JPH07269379A - Hc discharge amount calculating method at engine with supercharger and valve timing setting method - Google Patents

Hc discharge amount calculating method at engine with supercharger and valve timing setting method

Info

Publication number
JPH07269379A
JPH07269379A JP6064118A JP6411894A JPH07269379A JP H07269379 A JPH07269379 A JP H07269379A JP 6064118 A JP6064118 A JP 6064118A JP 6411894 A JP6411894 A JP 6411894A JP H07269379 A JPH07269379 A JP H07269379A
Authority
JP
Japan
Prior art keywords
amount
fresh air
intake
ratio
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6064118A
Other languages
Japanese (ja)
Other versions
JP3632986B2 (en
Inventor
Yasuhide Yano
康英 矢野
Tadashi Nakagawa
正 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP06411894A priority Critical patent/JP3632986B2/en
Publication of JPH07269379A publication Critical patent/JPH07269379A/en
Application granted granted Critical
Publication of JP3632986B2 publication Critical patent/JP3632986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To realize the easy setting of valve timing by calculating an intake air filling amount and a new air blowing-through amount during a valve opening overlap period on the basis of intake and exhaust port prediction pressure and temperature, comparing its rate with the actual measurement value of an HC discharge amount, and calculating the HC discharge amount from its correlation characteristic. CONSTITUTION:An engine and various intake and exhaust fundamentals are set (S1), and the conditions of valve timing and an engine rotation number or the like are given (S2), and on the basis of these, the pressure and temperature of intake and exhaust ports 5, 6 are calculated by means of first dimension analysis (S3). Next, by making a first dimension analysis outcome a border condition, third dimension analysis is conducted only during an valve opening overlap period (S4), and the blowing-through amount of new air and a filling amount are sought and its ratio is calculated (S5). This valve and the new air amount conversion value of the capacity of a portion downstream of an injector are compared with each other, and in the case of being large, its conversion value is made to be a new air blowing-through amount. The correlation of an actually measured HC discharge amount and a calculated value is sought (S7), and an HC discharge amount due to blowing-through is sought (S8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、過給機付エンジンにお
いて吸・排気弁の開弁オーバラップ期間中の新気の吹き
抜けに伴って排出されるHCの排出量を算出する方法
と、それに基づくバルブタイミングの設定方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating the amount of HC discharged from a turbocharged engine as a result of blow-through of fresh air during an intake / exhaust valve opening overlap period, and The present invention relates to a valve timing setting method based on the above.

【0002】[0002]

【従来の技術】最近、自動車のエンジン等の性能評価、
設計等のため、コンピュータを用いた解析、計算により
各種状態量等を求めるような方法が提案されている。例
えば、特開平3−95681号公報には、エンジンとス
タータとをバネ要素と振動要素とからなる振動系に置き
換え、振動系をモデル化して、固有振動数の解析、モー
ダル質量等の演算、既に知られている振動系の単体特性
の利用などにより、振動特性を求めるようにしたシミュ
レーション方法が示されている。
2. Description of the Related Art Recently, performance evaluation of automobile engines,
For design and the like, a method of obtaining various state quantities and the like by analysis and calculation using a computer has been proposed. For example, in Japanese Unexamined Patent Publication (Kokai) No. 3-95681, the engine and the starter are replaced with a vibration system including a spring element and a vibration element, and the vibration system is modeled to analyze the natural frequency, calculate modal mass, etc. A simulation method has been disclosed in which the vibration characteristic is obtained by utilizing the known single characteristic of the vibration system.

【0003】また、文献「マツダ技報(1988 NO
6)」には、シリンダ、サージタンク、エアクリーナお
よびこれらの間の吸気管等からなるエンジンの吸気系に
つき、各部の圧力、温度、流量等をコンピュータシミュ
レーションにより求める方法が示されている。この方法
は、上記吸気系を管モデル、容器モデル、境界モデル等
のサブモデルの組合せとしてモデル化し、その各サブモ
デルについて状態量の演算を行なう。例えば、管モデル
については壁面摩擦係数、曲がり損失、管壁との熱交換
等を考慮した質量、運動量、エネルギーの各保存式を基
にして、管を等分割した各分割点での状態量から微少時
間後の状態量を求め、容器モデルについてはエネルギー
平衡式に基づいて容器内の状態量の変化等を求めるとい
うような演算を行なう。そして、各モデルについての演
算を、相互に演算値を反映させつつ状態量が収束するま
で繰返し行なうようにしている。
In addition, the document "Mazda Technical Report (1988 NO
6) ”shows a method of obtaining the pressure, temperature, flow rate, etc. of each part of the intake system of an engine, which is composed of a cylinder, a surge tank, an air cleaner, and an intake pipe therebetween, by computer simulation. In this method, the intake system is modeled as a combination of sub models such as a pipe model, a container model, and a boundary model, and the state quantity is calculated for each sub model. For example, for a pipe model, based on the conservation equations for the wall friction coefficient, bending loss, heat exchange with the pipe wall, mass, momentum and energy The state quantity after a minute time is obtained, and for the container model, the calculation such as the change of the state quantity in the container is calculated based on the energy balance equation. Then, the calculation for each model is repeated until the state quantities converge while mutually reflecting the calculated values.

【0004】このようにコンピュータを利用した解析、
演算により各種状態量などを求めるようにすると、設計
段階において諸元の設定、変更等を行なう場合に、その
都度試作して試験的に状態量を調べるようにする必要が
なく、エンジン等の評価およびそれに応じた諸元の決定
等を机上で簡単に行なうことができる。
In this way, analysis using a computer,
By calculating various state quantities by calculation, it is not necessary to make a trial manufacture each time to set or change specifications in the design stage, and to check the state quantity on a trial basis. And it is possible to easily make decisions such as specifications on the desk.

【0005】[0005]

【発明が解決しようとする課題】ところで、吸気通路に
過給機を設けた過給機付エンジンでは、排気弁の開弁期
間と吸気弁の開弁期間とがオーバラップする開弁オーバ
ラップ期間中に、過給機により加圧された新気が燃焼室
に送り込まれることで燃焼室内の掃気作用が得られると
いう利点がある反面、新気の一部が排気ポートに吹き抜
けて、その吹き抜け新気に含まれる燃料により、HC排
出量が増加する可能性がある。そして、新気の吹き抜け
量には、開弁オーバラップ期間の長さが関係するため、
掃気性をもたせつつ新気の吹き抜けによるHC排出量の
増大を抑えるように、吸・排気弁のバルブタイミング
(開弁オーバラップ期間の長さ)を適正に設定すること
が要求される。そして、設計段階等でこのような要求を
満足すべく検討を行なうためには、新気の吹き抜けによ
るHC排出量を調べる必要がある。
By the way, in an engine with a supercharger in which a supercharger is provided in the intake passage, a valve open overlap period in which the exhaust valve open period and the intake valve open period overlap each other. While there is an advantage that the scavenging action inside the combustion chamber can be obtained by sending the fresh air pressurized by the supercharger into the combustion chamber, part of the fresh air blows through the exhaust port and The HC emissions may increase due to the fuel contained in the air. Since the amount of fresh air blown through is related to the length of the valve opening overlap period,
It is required to properly set the valve timing (length of the valve opening overlap period) of the intake / exhaust valve so as to suppress scavenging property and suppress an increase in HC emission amount due to blow-through of fresh air. Then, in order to study such requirements at the design stage or the like, it is necessary to examine the amount of HC emission due to blow-through of fresh air.

【0006】従来、このような場合にHC排出量を計算
で精度良く求める方法が開発されておらず、試作機につ
いてHC排出量を実測しているのが実情である。しか
し、設計段階でバルブタイミングや吸気系の諸元等を種
々変更してHC排出量を調べようとすると、その都度試
作して測定装置により実測を行なう必要があり、その作
業が非常に面倒なものとなる。
Conventionally, no method has been developed for accurately calculating the HC emission amount in such a case, and the HC emission amount is actually measured for the prototype. However, if it is desired to check the HC emission amount by changing the valve timing, specifications of the intake system, etc. at the design stage, it is necessary to make a prototype each time and measure it with a measuring device, which is very troublesome work. Will be things.

【0007】本発明は、上記の事情に鑑み、設計段階な
どでバルブタイミング等を種々変更して新気の吹き抜け
によるHC排出量を調べるような場合に、その都度実測
を行なう必要がなく、計算によって簡単に、しかも精度
良くHC排出量を求めることができる過給機付エンジン
におけるHCの排出量算出方法を提供し、またこの方法
を利用してバルブタイミングを机上で容易に設定するこ
とができるバルブタイミング設定方法を提供することを
目的とする。
In view of the above circumstances, the present invention does not need to perform actual measurement each time when the HC emission amount due to blow-through of fresh air is changed by variously changing the valve timing and the like at the designing stage, etc. Provides a method for calculating the amount of HC emissions in a supercharged engine that can easily and accurately determine the amount of HC emissions, and by using this method, the valve timing can be easily set on the desk. It is an object to provide a valve timing setting method.

