from the canister during operation and supplied to the intake system of the engine to prevent atmospheric pollution due to diffusion of the vaporized fuel into the atmosphere. In this case, the purged evaporated fuel is usually introduced into the collecting portion (surge tank) of the intake passage via the purge passage.

【0003】ところで、燃費性能を向上させるため所定
運転領域でエンジンの空燃比を理論空燃比よりも燃料リ
ーン側の所定空燃比にフィードバック制御するリーンバ
ーン制御が知られているが、このリーンバーン制御を行
い、かつ蒸発燃料の供給を行うエンジンにおいては、リ
ーンバーン制御中に蒸発燃料の供給量が変わると、フィ
ードバック制御には遅れがあるため燃料噴射量の修正が
遅れ、その間に空燃比がオーバーリッチになって燃費が
悪化したり、オーバーリーンになって失火等が生じ燃焼
安定性が悪化するといった問題が生ずる。そこで、例え
ば実開昭63−239355号公報に記載されているよ
うに、空燃比がリーン設定のときはパージ量を少なく
し、リッチ設定のときにはパージ量を多くするようパー
ジ量制御を補正することが従来から提案されている。
By the way, there is known a lean burn control for feedback controlling the air-fuel ratio of the engine to a predetermined air-fuel ratio on the fuel lean side of the stoichiometric air-fuel ratio in a predetermined operation region in order to improve fuel efficiency. In an engine that performs both fuel injection and fuel vapor supply, if the fuel vapor supply amount changes during lean burn control, the feedback control is delayed and the fuel injection amount is delayed. There is a problem in that the fuel economy becomes rich and fuel efficiency deteriorates, and the engine becomes over lean and misfires occur to deteriorate combustion stability. Therefore, for example, as described in Japanese Utility Model Laid-Open No. 63-239355, the purge amount control is corrected so that the purge amount is reduced when the air-fuel ratio is lean and the purge amount is increased when the air-fuel ratio is rich. Has been proposed in the past.

【0004】[0004]

【発明が解決しようとする課題】蒸発燃料のパージ量を
設定空燃比によって変える場合に、従来の制御は、設定
空燃比がリーンの時にはリッチの時に対してパージ量を
一定量減らすというものであったが、リーンの時に運転
状態に関係無くこのようにパージ量を一定量減らしたの
では、アイドル時のように吸入空気量が少ない領域では
パージ量の減量が十分でなくて燃焼安定性の悪化が防止
できなかったり、逆に、吸入空気量が多い領域では十分
なパージが行えないといった問題が生ずる。
When changing the purge amount of the evaporated fuel according to the set air-fuel ratio, the conventional control is to reduce the purge amount by a certain amount when the set air-fuel ratio is lean compared to when it is rich. However, if the purge amount is reduced by a certain amount in this way regardless of the operating condition when lean, it is not possible to reduce the purge amount sufficiently in the region where the intake air amount is small, such as during idling, and combustion stability deteriorates. Cannot be prevented, or conversely, sufficient purging cannot be performed in a region where the intake air amount is large.

【0005】また、従来のように蒸発燃料を吸気通路の
集合部に導入するのでは、各気筒への分配量にばらつき
があるため、パージ量はこの分配量のばらつきを考慮し
た設定とせざるを得ず、そのため、設定空燃比がリッチ
の時でも十分な大量パージが行えなかった。
Further, when the evaporated fuel is introduced into the collecting portion of the intake passage as in the conventional case, the distribution amount to each cylinder varies, so the purge amount must be set in consideration of the variation in the distribution amount. Therefore, even when the set air-fuel ratio was rich, a sufficient large amount of purge could not be performed.

【0006】本発明はこのような問題点を解決するため
のものであって、空燃比リッチの時に蒸発燃料の大量パ
ージを確保し、かつ、リーン時に蒸発燃料のパージ量を
確保しつつ燃焼安定性を向上させることを目的とする。
The present invention is intended to solve such a problem, and secures a large amount of vaporized fuel purge when the air-fuel ratio is rich and secures a purge amount of the vaporized fuel when lean, and stabilizes combustion. The purpose is to improve sex.

【0007】[0007]