【0008】[0008]

【課題を解決するための手段】請求項1に係る過給機付
エンジンにおけるHCの排出量算出方法は、過給機付エ
ンジンにおける吸・排気弁の開弁オーバラップ期間中の
HC排出量を算出する方法であって、エンジン諸元を設
定するとともに、吸・排気ポートの圧力および温度を予
測し、これらに基づき、上記開弁オーバラップ期間中の
排気ポートへ新気の吹き抜け量と燃焼室への吸気の充填
量とを計算して、上記充填量に対する上記吹き抜け量の
割合である吹き抜け割合を計算し、一方、燃焼室からの
HC排出量を実測し、同一条件下での上記吹き抜け割合
の計算値と上記HC排出量の実測値とを比較して、上記
吹き抜け割合とHC排出量との対応関係を示す相関特性
を求め、この相関特性から各種条件下でのHCの排出量
を算出するようにしたものである。
According to a first aspect of the present invention, there is provided a method for calculating an amount of HC emissions in a supercharged engine, wherein an amount of HC emissions during a valve opening overlap period of intake / exhaust valves in a supercharged engine is calculated. This is a method of calculating, by setting the engine specifications, predicting the pressure and temperature of the intake and exhaust ports, and based on these, the amount of fresh air blown into the exhaust port and the combustion chamber during the valve opening overlap period. The amount of intake air to the intake air is calculated, and the blow-through ratio, which is the ratio of the blow-through amount to the fill amount, is calculated. Meanwhile, the HC discharge amount from the combustion chamber is measured, and the blow-through ratio under the same conditions. Of the HC emission amount is compared with the measured value of the HC emission amount to obtain a correlation characteristic showing the correspondence relationship between the blow-through ratio and the HC emission amount, and the HC emission amount under various conditions is calculated from this correlation characteristic. To do Those were.

【0009】この方法において、吸気ポートにおける上
記インジェクタより下流の部分の容積を新気量に換算し
た値と、上記新気吹き吹け量の計算値とを比較し、この
新気吹き吹け量が上記インジェクタ下流の容積の換算値
よりも大きい場合には、インジェクタ下流の容積の換算
値を新気吹き抜け量とすることが好ましい(請求項
2)。
In this method, a value obtained by converting the volume of a portion of the intake port downstream of the injector into a fresh air amount is compared with a calculated value of the fresh air blowing amount, and the fresh air blowing amount is When it is larger than the converted value of the volume downstream of the injector, it is preferable to use the converted value of the volume downstream of the injector as the fresh air blow-through amount (claim 2).

【0010】また、上記排気ポートへの新気の吹き抜け
量を、吸気ポート、燃焼室および排気ポートにわたる新
気と既存ガスとの混合状態の推移について三次元解析を
行なうことにより求めることが好ましい(請求項3)。
Further, the amount of fresh air blown through to the exhaust port is preferably obtained by performing a three-dimensional analysis on the transition of the mixed state of the fresh air and the existing gas over the intake port, the combustion chamber and the exhaust port ( Claim 3).

【0011】この請求項3の発明において、上記吸・排
気ポートの圧力および温度を一次元解析により求めると
ともに、排気ポートへの新気の吹き抜け量を求めるため
の三次元解析を開弁オーバラップ期間中のみ行なうこと
が好ましい(請求項4)。
In the third aspect of the invention, the pressure and temperature of the intake / exhaust port are obtained by one-dimensional analysis, and the three-dimensional analysis for obtaining the amount of fresh air blown into the exhaust port is performed by the valve opening overlap period. It is preferable to carry out only inside (Claim 4).

【0012】さらに、上記三次元解析に基づき、排気ガ
ス中の新気割合と燃焼室内ガス中の新気割合との比を近
似式で与え、その後にHC排出量の演算を行なうときに
は上記近似式を用いて吹き抜け割合を一次元解析による
計算で求めることが好ましい(請求項5)。
Further, based on the above three-dimensional analysis, the ratio of the fresh air ratio in the exhaust gas and the fresh air ratio in the combustion chamber gas is given by an approximate expression, and when the HC emission amount is subsequently calculated, the above approximate expression is given. It is preferable to calculate the blow-through ratio by using one-dimensional analysis (claim 5).

【0013】請求項6に係るバルブタイミング設定方法
は、請求項1乃至5のいずれかに記載のHCの排出量算
出方法により求めたHC排気量と吸・排気弁のバルブタ
イミングとを対比させて、各種バルブタイミングにおけ
るHC排出量を調べ、これに基づいてバルブタイミング
を設定するようにしたものである。
According to a sixth aspect of the present invention, there is provided a valve timing setting method which compares the HC exhaust amount obtained by the HC emission amount calculating method according to any one of the first to fifth aspects with the intake / exhaust valve valve timing. The amount of HC discharged at various valve timings is checked, and the valve timing is set based on this.

【0014】[0014]

【作用】請求項1に係るHCの排出量算出方法による
と、上記開弁オーバラップ期間中の新気の吹き抜け量と
充填量との割合である吹き抜け割合が演算により求めら
れる。そして、この吹き抜け割合だけではHC排出量の
絶対値がわからないが、この吹き抜け割合の計算値とH
C排出量の実測値との対比に基づいて吹き抜け割合とH
C排出量との相関特性が求められ、この相関特性から上
記吹き抜け割合の計算値に応じてHC排出量が計算で簡
単に、かつ精度良く求められる。上記HC排出量の実測
は、相関関係を求める際に行なわれるだけであって、相
関特性が求められた後は実測を必要とせずにHC排出量
が計算される。
According to the HC emission amount calculating method of the first aspect, the blow-through ratio, which is the ratio between the blow-through amount and the filling amount of fresh air during the valve opening overlap period, is calculated. Although the absolute value of the HC emission amount cannot be known only by this blow-through ratio, the calculated value of this blow-through ratio and H
The blow-through rate and H
A correlation characteristic with the C emission amount is obtained, and the HC emission amount can be obtained easily and accurately by calculation from the correlation characteristic according to the calculated value of the blow-through ratio. The actual measurement of the HC emission amount is performed only when the correlation is obtained, and after the correlation characteristic is obtained, the HC emission amount is calculated without requiring the actual measurement.

【0015】この方法において、請求項2記載のように
すると、HC排出量に関与しないインジェクタ上流から
の新気が上記吹き抜け量に含まれている場合にその分が
上記吹き抜け量の計算値から除外されることとなり、こ
れより、上記相関特性が精度良く求められることとな
る。
In this method, according to the second aspect, when the fresh air from the upstream of the injector that does not contribute to the HC emission amount is included in the blow-through amount, that amount is excluded from the calculated value of the blow-through amount. As a result, the above correlation characteristics can be obtained with high accuracy.

【0016】また、請求項3記載のようにすると、三次
元解析により新気の吹き抜け量が精度良く求められ、こ
れに伴い、上記吹き抜け割合および上記相関特性が精度
良く求められることとなる。
Further, according to the third aspect, the blow-through amount of the fresh air can be accurately obtained by the three-dimensional analysis, and accordingly, the blow-through ratio and the correlation characteristic can be accurately obtained.

【0017】請求項4記載のようにすると、吸・排気ポ
ートの圧力および温度が一次元解析による計算で簡単
に、かつ精度良く求められるとともに、一次元解析と比
べると計算が複雑な三次元解析は、上記開弁オーバラッ
プ期間についてだけ行なえばよいこととなる。
According to the fourth aspect, the pressure and temperature of the intake / exhaust port can be easily and accurately obtained by the calculation by the one-dimensional analysis, and the three-dimensional analysis is more complicated than the one-dimensional analysis. In this case, only the above-mentioned valve opening overlap period should be performed.

【0018】請求項5記載のようにすると、上記近似式
が与えられた後は、これを用いた一次元解析により上記
吹き抜け割合が計算されることにより、計算が簡略化さ
れ、計算時間が短縮される。
According to the fifth aspect, after the approximate expression is given, the blow-through ratio is calculated by one-dimensional analysis using the approximate expression, so that the calculation is simplified and the calculation time is shortened. To be done.

【0019】請求項6に係るバルブタイミング設定方法
によると、上記のHCの排出量算出方法が利用されて、
バルブタイミングの設定が容易に行なわれることとな
る。
According to the valve timing setting method of the sixth aspect, the above-mentioned HC emission amount calculation method is utilized,
The valve timing can be easily set.

【0020】[0020]

【実施例】図1は過給機付エンジンを模式的に示し、こ
の図において、エンジンの各シリンダ1には吸気通路2
および排気通路3が接続され、各シリンダ1の燃焼室4
に吸気通路下流端側の吸気ポート5および排気通路上流
端側の排気ポート6が開口している。上記吸気通路2に
は過給機7が設けられ、図示の例では機械式過給機が設
けられている。さらに吸気通路2にはインタークーラ
8、サージタンク9等が設けられ、また吸気ポートの近
傍に燃料噴射を行なうインジェクタ10が配設されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows an engine with a supercharger. In this figure, each cylinder 1 of the engine has an intake passage 2
And the exhaust passage 3 are connected, and the combustion chamber 4 of each cylinder 1 is connected.
An intake port 5 on the downstream end side of the intake passage and an exhaust port 6 on the upstream end side of the exhaust passage are open at. A supercharger 7 is provided in the intake passage 2, and a mechanical supercharger is provided in the illustrated example. Further, the intake passage 2 is provided with an intercooler 8, a surge tank 9 and the like, and an injector 10 for injecting fuel is arranged near the intake port.

【0021】図2は燃焼室4およびポート部分を模式的
に示し、この図において、吸気ポート5および排気ポー
ト6には、各ポートを開閉する吸気弁11および排気弁
12が設けられている。そして、一般に知られているよ
うに、排気行程で排気弁12が開かれ、これに続く吸気
行程で吸気弁11が開かれるが、両者の開弁期間は一部
オーバラップしている。また、この図では新気15を点
描で表わすとともに、上記吸・排気弁11,12の開弁
オーバラップ期間中の新気15の流れを矢印で示してい
る。
FIG. 2 schematically shows the combustion chamber 4 and the port portion. In this figure, the intake port 5 and the exhaust port 6 are provided with an intake valve 11 and an exhaust valve 12 for opening and closing the respective ports. Then, as is generally known, the exhaust valve 12 is opened in the exhaust stroke, and the intake valve 11 is opened in the intake stroke following the exhaust stroke, but the opening periods of both of them partially overlap. In addition, in this figure, the fresh air 15 is shown in a dotted manner, and the flow of the fresh air 15 during the valve opening overlap period of the intake / exhaust valves 11 and 12 is shown by an arrow.

【0022】この図に示すように、過給機付エンジンで
は、上記開弁オーバラップ期間中に、過給機7で加圧さ
れて燃焼室4に送り込まれる新気15の一部が排気ポー
ト6に吹き抜けることがある。この場合、吸気弁11周
辺から燃焼室4に流入した新気が排気ポート6に向かう
流れとしては、燃焼室4中央部を通って直線的に排気ポ
ート6側に向かう流れのほかに、燃焼室4外周側や吸気
弁11の下方等をまわって排気ポート6に向かうような
流れもあり、三次元的なものとなる。
As shown in this figure, in the engine with a supercharger, a part of the fresh air 15 pressurized by the supercharger 7 and fed into the combustion chamber 4 is exhaust port during the valve opening overlap period. It may blow through to 6. In this case, as the flow of the fresh air flowing into the combustion chamber 4 from the vicinity of the intake valve 11 toward the exhaust port 6, in addition to the flow straightly passing through the central portion of the combustion chamber 4 toward the exhaust port 6 side, 4 There is also a flow that goes around the outer peripheral side and the lower side of the intake valve 11 toward the exhaust port 6 and is three-dimensional.

【0023】本発明の方法では、上記のようなオーバラ
ップ期間中の新気15の移動、分布を数値流体力学(C
FD)で解析し、とくに上記のように排気ポート6側へ
の新気15の流れが三次元的なものであることを考慮
し、三次元CFDプログラムによって解析することによ
り、上記オーバラップ期間中の排気ポート6への新気吹
き抜け量と燃焼室4への吸気の充填量とを求めて、上記
充填量に対する新気15の吹き抜け量を計算により求め
ることとする。なお、上記充填量については、一次元解
析で求めることもできる。
In the method of the present invention, the movement and distribution of the fresh air 15 during the overlap period as described above is calculated by computational fluid dynamics (C
FD), especially considering that the flow of the fresh air 15 to the exhaust port 6 side is three-dimensional as described above, the analysis is performed by the three-dimensional CFD program, and during the overlap period. The amount of fresh air blown into the exhaust port 6 and the amount of intake air charged into the combustion chamber 4 are calculated, and the amount of fresh air 15 blown through with respect to the above-mentioned charged amount is calculated. The filling amount can be obtained by one-dimensional analysis.

【0024】上記三次元CFDによる解析にあたって
は、エンジン諸元を設定するとともに吸・排気ポート
5,6の圧力、温度を予測し、これらに基づいて解析、
演算を行なう。この際、望ましくは、吸・排気系のすべ
てについて一次元CFDによる解析を行なうことによ
り、吸・排気ポート5,6の圧力、温度を計算し、これ
を境界条件として上記三次元解析を開弁オーバラップ期
間において行なう。なお、上記吸・排気ポート5,6の
圧力、温度(境界条件)の予測値として一定の値を設定
しておき、三次元CFDによる解析をエンジンの1サイ
クルにわたって行なうようにしてもよい。ただし、三次
元解析は一次元解析と比べると計算が複雑であって、エ
ンジンの1サイクルにわたって三次元解析を行なうと計
算量が膨大になり、演算処理時間が増大するため、上記
のように一次元解析で求めた値を境界条件として、三次
元CFDを開弁オーバラップ期間だけ行なうことが好ま
しい。
In the analysis by the three-dimensional CFD, the engine specifications are set, the pressures and temperatures of the intake / exhaust ports 5 and 6 are predicted, and the analysis is performed based on these.
Calculate. At this time, preferably, the pressure and temperature of the intake / exhaust ports 5 and 6 are calculated by performing an analysis by one-dimensional CFD for all of the intake / exhaust systems, and the above three-dimensional analysis is opened with these as boundary conditions. Perform in the overlap period. It is also possible to set constant values as the predicted values of the pressures and temperatures (boundary conditions) of the intake / exhaust ports 5 and 6 and perform the analysis by the three-dimensional CFD for one cycle of the engine. However, the three-dimensional analysis is more complicated in calculation than the one-dimensional analysis, and if the three-dimensional analysis is performed over one cycle of the engine, the amount of calculation becomes enormous and the calculation processing time increases. It is preferable to perform the three-dimensional CFD for the valve opening overlap period with the value obtained by the original analysis as the boundary condition.

【0025】上記一次元CFDのプログラムとしては、
エンジンおよび吸・排気系の諸元に基づき過給圧の計算
が可能なプログラムを用いる。
As the above-mentioned one-dimensional CFD program,
Use a program that can calculate the boost pressure based on the specifications of the engine and intake / exhaust system.

【0026】また、上記三次元CFDのプログラムとし
ては、吸・排気バルブおよびピストンの作動を取扱うこ
とができること、吸気と排気の2種類のガスの混合を考
慮することができること、バルブを通過する各々のガス
の時間的変化がわかることの各条件を満足するプログラ
ムを用いる。このような三次元CFDプログラムは既に
開発されているものである。
The program of the three-dimensional CFD can handle the operation of intake / exhaust valves and pistons, can consider the mixture of two kinds of gas of intake and exhaust, and can pass through each valve. The program that satisfies each condition that the time change of the gas of is known is used. Such a three-dimensional CFD program has already been developed.

【0027】このプログラムを用いた開弁オーバラップ
期間中の三次元解析の手法の概略を説明すると、解析に
あたっては、図3に示すように、吸気ポート5、燃焼室
4および排気ポート6にわたって解析のための三次元メ
ッシュを設定する。そして、この三次元メッシュの各部
位についてそれぞれ、新気と既存ガス(燃焼室内残留ガ
スおよび排出ガス)との混合割合の一定微少時間毎の変
化を、繰返し計算していく。これにより、開弁オーバラ
ップ期間中の微少時間毎の各時点における新気の分布状
態を解析、演算することができる。
The outline of the method of three-dimensional analysis during the valve opening overlap period using this program will be explained. In the analysis, as shown in FIG. 3, the analysis is performed over the intake port 5, the combustion chamber 4 and the exhaust port 6. Set up a 3D mesh for. Then, with respect to each part of the three-dimensional mesh, the change in the mixing ratio of the fresh air and the existing gas (residual gas in the combustion chamber and exhaust gas) at each constant minute time is repeatedly calculated. Thus, it is possible to analyze and calculate the distribution state of fresh air at each time point for each minute time during the valve opening overlap period.

【0028】図4はこのような三次元解析により調べた
開弁オーバラップ期間内の新気15の分布状態の変化を
示しており、開弁オーバラップ期間の途中の時点から時
系列的に図4(a)、(b)、(c)の順に新気15の
分布状態が変化し、排気ポート6の新気ガス濃度が次第
に増加する。そして、排気ポート部分の新気分布状態の
変化から一定微少時間毎の新気吹き抜け量を求め、これ
を時間で積分することにより、開弁オーバラップ期間中
の新気の吹き抜け量を計算することができる。
FIG. 4 shows a change in the distribution state of the fresh air 15 within the valve opening overlap period examined by such a three-dimensional analysis, and is shown in time series from the midpoint of the valve opening overlap period. 4 (a), (b), and (c), the distribution state of the fresh air 15 changes, and the fresh air gas concentration in the exhaust port 6 gradually increases. Then, the fresh air blow-through amount is calculated from the change of the fresh air distribution state in the exhaust port portion at each constant minute time, and by integrating this over time, the fresh air blow-through amount during the valve opening overlap period is calculated. You can

【0029】HC排出量算出方法の全体の手順について
は、図5および図6に示す。
The overall procedure of the HC emission amount calculation method is shown in FIGS. 5 and 6.