【課題を解決するための手段】本発明は、空燃比リーン
の時に運転状態に応じてパージ量の減量度合を調整する
ことにより燃焼安定性を確保しつつ可能な限りのパージ
量を確保し、また、空燃比リッチの時には運転状態にか
かわらず一律にパージ量を設定するものとし、かつ、大
量パージを確保できるようにしたエンジンの蒸発燃料供
給制御装置を提供するものであって、請求項1に係る構
成は、燃料系で発生する蒸発燃料を吸気系へ供給する蒸
発燃料供給手段と、エンジンの燃焼室に供給される混合
気の設定空燃比に基づき、該設定空燃比が燃料リーンの
時に前記蒸発燃料の供給量を燃料リッチの時に対して減
量設定する供給量設定手段と、燃料リッチの時に前記蒸
発燃料の供給量の設定を吸入空気量にかかわらず一定と
するリッチ時一律設定手段と、燃料リーンの時に前記蒸
発燃料の供給量の燃料リッチ時に対する減量度合を低吸
気量程大きくするリーン時減量調整手段を備えたことを
特徴とする。
According to the present invention, when the air-fuel ratio is lean, the degree of reduction of the purge amount is adjusted in accordance with the operating state to secure combustion stability while ensuring the purge amount as much as possible. Further, when the air-fuel ratio is rich, the purge amount is set uniformly regardless of the operating state, and the evaporated fuel supply control device for an engine is provided which is capable of ensuring a large amount of purge. The configuration according to (1) is based on the evaporated fuel supply means for supplying the evaporated fuel generated in the fuel system to the intake system and the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine, when the set air-fuel ratio is lean. A supply amount setting means for setting the supply amount of the evaporated fuel to be reduced with respect to the fuel rich state, and a rich time uniform setting for setting the supply amount of the evaporated fuel to be constant regardless of the intake air amount when the fuel is rich. A constant means and said to weight loss degree against time fuel rich supply amount of the fuel vapor with the lean time loss adjusting means for increasing as the low intake air amount when the fuel-lean.

【0008】また、請求項2に係る構成は、燃料系で発
生する蒸発燃料を吸気系へ供給する蒸発燃料供給手段
と、前記蒸発燃料供給手段による蒸発燃料の供給量を設
定する供給量設定手段と、エンジンの燃焼室に供給され
る混合気の設定空燃比に基づき、設定空燃比が燃料リー
ンの時に、低吸気量程、前記蒸発燃料の供給量の燃料リ
ッチ時に対する減量度合を大きくするリーン時減量調整
手段を備えたことを特徴とする。
Further, according to a second aspect of the present invention, the fuel vapor supply means for supplying the fuel vapor generated in the fuel system to the intake system, and the supply amount setting means for setting the fuel vapor supply amount by the fuel vapor supply means And, based on the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine, when the set air-fuel ratio is lean, the lean intake amount is increased, and the decrease amount of the evaporated fuel supply amount with respect to the fuel rich is increased. It is characterized by having a weight loss adjusting means.

【0009】さらに、請求項3に係る構成は、燃料系で
発生する蒸発燃料を吸気系へ供給する蒸発燃料供給手段
と、前記蒸発燃料供給手段による蒸発燃料の供給量を設
定する供給量設定手段と、エンジンの燃焼室に供給され
る混合気の設定空燃比が少なくとも理論空燃比を含む燃
料リッチ側の設定の時に運転領域にかかわらず蒸発燃料
の供給量を一定とするリッチ時一律設定手段を備えたこ
とを特徴とする。ここで、前記設定空燃比は理論空燃比
とすることができる。また、前記運転領域は吸入空気量
により規定される運転領域とすることができる。
Further, according to the third aspect of the present invention, the evaporated fuel supply means for supplying the evaporated fuel generated in the fuel system to the intake system, and the supply amount setting means for setting the supplied amount of the evaporated fuel by the evaporated fuel supply means And a rich time uniform setting means for making the supply amount of the evaporated fuel constant regardless of the operating region when the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine is set to the fuel rich side including at least the stoichiometric air-fuel ratio. It is characterized by having. Here, the set air-fuel ratio can be a stoichiometric air-fuel ratio. Further, the operating area may be an operating area defined by the intake air amount.

【0010】また、これらの構成は、エンジンが多気筒
エンジンである場合に、前記蒸発燃料供給手段が各気筒
の独立吸気通路に対し個別に蒸発燃料を供給するもので
あるのが好適であり、特に各気筒の独立吸気通路毎に設
けられた燃料供給用インジェクタの噴口近傍に蒸発燃料
を供給するものであるのが好適である。
Further, in these configurations, when the engine is a multi-cylinder engine, it is preferable that the evaporated fuel supply means individually supplies evaporated fuel to the independent intake passage of each cylinder. In particular, it is preferable to supply the evaporated fuel to the vicinity of the injection port of the fuel supply injector provided for each independent intake passage of each cylinder.

【0011】また、インジェクタが噴口近傍に燃料微粒
化用のミキシングエアを供給するものである場合には、
ミキシングエア供給用の通路を介して蒸発燃料を供給す
るよう前記蒸発燃料供給手段を構成することができる。
When the injector supplies mixing air for atomizing the fuel near the injection port,
The evaporative fuel supply means may be configured to supply the evaporative fuel through the passage for supplying the mixing air.

【0012】また、前記燃料リーンの空燃比は、例えば
理論空燃比よりも燃料リーンの設定である。
The air-fuel ratio of the fuel lean is set to be leaner than the stoichiometric air-fuel ratio.

【0013】図1は本発明の上記構成を示す全体構成図
である。
FIG. 1 is an overall configuration diagram showing the above configuration of the present invention.