【0030】図5に示す手順を説明すると、先ず、燃焼
室形状等のエンジン主要諸元および吸・排気系の諸元を
含むエンジン諸元を設定する(ステップS1)。次に、
バルブタイミングおよびエンジン回転数等のエンジン作
動条件を与える(ステップS2)。続いて、エンジン諸
元等に基づき、上記一次元プログラムによる吸・排気系
全体についての解析により、吸・排気ポート5,6の圧
力および温度を計算する(ステップS3)。
Explaining the procedure shown in FIG. 5, first, engine specifications including main engine specifications such as combustion chamber shape and intake / exhaust system specifications are set (step S1). next,
Engine operating conditions such as valve timing and engine speed are given (step S2). Then, the pressure and temperature of the intake / exhaust ports 5 and 6 are calculated by analysis of the entire intake / exhaust system by the one-dimensional program based on the engine specifications and the like (step S3).

【0031】次に、上記三次元プログラムにより、上記
一次元解析結果を境界条件として、開弁オーバラップ期
間だけ三次元解析を行なう(ステップS4)。そして、
上記開弁オーバラップ期間中の新気の吹き抜け量および
充填量を求め、吹き抜け割合(新気吹き抜け量/充填
量)を計算する(ステップS5)。
Next, the three-dimensional program is used to perform the three-dimensional analysis for the valve opening overlap period with the one-dimensional analysis result as a boundary condition (step S4). And
The blow-through amount and filling amount of fresh air during the valve opening overlap period are obtained, and the blow-through ratio (fresh air blowing amount / filling amount) is calculated (step S5).

【0032】この場合に、吸気ポート5における上記イ
ンジェクタ10より下流の部分の容積を新気量に換算し
た値と、上記の三次元解析で求めた新気吹き吹け量とを
比較し、この新気吹き吹け量が上記インジェクタ下流の
容積の換算値よりも大きい場合には、インジェクタ下流
の容積の換算値を新気吹き抜け量とする。このようにし
ているのは、後述の吹き抜け割合とHC排出量との対応
関係を確保するためである。すなわち、新気吹き吹け量
が上記インジェクタ下流の容積の換算値よりも大きくな
った場合は、インジェクタ上流からの新気も吹き抜けて
いることになるが、開弁オーバラップ期間中にHCが排
出されるのはインジェクタから噴射されて下流側の新気
と混合した燃料が吹き抜けることによるものであること
から、インジェクタ上流からの新気はHC排出量には関
与せず、これを含めた新気吹き抜け量はHC排出量に対
応しなくなる。このため、新気吹き抜け量のうちでイン
ジェクタ上流からの新気分は除くようにしているのであ
る。
In this case, the value obtained by converting the volume of the portion of the intake port 5 downstream of the injector 10 into a fresh air amount is compared with the fresh air blowing amount obtained by the three-dimensional analysis, and the new air blowing amount is compared. When the air blowing amount is larger than the converted value of the volume downstream of the injector, the converted value of the volume downstream of the injector is set as the fresh air blow-through amount. This is done in order to ensure the correspondence relationship between the blow-through ratio and the HC emission amount, which will be described later. That is, when the fresh air blowing amount becomes larger than the converted value of the volume of the injector downstream, the fresh air from the injector upstream is also blown through, but HC is discharged during the valve opening overlap period. This is because the fuel injected from the injector and mixed with the fresh air on the downstream side is blown through, so the fresh air from the injector upstream does not contribute to the HC emission amount, and the fresh air blown through including this is blown out. The quantity will no longer correspond to the HC emissions. Therefore, the fresh air from the injector upstream is excluded from the fresh air blow-through amount.

【0033】上記ステップS2〜ステップS5の処理
は、バルブタイミングおよびエンジン回転数等を変更し
て複数回繰返し、つまり、複数種のエンジン作動条件に
おいてそれぞれ、上記三次元解析等を行なって吹き抜け
割合を計算する。
The processes of steps S2 to S5 are repeated a plurality of times by changing the valve timing, the engine speed, etc., that is, the three-dimensional analysis is carried out under a plurality of engine operating conditions to determine the blow-through ratio. calculate.

【0034】一方、実機についてHC排出量の実測を行
なっておく(ステップS6)。この実測もエンジン作動
条件を変えて複数回行ない、最低限2回行なう。
On the other hand, the HC emission amount of the actual machine is actually measured (step S6). This actual measurement is also performed multiple times by changing the engine operating conditions, and at least twice.

【0035】そして、上記ステップS2〜ステップS5
の処理を複数回繰返した後には、同一エンジン作動条件
下における上記吹き抜け割合の計算値と上記HC排出量
の実測値との対比に基づき、図7に示すような上記吹き
抜け量とHC排出量との対応関係を示す相関特性を求め
る(ステップS7)。つまり、上記吹き抜け量とHC排
出量とは直線的な対応関係を有するので、同一エンジン
作動条件下での吹き抜け割合計算値とHC排出量実測値
とを1組として、複数組(少なくとも2組)の吹き抜け
割合計算値とHC排出量実測値とを対比すれば、図7に
示すような相関特性を求めることができる。そして、こ
の相関特性を、例えば関数式等の形で記憶する。
Then, the above steps S2 to S5.
After repeating the above process a plurality of times, the blow-through amount and the HC discharge amount as shown in FIG. 7 are calculated based on the comparison between the calculated value of the blow-through ratio and the measured value of the HC discharge amount under the same engine operating condition. Correlation characteristics showing the correspondence relationship of are obtained (step S7). That is, since the blow-through amount and the HC discharge amount have a linear correspondence relationship, the blow-through ratio calculated value and the HC discharge amount measured value under the same engine operating condition are regarded as one set, and a plurality of sets (at least two sets) are set. By comparing the calculated value of the blow-through ratio and the actual measured value of the amount of discharged HC, the correlation characteristic as shown in FIG. 7 can be obtained. Then, this correlation characteristic is stored in the form of, for example, a functional expression.

【0036】このように相関関係を求めた後は、ステッ
プS7で対比した値以外でも吹き抜け割合の計算値に応
じて上記相関特性からHC排出量を求めることができる
ので、各種のエンジン作動条件下での吹き抜け割合の計
算値に応じてHC排出量を求める(ステップS8)。
After obtaining the correlation in this way, the HC emission amount can be obtained from the above correlation characteristics in accordance with the calculated value of the blow-through ratio other than the values compared in step S7. Therefore, under various engine operating conditions. The HC emission amount is obtained according to the calculated value of the blow-through ratio in step S8.

【0037】また、上記三次元解析に基づく処理として
は、上記ステップS5,S7,S8の処理の他に、三次
元解析結果の傾向を一次元プログラムに取り込むように
する処理(ステップS9)を行なうことが好ましい。こ
の処理としては、上記三次元解析に基づき、開弁オーバ
ラップ期間中の各種時点における排気ガス中の新気割合
と燃焼室内ガス中の新気割合との比を求めて、この比と
クランク角との対応関係を近似式で与え、この近似式を
定める値をマップとして記憶する。
As the processing based on the three-dimensional analysis, in addition to the processing of steps S5, S7, and S8, processing for incorporating the tendency of the three-dimensional analysis result into the one-dimensional program (step S9) is performed. It is preferable. As this processing, based on the above three-dimensional analysis, the ratio between the fresh air ratio in the exhaust gas and the fresh air ratio in the combustion chamber gas at various points during the valve opening overlap period is calculated, and this ratio and crank angle are calculated. The correspondence relationship between and is given by an approximate expression, and the values that define this approximate expression are stored as a map.

【0038】この処理を具体的に説明する。図8に示す
ような開弁期間中のクランク角に対応した排気ガス中の
新気割合Raおよび燃焼室内の新気割合Rbは、上記三
次元解析で求めることができる。ここで、排気ガス中の
新気割合Raとは(排気バルブを通過する新気量)/
(排気バルブを通過する全ガス量)であり、燃焼室内の
新気割合Rbとは(燃焼室内の新気量)/(燃焼室内の
全ガス量)である。
This processing will be specifically described. The fresh air ratio Ra in the exhaust gas and the fresh air ratio Rb in the combustion chamber corresponding to the crank angle during the valve opening period as shown in FIG. 8 can be obtained by the three-dimensional analysis. Here, the fresh air ratio Ra in the exhaust gas is (amount of fresh air passing through the exhaust valve) /
(Total gas amount passing through the exhaust valve), and the fresh air ratio Rb in the combustion chamber is (new air amount in the combustion chamber) / (total gas amount in the combustion chamber).

【0039】上記排気ガス中の新気割合Raと燃焼室内
の新気割合Rbとの比(Ra/Rb)をとると、この比
とクランク角との関係は図9に示すごとく線ab、線b
cからなるような形に近似させることができ、近似式で
表すことができる。この近似特性(点a,b,cの値)
はバルブタイミング、エンジン回転数等によって変化す
る。そこで、数種類のエンジン作動条件下で行なった三
次元解析に基づき、上記比(Ra/Rb)についての傾
向を求め、近似式を定める点a,b,c等のデータをマ
ップとして取り込むことにより、エンジン作動条件等に
応じてこのマップから近似式が得られるようにする。
Taking the ratio (Ra / Rb) between the fresh air ratio Ra in the exhaust gas and the fresh air ratio Rb in the combustion chamber, the relationship between this ratio and the crank angle is shown by lines ab and ab in FIG. b
It can be approximated to the form of c and can be represented by an approximate expression. This approximate characteristic (value of points a, b, c)
Varies depending on the valve timing, engine speed, etc. Therefore, based on three-dimensional analysis performed under several kinds of engine operating conditions, the tendency of the ratio (Ra / Rb) is obtained, and the data of points a, b, c, etc. that define the approximate expression are loaded as a map, An approximate expression should be obtained from this map according to engine operating conditions.

【0040】このようにすると、その後は三次元解析を
行なう必要がなく、図6に示すように一次元プログラム
による解析で近似的に上記吹き抜け割合を計算すること
が可能となる。
By doing so, it is not necessary to perform a three-dimensional analysis thereafter, and it becomes possible to approximately calculate the blow-through ratio by an analysis by a one-dimensional program as shown in FIG.

【0041】この図6に示す手順を説明すると、先ず、
燃焼室形状等のエンジン主要諸元および吸・排気系の諸
元を含むエンジン諸元を設定する(ステップS11)。
次に、バルブタイミングおよびエンジン回転数等のエン
ジン作動条件を与える(ステップS12)。
Explaining the procedure shown in FIG. 6, first,
Engine specifications including main engine specifications such as combustion chamber shape and intake / exhaust system specifications are set (step S11).
Next, engine operating conditions such as valve timing and engine speed are given (step S12).

【0042】次に、一次元解析により、過給圧の計算等
を行なうとともに、上記の図5のステップS9の処理で
一次元プログラムに取り込まれたデータからエンジン作
動条件等に応じて得られる近似式を用い、吹き抜け割合
を計算する(ステップS13)。そして、この吹き抜け
割合に応じ、上記の図5のステップS7の処理で求めら
れた相関特性から、HC排出量を算出する(ステップS
14)。
Next, the supercharging pressure is calculated by one-dimensional analysis, and the approximation obtained according to the engine operating conditions and the like from the data taken into the one-dimensional program in the process of step S9 of FIG. 5 described above. The blow-through ratio is calculated using the formula (step S13). Then, the HC emission amount is calculated from the correlation characteristic obtained in the process of step S7 of FIG. 5 according to the blow-through ratio (step S).
14).

【0043】以上のようなHC排出量算出方法による
と、上記吹き抜け割合が演算により求められ、とくに図
5に示す手順が実行されるときには、ステップS4での
三次元解析により新気の吹き抜け量が精度良く求めら
れ、従って吹き抜け割合が精度良く計算される。また、
この吹き抜け割合だけでは、HC排出量の絶対値がわか
らないが、この吹き抜け割合の計算値とHC排出量の実
測値との対比に基づいて吹き抜け割合とHC排出量との
相関特性を求めている(ステップS7)ので、この相関
特性から上記吹き抜け割合の計算値に応じてHC排出量
を計算で簡単に、しかも精度良く求めることができる。
According to the above HC emission amount calculating method, the blow-through ratio is obtained by calculation, and particularly when the procedure shown in FIG. 5 is executed, the blow-through amount of fresh air is determined by the three-dimensional analysis in step S4. It is obtained with high accuracy, and therefore the blow-through rate is calculated with high accuracy. Also,
Although the absolute value of the HC emission amount cannot be known only by this blow-through ratio, the correlation characteristic between the blow-through ratio and the HC emission amount is obtained based on the comparison between the calculated value of this blow-through ratio and the measured value of the HC emission amount ( In step S7), the HC emission amount can be calculated easily and accurately according to the calculated value of the blow-through ratio from this correlation characteristic.

【0044】この場合、上記相関関係を求めるために上
記HC排出量の実測(ステップS6)を行なってはいる
が、上記相関特性を求めた後は、この相関特性を用いて
計算だけでHC排出量を求めることができ、バルブタイ
ミング等を変えて新たにHC排出量を求めるときに、そ
の都度HC排出量の実測を行なう必要がない。
In this case, although the HC emission amount is actually measured (step S6) in order to obtain the correlation, the HC emission amount is calculated only by using the correlation characteristic after obtaining the correlation characteristic. The amount can be obtained, and it is not necessary to actually measure the amount of HC emission each time when the amount of HC emission is newly obtained by changing the valve timing or the like.

【0045】さらに、図5に示す手順の中で、ステップ
S9の処理により三次元解析結果の傾向を一次元プログ
ラムに取り込むようにしておけば、その後に新たにHC
排出量を求めるときには、一次元解析によるだけでHC
排出量を計算することができ、計算時間を短縮すること
ができる。この場合、排気ガス中の新気割合Raと燃焼
室内の新気割合Rbとの比についての近似式を用いるこ
とにより、精度の良い近似値が得られる。
Further, in the procedure shown in FIG. 5, if the tendency of the three-dimensional analysis result is fetched into the one-dimensional program by the processing of step S9, the HC is newly added after that.
When calculating the emission amount, HC
Emissions can be calculated and calculation time can be shortened. In this case, an accurate approximation value can be obtained by using an approximate expression for the ratio of the fresh air ratio Ra in the exhaust gas and the fresh air ratio Rb in the combustion chamber.

【0046】また、このようなHC排出量算出方法を利
用して、適正なバルブタイミングの設定を容易に行なう
ことができる。このバルブタイミング設定方法を図6中
に例示する。
Further, by using such an HC emission amount calculating method, it is possible to easily set an appropriate valve timing. This valve timing setting method is illustrated in FIG.

【0047】この図6中に示す例では、HC排出量の計
算を各種のエンジン作動条件、とくに各種のバルブタイ
ミングにおいて行ない、それぞれのバルブタイミングと
HC排出量とを対比させて、バルブタイミングとHC排
出量との関係等を調べる。そしてこれに基づき、例えば
HC排出量が要求値を満足するようなバルブタイミング
を選択することにより、適正なバルブタイミングを設定
する(ステップS15)。
In the example shown in FIG. 6, the HC discharge amount is calculated under various engine operating conditions, especially at various valve timings, and the valve timing and HC discharge amount are compared with each other to compare the valve timing and the HC discharge amount. Examine the relationship with emissions. Then, based on this, for example, by selecting a valve timing such that the HC discharge amount satisfies the required value, an appropriate valve timing is set (step S15).

【0048】なお、上記の図5および図6に示す方法の
中で、一次元解析により吸・排気ポートの圧力、温度等
を求める方法のついての内容は本発明で限定するもので
はないが、過給圧の計算が可能な方法の一例を、図1お
よび図10〜図12によって以下に説明する。なお、図
では吸気系について示すが、排気系も吸気系に準じて解
析等を行なえばよい。
Of the methods shown in FIGS. 5 and 6, the content of the method for obtaining the pressure and temperature of the intake / exhaust port by one-dimensional analysis is not limited by the present invention. An example of a method capable of calculating the boost pressure will be described below with reference to FIGS. 1 and 10 to 12. Although the intake system is shown in the figure, the exhaust system may be analyzed in accordance with the intake system.

【0049】この方法においては、例えば図1に示す吸
気系のシミュレーションモデルを次のように設定する。
すなわち、エンジンの各シリンダ1を含めた吸気系を過
給機7を除く吸気系モデルと過給機モデルとに分ける。
そして、吸気系モデル(破線で囲った部分)は、上記吸
気通路2の各部の吸気管を表す管モデルと、インターク
ーラ8、サージタンク9、各シリンダ1等を表す容器モ
デルと、管と容器との境界部分のモデル等のサブモデル
からなるものとする。また、過給機モデルは、図10に
示すように、過給機7を吸入部側と吐出部側の2つの容
器7a,7bにモデル化し、つまり吸入側の容器7aと
上流側の吸気管との接続部分を表す吸入側モデル21
と、吐出側容器7bと下流側の吸気管との接続部分を表
す吐出側モデル22とに分ける。
In this method, for example, the simulation model of the intake system shown in FIG. 1 is set as follows.
That is, the intake system including each cylinder 1 of the engine is divided into an intake system model excluding the supercharger 7 and a supercharger model.
The intake system model (the part surrounded by the broken line) is a pipe model showing the intake pipe of each part of the intake passage 2, a container model showing the intercooler 8, the surge tank 9, each cylinder 1, etc., and the pipe and the container. It shall consist of sub-models such as the model of the boundary part between and. As shown in FIG. 10, the supercharger model models the supercharger 7 into two containers 7a and 7b on the suction side and the discharge side, that is, the suction side container 7a and the upstream intake pipe. Inhalation side model 21 showing the connection part with
And a discharge-side model 22 that represents a connecting portion between the discharge-side container 7b and the downstream intake pipe.