【0014】[0014]

【作用】本発明の請求項1に係るエンジンの蒸発燃料供
給制御装置によれば、燃料系で発生する蒸発燃料が吸気
系に供給され、その供給量はエンジンの燃焼室に供給さ
れる混合気の設定空燃比が大量パージ可能な燃料リッチ
の時に対して燃料リーンの時には減量される。そして、
リッチ時の供給量は吸入空気量にかかわらず一定とさ
れ、それによって大量パージが確保され、一方、リーン
時のリッチ時に対する減量度合は低吸気量程大きく設定
され、それによって、リーン時でも燃焼安定性への影響
が少ない高吸気量領域ではパージ量が確保され、低吸気
量領域で燃焼安定性の悪化が防止される。
According to the evaporated fuel supply control device for an engine of the first aspect of the present invention, the evaporated fuel generated in the fuel system is supplied to the intake system, and the supply amount thereof is the mixture gas supplied to the combustion chamber of the engine. The set air-fuel ratio is reduced when the fuel is lean, as compared with the fuel rich when a large amount of purge is possible. And
The rich air supply amount is constant regardless of the intake air amount, which ensures a large amount of purge, while the lean intake amount is set to be larger for a low intake air amount, which results in stable combustion even when lean. The purge amount is secured in the high intake amount region where the effect on the fuel efficiency is small, and the deterioration of combustion stability is prevented in the low intake amount region.

【0015】また、本発明の請求項2に係るエンジンの
蒸発燃料供給制御装置によれば、特に、エンジンの燃焼
室に供給される混合気の設定空燃比が燃料リーンの時
に、低吸気量程、前記蒸発燃料の供給量のリッチ時に対
する減量度合を大きくする制御が行われ、それによっ
て、リーン時でも燃焼安定性への影響が少ない高吸気量
領域ではパージ量が確保され、低吸気量領域で燃焼安定
性の悪化が防止される。
According to the engine fuel vapor supply control device of the second aspect of the present invention, in particular, when the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine is lean, the lower the intake air amount, Control is performed to increase the degree of decrease in the supply amount of the evaporated fuel when the supply amount is rich, whereby the purge amount is secured in the high intake amount region where the influence on combustion stability is small even when lean, and in the low intake amount region. Deterioration of combustion stability is prevented.

【0016】また、本発明の請求項3に係るエンジンの
蒸発燃料供給制御装置によれば、エンジンの燃焼室に供
給される混合気の設定空燃比が少なくとも理論空燃比を
含む燃料リッチ側の設定の時に運転領域にかかわらず蒸
発燃料の供給量を一定とする制御が行われ、それによっ
て、大量パージが確保される。
According to the third aspect of the present invention, there is provided the fuel vapor supply control system for the engine, wherein the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine is set to the fuel rich side including at least the stoichiometric air-fuel ratio. At this time, control is performed so that the supply amount of the evaporated fuel is constant regardless of the operating region, whereby a large amount of purge is secured.

【0017】また、本発明の請求項4に係るエンジンの
蒸発燃料供給制御装置によれば、エンジンに供給される
混合気の設定空燃比が理論空燃比の時に蒸発燃料の供給
量を一定とする制御が行われる。
Further, according to the evaporated fuel supply control device for an engine of the fourth aspect of the present invention, the supply amount of evaporated fuel is made constant when the set air-fuel ratio of the air-fuel mixture supplied to the engine is the stoichiometric air-fuel ratio. Control is performed.

【0018】また、本発明の請求項5に係るエンジンの
蒸発燃料供給制御装置によれば、エンジンに供給される
混合気の設定空燃比が少なくとも理論空燃比を含む燃料
リッチ側の設定の時に吸入空気量にかかわらず蒸発燃料
の供給量を一定とする制御が行われる。
According to the fifth aspect of the present invention, there is provided the fuel vapor supply control system for the engine, wherein the intake air is drawn when the set air-fuel ratio of the air-fuel mixture supplied to the engine is set to the fuel rich side including at least the stoichiometric air-fuel ratio. Control is performed so that the supply amount of evaporated fuel is constant regardless of the air amount.