【0050】図11は上記シミュレーションモデルによ
る演算処理の概略手順を示し、この手順としては、先ず
吸気系モデルおよび過給機モデルにおける各部の圧力、
温度等の状態量の初期値を設定する(ステップS2
1)。次に、時間経過を想定するための時間設定(ステ
ップS22)を行なった上で、吸気系状態量演算処理と
して、上記各管モデルについての演算処理(ステップS
23)と、上記各容器モデルについての演算処理(ステ
ップS24)と、管と容器との境界部分のモデルについ
ての演算処理(ステップS25)とを行なう一方、過給
機モデルについての過給機状態量演算処理(ステップS
26)を行なう。そして、これらステップS23〜S2
6の各演算処理を行なうと、ステップS22に戻って時
間設定により一定微小時間だけ経過した時点を想定した
上で、再びステップS23〜S26の各演算処理を行な
う。このようにして、各状態量が収束するに至るまで、
一定の微少な想定時間間隔で上記各演算処理を繰り返し
行なう。
FIG. 11 shows a schematic procedure of the arithmetic processing by the above simulation model. As the procedure, first, the pressure of each part in the intake system model and the supercharger model,
Initial values of state quantities such as temperature are set (step S2).
1). Next, after setting the time for assuming the passage of time (step S22), as the intake system state quantity calculation processing, the calculation processing for each pipe model (step S22) is performed.
23), the calculation process for each container model (step S24), and the calculation process for the model of the boundary between the pipe and the container (step S25), while the supercharger state for the supercharger model is performed. Quantity calculation processing (step S
26) is performed. Then, these steps S23 to S2
After performing each of the arithmetic processes of 6, the process returns to step S22, and the arithmetic processes of steps S23 to S26 are performed again on the assumption that a certain minute time has elapsed due to the time setting. In this way, until each state quantity converges,
The above-mentioned arithmetic processes are repeatedly performed at a constant, minute assumed time interval.

【0051】上記ステップS23の演算処理では、管モ
デルにつき、壁面摩擦係数、曲がり損失、管壁との熱交
換等を考慮した質量、運動量、エネルギーの各保存式を
基にして、管を等分割した各分割点での状態量から微少
時間後の状態量を求めるというようにして、管内の各部
の圧力、温度等の状態量を求める。ステップS24で
は、容器モデルにつき、エネルギー平衡式に基づいて容
器内の状態量の変化等を求めるというような演算を行な
う。
In the calculation process of step S23, the pipe is divided into equal parts based on the conservation equations of mass, momentum and energy in consideration of wall friction coefficient, bending loss, heat exchange with the pipe wall, etc. for the pipe model. The state quantities such as pressure and temperature of each part in the pipe are obtained by obtaining the state quantities after a minute time from the state quantities at the respective divided points. In step S24, the container model is subjected to calculation such as a change in the state quantity in the container based on the energy balance equation.

【0052】また、上記ステップS25では、管端部
分、管と容器と境、容器部分の間でのエネルギー、質量
の各保存式等を用い、さらに管モデルの状態量との相関
関係等を考慮して連立方程式を立てることにより、管端
の状態量を求める。
In step S25, the conservation equations of energy and mass between the pipe end portion, the boundary between the pipe and the container, and the container portion are used, and the correlation with the state quantity of the pipe model is considered. Then, the state quantity at the pipe end is obtained by establishing a simultaneous equation.

【0053】これらの演算処理については、前記の文献
「マツダ技報(1988 NO6)」にも示されてい
る。
These calculation processes are also shown in the above-mentioned document "Mazda Technical Report (1988 NO6)".

【0054】また、前記のステップS26の過給機状態
量演算処理では、図10に示す過給機モデルを用いると
ともに、予め調べられた過給機単体の特性のデータを利
用する。この過給機単体の特性のデータは、予め使用す
る機械式過給機を定常流試験することによって得られ
る。つまり、機械式過給機を試作してその吸入側および
吐出側に可変絞りを取付け、過給機を種々の回転数で作
動させ、かつ絞りを種々変えた場合についてそれぞれ、
圧力比(吐出圧力と吸入圧力との比)、吐出流量、温度
変化量(吐出側温度と吸入側温度との差)等を計測に基
づいて求め、これらの関係を調べる。これにより、種々
の過給機回転速度における圧力比と吐出流量との関係、
およびこれらと上記温度変化量との関係を表す図13の
ような過給機特性データのマップを得る。
Further, in the supercharger state quantity calculation process of step S26, the supercharger model shown in FIG. 10 is used, and the data of the characteristic of the single supercharger that has been examined in advance is used. The characteristic data of the supercharger itself is obtained by performing a steady flow test on a mechanical supercharger to be used in advance. In other words, when a mechanical turbocharger was prototyped and variable throttles were attached to its suction side and discharge side, the supercharger was operated at various rotational speeds, and the throttles were changed variously,
The pressure ratio (ratio between discharge pressure and suction pressure), discharge flow rate, temperature change amount (difference between discharge side temperature and suction side temperature), and the like are obtained based on measurement, and their relationship is investigated. As a result, the relationship between the pressure ratio and the discharge flow rate at various supercharger rotation speeds,
Further, a map of supercharger characteristic data as shown in FIG. 13 showing the relationship between these and the temperature change amount is obtained.

【0055】これらの関係をマップ化したものである。These relationships are mapped.

【0056】そして、上記過給機状態量演算処理を具体
的には図12に示すように行なう。
Then, the supercharger state quantity calculation process is specifically performed as shown in FIG.

【0057】すなわち、先ず上記過給機モデルのうちの
吐出側モデル22につき、容器7b内の圧力Pvoを仮定
し(ステップS31)、吐出側の流量Mo を求める(ステ
ップS32)。次いで、上記吸入側モデル21につき、
容器7a内の圧力Pviを仮定し(ステップS33)、吸入
側の流量Mi を求める(ステップS34)。上記ステッ
プS32,S34に示す各演算処理としては、容器内の
圧力Pvo,Pvi、同温度Tvo,Tvi、絞り(容器の管と
の間)の圧力Pto,Pti、同温度Tto,Tti、同流速u
to,uti、同断面積Ato,Ati、管端部分の圧力Ppo,
Ppi、同温度Tpo,Tpi、同流速upo,upi、同断面積
Apo,Api等の関係につき、境界モデルの演算(ステッ
プS25)と同様の演算を行なう。ただし、上記のよう
に容器内の圧力Pvo,Pviは仮定値である。
That is, first, for the discharge side model 22 of the supercharger models, the pressure Pvo in the container 7b is assumed (step S31), and the discharge side flow rate Mo is obtained (step S32). Next, regarding the suction side model 21,
The pressure Pvi in the container 7a is assumed (step S33), and the flow rate Mi on the suction side is obtained (step S34). As the respective calculation processes shown in steps S32 and S34, the pressures Pvo and Pvi in the container, the temperatures Tvo and Tvi, the pressures Pto and Pti of the throttle (between the pipes of the container), the temperatures Tto and Tti, and the flow velocity are the same. u
to, uti, same cross-sectional area Ato, Ati, pipe end pressure Ppo,
With respect to the relationship among Ppi, the same temperatures Tpo and Tpi, the same flow velocities upo and upi, the same cross-sectional areas Apo and Api, the same calculation as the calculation of the boundary model (step S25) is performed. However, as described above, the pressures Pvo and Pvi in the container are assumed values.

【0058】次に、過給機の吸入流量と吐出流量とは等
しいはずであるから、上記ステップS32とステップS
34とでそれぞれ求めた上記流量Mo ,Mi が等しいか
否かを調べ(ステップS35)、等しくなければ、上記
吸入側モデル21における容器7aの圧力Pviの仮定値
を変更した上で、改めて吸入側モデル21についての演
算処理により吸入側の流量Miを求める。このようにし
て、上記圧力Pviの仮定値を変更しつつ、ステップS3
3,S34を繰り返すことにより、上記流量Mo ,Mi
が等しくなる状態を探索する。
Next, since the suction flow rate and the discharge flow rate of the supercharger should be equal to each other, the above step S32 and step S
It is checked whether or not the flow rates Mo and Mi respectively obtained by 34 and 34 are equal (step S35), and if they are not equal, the assumed value of the pressure Pvi of the container 7a in the suction side model 21 is changed, and then the suction side is newly determined. The flow rate Mi on the suction side is obtained by the calculation process for the model 21. In this way, while changing the assumed value of the pressure Pvi, step S3
By repeating S3 and S34, the above flow rates Mo, Mi
Search for a condition where are equal.

【0059】上記流量Mo ,Mi が等しい状態が得られ
ると、演算処理で求められる吐出圧力(吐出側の管端圧
力)Ppoと吸入圧力(吸入側の管端圧力)Ppiとから、
圧力比Pr を求める(ステップS36)。そして、図1
3に示す過給機特性データのマップから、上記ステップ
S36で求めた圧力比と設定した過給機回転速度とに応
じた吐出流量Mmap を求め(ステップS37)、上記ス
テップS32で求めた吐出流量Mo と上記過給機特性デ
ータのマップから求めた吐出流量Mmap とを比較する
(ステップS38)。つまり、上記吐出流量Moと特性
マップによる吐出流量Mmap とが同一過給機回転速度、
同一圧力比の条件下で等しいか否かを調べ、等しくなけ
れば、上記吐出側モデルにおける容器の圧力Pvoの仮定
値を変更した上で、改めてステップS31〜S38の処
理を行ない、Mo =Mmap となるまで、ステップS31
〜S38の処理を繰り返す。
When a state in which the flow rates Mo and Mi are equal to each other is obtained, from the discharge pressure (pipe end pressure on the discharge side) Ppo and the suction pressure (pipe end pressure on the suction side) Ppi obtained by the arithmetic processing,
The pressure ratio Pr is obtained (step S36). And FIG.
From the map of the supercharger characteristic data shown in FIG. 3, the discharge flow rate Mmap corresponding to the pressure ratio obtained in step S36 and the set turbocharger rotation speed is obtained (step S37), and the discharge flow rate obtained in step S32 is obtained. Mo is compared with the discharge flow rate Mmap obtained from the map of the supercharger characteristic data (step S38). That is, the discharge flow rate Mo and the discharge flow rate Mmap according to the characteristic map are the same as the supercharger rotation speed,
It is checked whether they are equal under the condition of the same pressure ratio, and if they are not equal, the assumed value of the container pressure Pvo in the above-mentioned discharge side model is changed, and the processes of steps S31 to S38 are performed again, and Mo = Mmap Until step S31
~ The process of S38 is repeated.

【0060】Mo =Mmap となった場合には、演算処理
により求められる吸入側温度(過給機吸入側の管端の温
度)Tpiと過給機回転速度、圧力比および吐出流量に応
じて図13の特性マップから求められる温度差とに基づ
き、吐出側温度(過給機吐出側の管端の温度)Tpoを求
める(ステップS39)。また、これ以外の管端の状態
量である吐出圧力Ppo等については、演算処理(ステッ
プS32およびステップS34)による最終的な演算値
をもって決定する(ステップS40)。
When Mo = Mmap, the drawing is performed according to the suction side temperature (temperature of the pipe end on the suction side of the supercharger) Tpi and the supercharger rotation speed, the pressure ratio, and the discharge flow rate, which are obtained by the calculation process. Based on the temperature difference obtained from the characteristic map of No. 13, the discharge side temperature (temperature of the supercharger discharge side pipe end) Tpo is obtained (step S39). Further, the discharge pressure Ppo, which is the other state quantity at the pipe end, is determined by the final calculated value by the calculation process (step S32 and step S34) (step S40).

【0061】このような過給機状態量演算処理における
吐出側モデルおよび吸入側モデルの演算では、吸気系状
態量演算処理における菅モデルの演算が反映されてい
る。また、過給機状態量演算処理により求められた菅端
の状態量は、図11に示した各演算処理の繰り返しの中
で、次回の菅モデルの演算等に反映される。
In the calculation of the discharge side model and the suction side model in such supercharger state quantity calculation processing, the calculation of the pipe model in the intake system state quantity calculation processing is reflected. Further, the state quantity of the tube end obtained by the supercharger state quantity calculation process is reflected in the next calculation of the pipe model and the like during the repetition of each calculation process shown in FIG. 11.

【0062】このようにして、図11中のステップS2
3〜S25の各処理からなる吸入系状態量演算処理と図
12のステップS31〜S40を内容とするステップS
26とを、相互に演算結果を刻々と反映させつつ、各状
態量が収束する状態に至るまで、繰り返し行う。
In this way, step S2 in FIG.
Inhalation system state quantity calculation process including each process of 3 to S25 and step S including steps S31 to S40 of FIG.
26 and 26 are repeatedly performed while reflecting the calculation results momentarily, until the state quantities converge.

【0063】このような方法により、過給圧(吐出圧
力)をおよびその他の状態量を求めることができ、前述
の図5の示す手順の中で三次元解析のための境界条件を
与えることができる。
With such a method, the supercharging pressure (discharge pressure) and other state quantities can be obtained, and the boundary condition for the three-dimensional analysis can be given in the procedure shown in FIG. it can.

【0064】[0064]

【発明の効果】以上のように、本発明のHCの排出量算
出方法は、過給機付エンジンにおけるエンジン諸元およ
び吸・排気ポートの圧力および温度に基づき、開弁オー
バラップ期間中の新気の吹き抜け量および充填量を求め
て吹き抜け割合を計算し、同一条件下での上記吹き抜け
割合の計算値とHC排出量の実測値とを比較して相関特
性を求め、この相関特性から各種条件下でのHC排出量
を算出するようにしているため、HC排出量の実測を上
記相関関係を求めるために行なっておきさえすれば、そ
の後は計算で簡単にかつ精度良く、吸気の吹き抜けによ
るHC排出量を求めることができる。
As described above, the HC emission amount calculating method of the present invention is based on the engine specifications and the pressure and temperature of the intake / exhaust ports in the engine with a supercharger, and is used during the valve opening overlap period. The blow-through amount and the filling amount of air are calculated to calculate the blow-through ratio, the calculated value of the blow-through ratio under the same conditions and the measured value of the HC emission amount are compared to obtain a correlation characteristic, and various conditions are obtained from the correlation characteristic. Since the HC emission amount below is calculated, if the actual measurement of the HC emission amount is performed in order to obtain the above correlation, then the HC emission amount can be calculated easily and accurately by the intake blow-by. Emissions can be calculated.

【0065】とくに、上記排気ポートへの新気の吹き抜
け量を三次元解析により求めるようにすれば、精度を高
めることができる。
Particularly, if the amount of fresh air blown into the exhaust port is obtained by three-dimensional analysis, the accuracy can be improved.

【0066】また、上記三次元解析に基づき、排気ガス
中の新気割合と燃焼室内ガス中の新気割合との比を近似
式で与え、その後にHC排出量の演算を行なうときには
上記近似式を用いて吹き抜け割合を一次元解析による計
算で求めるようにすれば、充分に精度を確保しつつ計算
を簡略化することができる。
Further, based on the above three-dimensional analysis, the ratio of the fresh air ratio in the exhaust gas and the fresh air ratio in the combustion chamber gas is given by an approximate expression, and when the HC emission amount is subsequently calculated, the above approximate expression is given. If the blow-through ratio is calculated by one-dimensional analysis using, it is possible to simplify the calculation while ensuring sufficient accuracy.

【0067】また、上記HCの排出量算出方法を利用す
るバルブタイミング設定方法は、各種バルブタイミング
におけるHC排出量を上記算出方法で求め、これに基づ
いてバルブタイミングを設定するようにしているため、
効果的なバルブタイミングの設定を簡単に行なうことが
できる。
Further, in the valve timing setting method utilizing the above HC discharge amount calculation method, the HC discharge amount at various valve timings is obtained by the above calculation method, and the valve timing is set based on this.
Effective valve timing can be easily set.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を適用する過給機付エンジンの一
例を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a supercharged engine to which the method of the present invention is applied.

【図2】燃焼室およびポート部分を模式的に示す図であ
る。
FIG. 2 is a diagram schematically showing a combustion chamber and a port portion.

【図3】三次元解析のための三次元メッシュを示す説明
図である。
FIG. 3 is an explanatory diagram showing a three-dimensional mesh for three-dimensional analysis.

【図4】(a)(b)(c)開弁オーバラップ期間内に
おける燃焼室およびポート部分の新気の分散状態の推移
を示す説明図である。
4 (a), (b) and (c) are explanatory views showing a transition of a distribution state of fresh air in a combustion chamber and a port portion within a valve opening overlap period.

【図5】本発明のHCの排出量算出方法の手順の一例を
示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a procedure of a method for calculating an HC emission amount according to the present invention.

【図6】HCの排出量算出方法の手順の一部およびバル
ブタイミング設定方法を示す説明図である。
FIG. 6 is an explanatory diagram showing a part of a procedure of an HC emission amount calculation method and a valve timing setting method.

【図7】吹き抜け割合とHC排出量との相関特性を示す
図である。
FIG. 7 is a diagram showing a correlation characteristic between a blow-through ratio and an HC emission amount.

【図8】開弁オーバラップ期間中の燃焼室内の新気割合
および排出ガス中の新気割合の変化を示す図である。
FIG. 8 is a diagram showing changes in a fresh air ratio in a combustion chamber and a fresh air ratio in exhaust gas during a valve opening overlap period.

【図9】開弁オーバラップ期間中の燃焼室内の新気割合
と排出ガス中の新気割合との比を近似的に示す図であ
る。
FIG. 9 is a diagram approximately showing a ratio between a fresh air ratio in a combustion chamber and a fresh air ratio in exhaust gas during a valve opening overlap period.

【図10】過給機モデルを示す図である。FIG. 10 is a diagram showing a supercharger model.

【図11】吸気系状態量の計算方法の一例についての全
体手順を示す図である。
FIG. 11 is a diagram showing an overall procedure of an example of a method of calculating an intake system state quantity.

【図12】吸気系状態量の計算方法の一例についての一
部を示す図である。
FIG. 12 is a diagram showing a part of an example of a method of calculating an intake system state quantity.

【図13】過給機特性データのマップを示す図である。FIG. 13 is a diagram showing a map of supercharger characteristic data.