【0019】また、本発明の請求項6に係るエンジンの
蒸発燃料供給制御装置の場合には、蒸発燃料が各気筒の
独立吸気通路に対し個別に供給され、また、特に蒸発燃
料が例えばミキシングエア用の通路を介して燃料供給用
インジェクタの噴口近傍に供給されることにより、分配
性が良くなり、各気筒への蒸発燃料供給量にばらつきが
少なくなって、空燃比が燃料リッチの時およびリーン時
の高吸気量領域において一層の大量パージが可能とな
る。また、このように蒸発燃料が気筒別に供給されるこ
とにより、気筒毎に蒸発燃料供給タイミングを設定する
ことが可能となり、したがって、吸気行程後半に燃料噴
射時期と合わせて蒸発燃料を供給するようにして、パー
ジ量の影響でフィードバック制御によるインジェクタか
らの噴射量が減少しても点火プラグ周りに濃混合気を確
保し成層化によるリーンバーンを確保するようにでき
る。
Further, in the case of the evaporated fuel supply control device for an engine according to the sixth aspect of the present invention, the evaporated fuel is individually supplied to the independent intake passage of each cylinder, and particularly, the evaporated fuel is, for example, mixing air. When the air-fuel ratio is fuel rich and lean when the air-fuel ratio is rich, the distribution is improved by being supplied to the vicinity of the injection port of the fuel supply injector through the fuel passage. In this case, a large amount of purge can be performed in the high intake amount region. Further, since the evaporated fuel is supplied to each cylinder in this way, it is possible to set the evaporated fuel supply timing for each cylinder. Therefore, it is possible to supply the evaporated fuel together with the fuel injection timing in the latter half of the intake stroke. As a result, even if the injection amount from the injector due to the feedback control decreases due to the influence of the purge amount, a rich air-fuel mixture can be secured around the spark plug, and lean burn due to stratification can be secured.

【0020】また、本発明の請求項7に係るエンジンの
蒸発燃料供給制御装置によれば、リーン時の設定が理論
空燃比よりも燃料リーンであることにより、エンジンの
燃費性能が向上する。
According to the fuel vapor supply control system for an engine of the seventh aspect of the present invention, the fuel efficiency of the engine is improved because the lean setting is leaner than the stoichiometric air-fuel ratio.

【0021】[0021]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図2は本発明の一実施例の全体図である。
この実施例において、エンジン1は4気筒であり、サー
ジタンク2から分岐する独立吸気通路3には気筒別に燃
料供給用のインジェクタ4が設置されている。これらイ
ンジェクタ4は、噴口近傍に燃料微粒化用のミキシング
エアを供給する所謂AMI(エアミックスインジェク
タ)であって、アイドル時および高負荷時に閉じるエア
制御バルブ5を備えたAMI用エア供給路6が下流側で
分岐して各インジェクタ4に接続されている。AMI用
エア供給路6には、また、エア制御バルブ5を迂回する
バイパス通路7が接続され、該バイパス通路7にはアイ
ドル時に微量エアを流すオリフィス8が設けられてい
る。
FIG. 2 is an overall view of an embodiment of the present invention.
In this embodiment, the engine 1 has four cylinders, and an injector 4 for supplying fuel for each cylinder is installed in an independent intake passage 3 branched from the surge tank 2. These injectors 4 are so-called AMIs (air mix injectors) that supply mixing air for atomizing fuel to the vicinity of the injection port, and an AMI air supply path 6 having an air control valve 5 that closes at idle and at high load is used. It branches on the downstream side and is connected to each injector 4. A bypass passage 7 that bypasses the air control valve 5 is also connected to the AMI air supply passage 6, and the bypass passage 7 is provided with an orifice 8 that allows a small amount of air to flow during idling.

【0023】また、図において、9は、キャニスタ(図
示せず)から延びるパージ通路であり、10はパージソ
レノイドバルブである。パージ通路9はAMI用エア供
給路6の分岐点上流に形成されたミキシングチャンバ1
1に接続されている。燃料タンク等の吸気系において発
生しキャニスタにトラップされた蒸発燃料は、所定の運
転領域においてパージ通路を介して上記ミキシングチャ
ンバ11に導かれ、AMI用エア供給路6を介して各イ
ンジェクタ4の噴口近傍に供給され、吸気行程後半に燃
料噴霧とともに各気筒の燃焼室12に供給される。
In the figure, 9 is a purge passage extending from a canister (not shown), and 10 is a purge solenoid valve. The purge passage 9 is formed in the mixing chamber 1 formed upstream of the branch point of the AMI air supply passage 6.
Connected to 1. The vaporized fuel generated in the intake system such as the fuel tank and trapped in the canister is guided to the mixing chamber 11 through the purge passage in a predetermined operation region, and then the injection port of each injector 4 through the AMI air supply passage 6. It is supplied to the vicinity and is supplied to the combustion chamber 12 of each cylinder together with fuel spray in the latter half of the intake stroke.

【0024】上記エア制御バルブ5は、アイドル時およ
び高負荷時には閉じられ、その他の運転領域で開かれ
る。
The air control valve 5 is closed at the time of idling and at the time of high load, and is opened at other operating regions.

【0025】また、上記パージソレノイドバルブ10
は、所定のパージ実行条件成立時に駆動されるもので、
所定のパージ量が得られるようエンジン1の運転状態に
応じてデューティー制御される。パージ量は、エンジン
の空燃比が理論空燃比(14.7)に設定される運転領
域では、エンジン回転数や負荷に関係なく一律に(デュ
ーティー比で例えば20%)設定される。一方、リーン
バーン制御中は、リッチ設定すなわち理論空燃比設定の
運転領域におけるよりもパージ量が少なくされ、しか
も、その減量度合は図3に示すように低吸気量程大きく
される。図3で数字はパージデューティーを示す。
Further, the purge solenoid valve 10
Is driven when a predetermined purge execution condition is satisfied,
The duty is controlled according to the operating state of the engine 1 so that a predetermined purge amount is obtained. The purge amount is set uniformly (for example, 20% in duty ratio) regardless of the engine speed and load in the operating region where the air-fuel ratio of the engine is set to the theoretical air-fuel ratio (14.7). On the other hand, during the lean burn control, the purge amount is made smaller than that in the operating region where the rich setting, that is, the stoichiometric air-fuel ratio is set, and the reduction amount thereof is increased as the intake air amount becomes lower as shown in FIG. The numbers in FIG. 3 indicate the purge duty.

【0026】つぎに、図4に示すフローチャートを参照
して上記パージ制御を具体的に説明する。
Next, the purge control will be specifically described with reference to the flow chart shown in FIG.

【0027】図4のフローチャートは、スタートする
と、ステップS1でパージ量設定のためエンジン回転数
とか吸入空気量といった各種信号を入力する。
When the flowchart of FIG. 4 starts, various signals such as the engine speed and the intake air amount are input for setting the purge amount in step S1.

【0028】つぎに、S2でパージ実行条件を判定す
る。ここでは、空燃比フィードバック制御実行中で、か
つ、エンジン水温が例えば40゜C以上であれば、パー
ジによる空燃比のずれをフィードバック制御によって吸
収できるということで、パージ実行条件成立(フラグx
pg=1)と判定する。
Next, the purge execution condition is determined in S2. Here, when the air-fuel ratio feedback control is being executed and the engine water temperature is, for example, 40 ° C. or higher, the deviation of the air-fuel ratio due to the purge can be absorbed by the feedback control, so that the purge execution condition is satisfied (flag x
It is determined that pg = 1).

【0029】S2でパージ実行条件成立の時は、S3
で、エンジン水温が例えば80゜C以上というリーンバ
ーン実行条件が成立するかどうかを見る。そして、リー
ンバーン実行条件成立(フラグxlean=1)であれ
ば、S4で、例えば図3に示すエンジン回転数Neと充
填効率Ce(負荷)のマップによってパージデューティ
ーPdutyを設定し、そのPdutyをS5でパージ
ソレノイドバルブ10に出力する。
When the purge execution condition is satisfied in S2, S3
Then, it is checked whether the lean burn execution condition that the engine water temperature is, for example, 80 ° C or higher is satisfied. If the lean burn execution condition is satisfied (flag xlean = 1), in S4, the purge duty Pduty is set in accordance with the map of the engine speed Ne and the charging efficiency Ce (load) shown in FIG. 3, and the Pduty is set to S5. To output to the purge solenoid valve 10.

【0030】また、S3でリーンバーン実行条件不成立
の時は、理論空燃比設定のフィードバック領域であると
いうことで、S6へ進み、Pdutyを一律にα(例え
ば20%)とし、それをS5でパージソレノイドバルブ
10に出力する。
When the lean burn execution condition is not satisfied in S3, it means that the stoichiometric air-fuel ratio setting is in the feedback region, so the routine proceeds to S6, where Pduty is uniformly set to α (for example, 20%), and it is purged in S5. Output to the solenoid valve 10.

【0031】また、S2でパージ実行条件不成立の時
は、S7でパージデューティーPdutyを0(ゼロ)
とする。
When the purge execution condition is not satisfied in S2, the purge duty Pduty is set to 0 (zero) in S7.
And

【0032】なお、上記実施例においてはパージした蒸
発燃料をAMI用エア供給路を介してインジェクタの噴
口近傍に供給するものを説明したが、蒸発燃料はインジ
ェクタの噴口近傍に直接供給することもできる。
Although the purged evaporated fuel is supplied to the vicinity of the injector nozzle through the AMI air supply passage in the above embodiment, the evaporated fuel can be supplied directly to the injector nozzle. .

【0033】本発明はその他いろいろな態様で実施でき
るものである。
The present invention can be implemented in various other modes.

【0034】[0034]

【発明の効果】本発明の請求項1に係るエンジンの蒸発
燃料供給制御装置によれば、エンジンの燃焼室に供給さ
れる混合気の設定空燃比が、吸気系への蒸発燃料の供給
量が設定空燃比が大量パージ可能な燃料リッチの時に対
して、燃料リーン時には減量され、リッチ時の供給量が
吸入空気量にかかわらず一定で、リーン時のリッチ時に
対する減量度合が低吸気量程大きく設定されることによ
り、リッチ時に大量パージを確保することができ、ま
た、リーン時には燃焼安定性への影響が少ない高吸気量
領域でパージ量を確保するとともに低吸気量領域で燃焼
安定性の悪化を防止することができる。
According to the engine evaporated fuel supply control device of the first aspect of the present invention, the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine is the amount of the evaporated fuel supplied to the intake system. Compared to the fuel rich when the set air-fuel ratio is large enough to be purged, the amount is reduced when the fuel is lean, the supply amount during rich is constant regardless of the intake air amount, and the degree of reduction relative to rich during lean is set to be large for low intake air amounts. As a result, a large amount of purge can be secured at the time of rich, and at the time of lean, the purge amount is secured at a high intake amount region that has little effect on combustion stability, and combustion stability is deteriorated at a low intake amount region. Can be prevented.

【0035】また、請求項2に係るエンジンの蒸発燃料
供給制御装置によれば、エンジンの燃焼室に供給される
混合気の設定空燃比が燃料リーン時に、低吸気量程、蒸
発燃料の供給量のリッチ時に対する減量度合を大きくす
る制御を行うことによって、リーン時でも燃焼安定性へ
の影響が少ない高吸気量領域でパージ量を確保するとと
もに低吸気量領域で燃焼安定性の悪化を防止することが
できる。
According to the evaporated fuel supply control device for an engine of the second aspect, when the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine is lean, the lower the intake air amount, the smaller the supply amount of the evaporated fuel. By performing control to increase the amount of reduction in the rich condition, it is possible to secure the purge amount in the high intake amount region that has little influence on the combustion stability even when lean, and to prevent the deterioration of the combustion stability in the low intake amount region. You can

【0036】また、請求項3に係るエンジンの蒸発燃料
供給制御装置によれば、エンジンの燃焼室に供給される
混合気の設定空燃比が少なくとも理論空燃比を含む燃料
リッチ側の設定の時に運転領域にかかわらず蒸発燃料の
供給量を一定とすることによって、大量パージを確保す
ることができる。
According to the fuel vapor supply control system for an engine of the third aspect of the invention, the engine is operated when the set air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine is set to the fuel rich side including at least the stoichiometric air-fuel ratio. A large amount of purge can be ensured by making the supply amount of the evaporated fuel constant regardless of the region.

【0037】また、本発明の請求項4に係るエンジンの
蒸発燃料供給制御装置によれば、エンジンに供給される
混合気の設定空燃比が理論空燃比の時に運転領域にかか
わらず蒸発燃料の供給量を一定とすることによって、大
量パージを確保することができる。
Further, according to the fuel vapor supply control system for an engine of the fourth aspect of the present invention, when the set air-fuel ratio of the air-fuel mixture supplied to the engine is the theoretical air-fuel ratio, the fuel vapor is supplied regardless of the operating region. A large amount of purge can be ensured by keeping the amount constant.

【0038】また、本発明の請求項5に係るエンジンの
蒸発燃料供給制御装置によれば、エンジンに供給される
混合気の設定空燃比が少なくとも理論空燃比を含む燃料
リッチ側の設定の時に運転領域にかかわらず蒸発燃料の
供給量を一定とすることによって、大量パージを確保す
ることができる。
According to the fuel vapor supply control system for an engine of the fifth aspect of the present invention, the engine is operated when the set air-fuel ratio of the air-fuel mixture supplied to the engine is set to the fuel rich side including at least the stoichiometric air-fuel ratio. A large amount of purge can be ensured by making the supply amount of the evaporated fuel constant regardless of the region.

【0039】また、請求項6に係るエンジンの蒸発燃料
供給制御装置によれば、蒸発燃料を各気筒の独立吸気通
路に対し個別に供給することによって、分配性を向上さ
せ、各気筒への蒸発燃料供給量のばらつきを少なくし
て、高吸気量領域での一層の大量パージを可能とするこ
とができる。また、このように蒸発燃料を気筒別に供給
することにより成層化によるリーンバーンを確保するよ
うにできる。また、請求項7のように蒸発燃料を燃料供
給用インジェクタの噴口近傍に供給する場合は、ミキシ
ングエア供給路を介して蒸発燃料を供給するようにでき
るともに、上記効果を顕著なものとすることができる。
Further, according to the evaporated fuel supply control device for an engine of the sixth aspect, the evaporated fuel is individually supplied to the independent intake passages of the respective cylinders, whereby the distributability is improved and the evaporation to each cylinder is improved. It is possible to reduce the variation in the fuel supply amount and enable further large-scale purging in the high intake amount region. Further, by supplying the evaporated fuel to each cylinder in this way, it is possible to secure lean burn due to stratification. Further, when the evaporated fuel is supplied to the vicinity of the injection port of the fuel supply injector as in claim 7, the evaporated fuel can be supplied through the mixing air supply passage, and the above effect is made remarkable. You can

【0040】また、請求項8に係るエンジンの蒸発燃料
供給制御装置によれば、ミキシングエア用の通路を介し
て蒸発燃料を供給することができる。
According to the fuel vapor supply control device for an engine of the eighth aspect, the fuel vapor can be supplied through the passage for mixing air.

【0041】また、請求項9に係るエンジンの蒸発燃料
供給制御装置によれば、リーン時の設定が理論空燃比よ
りも燃料リーンであることにより、エンジンの燃費性能
を向上させることができる。
According to the fuel vapor supply control system for an engine of the ninth aspect, the fuel efficiency of the engine can be improved because the lean setting is leaner than the stoichiometric air-fuel ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成図FIG. 1 is an overall configuration diagram of the present invention.

【図2】本発明の一実施例の全体図FIG. 2 is an overall view of an embodiment of the present invention

【図3】本発明の一実施例における制御マップFIG. 3 is a control map according to an embodiment of the present invention.

【図4】本発明の一実施例の制御を実行するフローチャ
ート
FIG. 4 is a flowchart for executing control according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 3 独立吸気通路 4 インジェクタ 6 AMI用エア供給路 9 パージ通路 10 パージソレノイドバルブ 1 engine 3 independent intake passage 4 injector 6 air supply passage for AMI 9 purge passage 10 purge solenoid valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀 保義 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyoshi Hori 3-1, Shinchi Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 燃料系で発生する蒸発燃料を吸気系へ供
給する蒸発燃料供給手段と、エンジンの燃焼室に供給さ
れる混合気の設定空燃比に基づき、該設定空燃比が燃料
リーンの時に前記蒸発燃料の供給量を燃料リッチの時に
対して減量設定する供給量設定手段と、燃料リッチの時
に前記蒸発燃料の供給量の設定を吸入空気量にかかわら
ず一定とするリッチ時一律設定手段と、燃料リーンの時
に前記蒸発燃料の供給量の燃料リッチ時に対する減量度
合を低吸気量程大きくするリーン時減量調整手段を備え
たことを特徴とするエンジンの蒸発燃料供給制御装置。
1. When the set air-fuel ratio is fuel lean based on a set air-fuel ratio of an air-fuel mixture supplied to a combustion chamber of an engine and an evaporated fuel supply means for supplying evaporated fuel generated in a fuel system to an intake system. Supply amount setting means for reducing the supply amount of the evaporated fuel with respect to when the fuel is rich, and uniform rich time setting means for setting the supply amount of the evaporated fuel to be constant regardless of the intake air amount when the fuel is rich. An engine fuel vapor supply control device, comprising: lean fuel consumption reducing means for increasing the fuel vapor rich fuel vapor reduction amount when the fuel is lean, as the intake air amount decreases.
【請求項2】 燃料系で発生する蒸発燃料を吸気系へ供
給する蒸発燃料供給手段と、前記蒸発燃料供給手段によ
る蒸発燃料の供給量を設定する供給量設定手段と、エン
ジンの燃焼室に供給される混合気の設定空燃比に基づ
き、設定空燃比が燃料リーンの時に、低吸気量程、前記
蒸発燃料の供給量の燃料リッチ時に対する減量度合を大
きくするリーン時減量調整手段を備えたことを特徴とす
るエンジンの蒸発燃料供給制御装置。
2. Evaporative fuel supply means for supplying the evaporated fuel generated in the fuel system to the intake system, supply amount setting means for setting the supply amount of the evaporated fuel by the evaporated fuel supply means, and supply to the combustion chamber of the engine. On the basis of the set air-fuel ratio of the air-fuel mixture that is set, when the set air-fuel ratio is lean, the lean amount reduction adjusting means is provided for increasing the amount of reduction of the supply amount of the evaporated fuel with respect to the fuel rich when the intake air amount is low. A feature of an engine fuel vapor supply control device.
【請求項3】 燃料系で発生する蒸発燃料を吸気系へ供
給する蒸発燃料供給手段と、前記蒸発燃料供給手段によ
る蒸発燃料の供給量を設定する供給量設定手段と、エン
ジンの燃焼室に供給される混合気の設定空燃比が少なく
とも理論空燃比を含む燃料リッチ側の設定の時に運転領
域にかかわらず蒸発燃料の供給量を一定とするリッチ時
一律設定手段を備えたことを特徴とするエンジンの蒸発
燃料供給制御装置。
3. Evaporative fuel supply means for supplying evaporated fuel generated in the fuel system to the intake system, supply amount setting means for setting the supply amount of evaporated fuel by the evaporated fuel supply means, and supply to the combustion chamber of the engine. An engine provided with a rich time uniform setting means for making the supply amount of the evaporated fuel constant regardless of the operating region when the set air-fuel ratio of the air-fuel mixture to be set is at the fuel rich side including at least the stoichiometric air-fuel ratio. Evaporative fuel supply control device.
【請求項4】 前記設定空燃比が理論空燃比である請求
項3記載のエンジンの蒸発燃料供給制御装置。
4. The evaporated fuel supply control device for an engine according to claim 3, wherein the set air-fuel ratio is a stoichiometric air-fuel ratio.
【請求項5】 前記運転領域が吸入空気量により規定さ
れる運転領域である請求項3記載のエンジンの蒸発燃料
供給制御装置。
5. The evaporated fuel supply control device for an engine according to claim 3, wherein the operating region is an operating region defined by an intake air amount.
【請求項6】 エンジンが多気筒エンジンであり、前記
蒸発燃料供給手段が各気筒の独立吸気通路に対し個別に
蒸発燃料を供給するものである請求項1,2または3記
載のエンジンの蒸発燃料供給制御装置。
6. The evaporated fuel for an engine according to claim 1, wherein the engine is a multi-cylinder engine, and the evaporated fuel supply means individually supplies evaporated fuel to an independent intake passage of each cylinder. Supply control device.
【請求項7】 蒸発燃料供給手段は、各気筒の独立吸気
通路毎に設けられた燃料供給用インジェクタの噴口近傍
に蒸発燃料を供給するものである請求項4記載のエンジ
ンの蒸発燃料供給制御装置。
7. The evaporated fuel supply control device for an engine according to claim 4, wherein the evaporated fuel supply means supplies evaporated fuel to the vicinity of the injection port of the fuel supply injector provided for each independent intake passage of each cylinder. .
【請求項8】 前記インジェクタは、噴口近傍に燃料微
粒化用のミキシングエアを供給するものであり、前記蒸
発燃料供給手段は、ミキシングエア供給用の通路を介し
て蒸発燃料を供給するものである請求項5記載の蒸発燃
料供給制御装置。
8. The injector supplies mixing air for atomizing fuel to the vicinity of the injection port, and the evaporated fuel supply means supplies evaporated fuel via a passage for supplying mixing air. The evaporated fuel supply control device according to claim 5.
【請求項9】 前記燃料リーンの空燃比は、理論空燃比
よりも燃料リーンの設定である請求項1または2記載の
エンジンの蒸発燃料供給制御装置。
9. The evaporated fuel supply control device for an engine according to claim 1, wherein the air-fuel ratio of the fuel lean is set to be leaner than the stoichiometric air-fuel ratio.
JP08769894A 1994-03-31 1994-03-31 Engine fuel supply control system Expired - Fee Related JP3491331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08769894A JP3491331B2 (en) 1994-03-31 1994-03-31 Engine fuel supply control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08769894A JP3491331B2 (en) 1994-03-31 1994-03-31 Engine fuel supply control system

Publications (2)

Publication Number Publication Date
JPH07269420A true JPH07269420A (en) 1995-10-17
JP3491331B2 JP3491331B2 (en) 2004-01-26

Family

ID=13922151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08769894A Expired - Fee Related JP3491331B2 (en) 1994-03-31 1994-03-31 Engine fuel supply control system

Country Status (1)

Country Link
JP (1) JP3491331B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009881A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing device of internal combustion engine
KR101360032B1 (en) * 2008-11-28 2014-02-11 현대자동차 주식회사 Method for canister purge control of vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009881A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing device of internal combustion engine
EP1106815A1 (en) * 1998-08-10 2001-06-13 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing device of internal combustion engine
US6438945B1 (en) 1998-08-10 2002-08-27 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
EP1106815A4 (en) * 1998-08-10 2010-03-10 Toyota Motor Co Ltd Evaporated fuel processing device of internal combustion engine
KR101360032B1 (en) * 2008-11-28 2014-02-11 현대자동차 주식회사 Method for canister purge control of vehicle

Also Published As

Publication number Publication date
JP3491331B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
JPH1068375A (en) Ignition timing control device for cylinder injection type internal combustion engine
JPH08128346A (en) Lean-burn engine for automobile
US20090031706A1 (en) Control apparatus and control method of an internal combustion engine
US6347612B1 (en) Control system for a direct injection engine of spark ignition type
JP3491331B2 (en) Engine fuel supply control system
JP2001098971A (en) Controller for spark-ignition direct injection engine
JP4552590B2 (en) Control device for internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JP3204113B2 (en) Exhaust gas recirculation control device
JP3748629B2 (en) Control device for internal combustion engine
JPH05223040A (en) Intake device for engine
JPH10141115A (en) Control device of in-cylinder injection internal combustion engine
JP4253825B2 (en) Control device for spark ignition direct injection engine
JP3206447B2 (en) Output control device for internal combustion engine
JPS61250381A (en) Intake device for internal combustion engine
JP4123612B2 (en) In-cylinder injection engine control device
JP2002054483A (en) Fuel control device for spark ignition type engine
JP3551744B2 (en) Exhaust gas recirculation control device for in-cylinder injection type internal combustion engine
JPH0727020A (en) Controller of engine
JP2006194197A (en) Fuel injection control method for dual jet type internal combustion engine
JP2000274295A (en) Idle rotation controller for internal combustion engine
JP2584841Y2 (en) Fuel injection device for internal combustion engine
KR100287683B1 (en) Method for controlling air fuel ratio of engine
JP3337411B2 (en) Evaporative fuel treatment system for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20111114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20131114

LAPS Cancellation because of no payment of annual fees