【符号の説明】[Explanation of symbols]

1 シリンダ 5 吸気ポート 6 排気ポート 7 過給機 11 吸気弁 12 排気弁 15 新気 1 Cylinder 5 Intake port 6 Exhaust port 7 Supercharger 11 Intake valve 12 Exhaust valve 15 Fresh air

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 過給機付エンジンにおける吸・排気弁の
開弁オーバラップ期間中のHC排出量を算出する方法で
あって、エンジン諸元を設定するとともに、吸・排気ポ
ートの圧力および温度を予測し、これらに基づき、上記
開弁オーバラップ期間中の排気ポートへ新気の吹き抜け
量と燃焼室への吸気の充填量とを計算して、上記充填量
に対する上記吹き抜け量の割合である吹き抜け割合を計
算し、一方、燃焼室からのHC排出量を実測し、同一条
件下での上記吹き抜け割合の計算値と上記HC排出量の
実測値とを比較して、上記吹き抜け割合とHC排出量と
の対応関係を示す相関特性を求め、この相関特性から各
種条件下でのHCの排出量を算出することを特徴とする
過給機付エンジンにおけるHCの排出量算出方法。
1. A method for calculating the HC emission amount during the valve opening overlap period of an intake / exhaust valve in a supercharged engine, wherein engine specifications are set, and pressures and temperatures of intake / exhaust ports are set. Is calculated based on these values, the amount of fresh air blown into the exhaust port and the amount of intake air charged into the combustion chamber during the valve overlap period are calculated, and this is the ratio of the amount of blowout to the amount of fill. The blow-through ratio is calculated, on the other hand, the HC discharge amount from the combustion chamber is measured, and the calculated value of the blow-through ratio and the measured value of the HC discharge amount under the same conditions are compared to determine the blow-through ratio and the HC discharge. A method for calculating the amount of HC emission in a supercharged engine, comprising: obtaining a correlation characteristic showing a correspondence relationship with the amount, and calculating the amount of HC emission under various conditions from the correlation characteristic.
【請求項2】 吸気ポートにおける上記インジェクタよ
り下流の部分の容積を新気量に換算した値と、上記新気
吹き吹け量の計算値とを比較し、この新気吹き吹け量が
上記インジェクタ下流の容積の換算値よりも大きい場合
には、インジェクタ下流の容積の換算値を新気吹き抜け
量とすることを特徴とする請求項1記載の過給機付エン
ジンにおけるHCの排出量算出方法。
2. A value obtained by converting the volume of a portion of the intake port downstream of the injector into a fresh air amount is compared with a calculated value of the fresh air blowing amount, and the fresh air blowing amount is determined by the injector downstream. 2. The method for calculating the amount of HC emissions in a supercharged engine according to claim 1, wherein the converted value of the volume downstream of the injector is set as the fresh air blow-through amount when the calculated value is larger than the converted value of the volume.
【請求項3】 上記排気ポートへの新気の吹き抜け量
を、吸気ポート、燃焼室および排気ポートにわたる新気
と既存ガスとの混合状態の推移について三次元解析を行
なうことにより求めることを特徴とする請求項1または
2記載の過給機付エンジンにおけるHCの排出量算出方
法。
3. The amount of fresh air blown into the exhaust port is obtained by performing a three-dimensional analysis on the transition of the mixed state of the fresh air and the existing gas over the intake port, the combustion chamber and the exhaust port. The method for calculating the amount of HC emissions in a supercharged engine according to claim 1 or 2.
【請求項4】 上記吸・排気ポートの圧力および温度を
一次元解析により求めるとともに、排気ポートへの新気
の吹き抜け量を求めるための三次元解析を開弁オーバラ
ップ期間中のみ行なうことを特徴とする請求項3記載の
過給機付エンジンにおけるHCの排出量算出方法。
4. The pressure and temperature of the intake / exhaust port are obtained by one-dimensional analysis, and the three-dimensional analysis for obtaining the amount of fresh air blown into the exhaust port is performed only during the valve opening overlap period. The method for calculating the amount of HC emissions in a supercharged engine according to claim 3.
【請求項5】 上記三次元解析に基づき、排気ガス中の
新気割合と燃焼室内ガス中の新気割合との比を近似式で
与え、その後にHC排出量の演算を行なうときには上記
近似式を用いて吹き抜け割合を一次元解析による計算で
求めることを特徴とする請求項3または4記載の過給機
付エンジンにおけるHCの排出量算出方法。
5. Based on the above three-dimensional analysis, the ratio between the fresh air ratio in the exhaust gas and the fresh air ratio in the combustion chamber gas is given by an approximate expression, and when the HC emission amount is subsequently calculated, the approximate expression is used. The method for calculating the amount of HC emissions in a supercharged engine according to claim 3 or 4, wherein the blow-through ratio is calculated by a one-dimensional analysis.
【請求項6】 請求項1乃至5のいずれかに記載のHC
の排出量算出方法により求めたHC排気量と吸・排気弁
のバルブタイミングとを対比させて、各種バルブタイミ
ングにおけるHC排出量を調べ、これに基づいてバルブ
タイミングを設定することを特徴とするバルブタイミン
グ設定方法。
6. The HC according to any one of claims 1 to 5.
The valve is characterized by comparing the HC exhaust amount obtained by the exhaust amount calculation method with the valve timing of the intake / exhaust valve, checking the HC exhaust amount at various valve timings, and setting the valve timing based on this. Timing setting method.
JP06411894A 1994-03-31 1994-03-31 HC emission calculation method and valve timing setting method in supercharged engine Expired - Fee Related JP3632986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06411894A JP3632986B2 (en) 1994-03-31 1994-03-31 HC emission calculation method and valve timing setting method in supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06411894A JP3632986B2 (en) 1994-03-31 1994-03-31 HC emission calculation method and valve timing setting method in supercharged engine

Publications (2)

Publication Number Publication Date
JPH07269379A true JPH07269379A (en) 1995-10-17
JP3632986B2 JP3632986B2 (en) 2005-03-30

Family

ID=13248838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06411894A Expired - Fee Related JP3632986B2 (en) 1994-03-31 1994-03-31 HC emission calculation method and valve timing setting method in supercharged engine

Country Status (1)

Country Link
JP (1) JP3632986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263083A (en) * 2006-03-30 2007-10-11 Nissan Motor Co Ltd Control device and control method of internal combustion engine
JP2008025528A (en) * 2006-07-25 2008-02-07 Toyota Motor Corp Detected value compensation device for air-fuel ratio sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263083A (en) * 2006-03-30 2007-10-11 Nissan Motor Co Ltd Control device and control method of internal combustion engine
JP2008025528A (en) * 2006-07-25 2008-02-07 Toyota Motor Corp Detected value compensation device for air-fuel ratio sensor

Also Published As

Publication number Publication date
JP3632986B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
Payri et al. Modelling of turbocharged diesel engines in transient operation. Part 2: Wave action models for calculating the transient operation in a high speed direct injection engine
Kesgin Effect of turbocharging system on the performance of a natural gas engine
ITMI20012758A1 (en) PROCEDURE AND DEVICE FOR COMMANDING A GAS CHARGE OF CYLINDERS OF AN ENDOTHERMAL ENGINE
Benson A comprehensive digital computer program to simulate a compression ignition engine including intake and exhaust systems
JP2004239128A (en) Predicting analyzing method of engine performance, predicting analyzing system and its control program
Tabaczynski Effects of inlet and exhaust system design on engine performance
Canova Development and validation of a control-oriented library for the simulation of automotive engines
Bajwa et al. A new single-zone multi-stage scavenging model for real-time emissions control in two-stroke engines
Canova et al. A real-time model of a small turbocharged Multijet Diesel engine: application and validation.
CN100587246C (en) Method of regulating or controlling internal combustion engine during cyclic working process
CN106460711A (en) Method and device for filling level detection in a cylinder of a combustion engine
JP3632986B2 (en) HC emission calculation method and valve timing setting method in supercharged engine
Cordon et al. One-dimensional engine modeling and validation using Ricardo WAVE
Guardiola et al. Representation limits of mean value engine models
Li A new estimation of swirl ratio from steady flow rig testing
CN104778312A (en) Method for evaluating rationality of firing orders of V-type multi-cylinder engine
JP3362954B2 (en) Supercharging pressure calculation method and intake system design method for mechanical supercharged engine
Rakopoulos et al. Experimental heat release rate analysis in both chambers of an indirect injection turbocharged diesel engine at various load and speed conditions
JP4089453B2 (en) Engine performance prediction analysis method, prediction analysis system and control program thereof
Bajwa et al. Interactions among 3D, 1D and 0D models for natural gas fueled two-stroke SI engines
Karlsson Modelling the intake manifold dynamics in a diesel engine
JP4175130B2 (en) Engine performance prediction analysis method, prediction analysis system and control program thereof
Chalet et al. New 0D/1D physical approach for modelling the gas dynamics behavior inside the intake system of an engine
Fiorani et al. A real-time model for the simulation of transient behaviour of automotive diesel engines
Katrašnik et al. Tailored cylinder models for system level engine modelling

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees