JPH0726828Y2 - Trance - Google Patents

Trance

Info

Publication number
JPH0726828Y2
JPH0726828Y2 JP1989036542U JP3654289U JPH0726828Y2 JP H0726828 Y2 JPH0726828 Y2 JP H0726828Y2 JP 1989036542 U JP1989036542 U JP 1989036542U JP 3654289 U JP3654289 U JP 3654289U JP H0726828 Y2 JPH0726828 Y2 JP H0726828Y2
Authority
JP
Japan
Prior art keywords
gap
core
magnetic flux
magnetic permeability
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989036542U
Other languages
Japanese (ja)
Other versions
JPH02129712U (en
Inventor
憲嗣 内藤
文男 四野見
保信 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1989036542U priority Critical patent/JPH0726828Y2/en
Publication of JPH02129712U publication Critical patent/JPH02129712U/ja
Application granted granted Critical
Publication of JPH0726828Y2 publication Critical patent/JPH0726828Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Television Scanning (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はフライバックトランス等のトランスの改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to improvement of a transformer such as a flyback transformer.

(従来の技術) 従来より、トランスは閉磁路を形成するコアに一次コイ
ル及び二次コイルを巻回することにより構成されてい
る。例えば第6図の要部概略断面図に示す従来のフライ
バックトランスのように、コア61は2個のU字形(図示
しない)のフェライトコアのそれぞれの一端部同士を密
着させ、他端部同士間に僅かの間隙を持たせたギャップ
部62を形成することにより、図示しないほぼ矩形状の閉
磁路を形成している。ギャップ部62及びその近傍のコア
の周囲に低圧ボビン63が配設され、その上に一次コイル
64が巻回され、さらにその上に図示しない二次コイルが
巻回されるものである。コア61が形成する閉磁路内に設
けられたギャップ部62は、磁気回路内の磁気抵抗を大き
くして、磁気飽和を防ぐためのものであり、ギャップ部
62内部にポリエステル製のギャップ部材65を挿入するこ
とにより、所定の間隔を形成保持している。
(Prior Art) Conventionally, a transformer is configured by winding a primary coil and a secondary coil around a core forming a closed magnetic circuit. For example, like the conventional flyback transformer shown in the schematic cross-sectional view of the main part of FIG. 6, the core 61 has two U-shaped (not shown) ferrite cores, one end of which is closely attached to the other end of which is the other end. By forming the gap portion 62 with a slight gap therebetween, a substantially rectangular closed magnetic circuit (not shown) is formed. A low-voltage bobbin 63 is arranged around the gap 62 and the core in the vicinity thereof, and the primary coil is arranged on the low-pressure bobbin 63.
64 is wound, and a secondary coil (not shown) is further wound thereon. The gap portion 62 provided in the closed magnetic circuit formed by the core 61 is for increasing the magnetic resistance in the magnetic circuit to prevent magnetic saturation.
By inserting the gap member 65 made of polyester into the inside of the 62, a predetermined interval is formed and maintained.

一次コイル64に交流電流が流れると、コア61内に磁束が
発生し、その磁束が図示しない二次コイルと鎖交し、一
次コイル64に流れる電流変化による磁束変化が二次コイ
ルに起電力を誘起させる。
When an alternating current flows through the primary coil 64, a magnetic flux is generated in the core 61, the magnetic flux links with a secondary coil (not shown), and a change in magnetic flux due to a change in current flowing through the primary coil 64 causes an electromotive force in the secondary coil. Induce.

(考案が解決しようとする課題) ところで、コア61内に発生した磁束はギャップ部62の一
端面からコア61の外部に漏れ磁束φ′として出て、一次
コイル64及び図示しない二次コイルを構成する銅線を貫
き、ギャップ部62の他端に入っていく。銅線を貫く漏れ
磁束φ′の変化は、銅線に逆起電力を発生させ、これが
銅線内にうず電流を発生させる。銅線内に流れるうず電
流はジュール熱として消費され、ギャップ部62付近の局
部的な発熱の原因となっていた。このため、周囲部品に
温度上昇による不良を生じさせていた。また、高圧用ト
ランスの場合には絶縁の種類を許容最高温度の高いもの
にする必要があった。
(Problems to be solved by the invention) By the way, the magnetic flux generated in the core 61 leaks from the one end surface of the gap portion 62 to the outside of the core 61 as a leakage magnetic flux φ ′, and constitutes the primary coil 64 and a secondary coil (not shown). Through the copper wire to the other end of the gap 62. The change in the leakage flux φ'through the copper wire causes a back electromotive force in the copper wire, which creates an eddy current in the copper wire. The eddy current flowing in the copper wire was consumed as Joule heat, causing local heat generation in the vicinity of the gap 62. For this reason, the peripheral parts are defective due to the temperature rise. Further, in the case of a high-voltage transformer, it was necessary to use a type of insulation having a high allowable maximum temperature.

この考案が解決しようとする課題は、コアのギャップ部
からの漏れ磁束φ′を少くしてうず電流をいかに少くす
るかにあり、さらに漏れ磁束を制御できるようにするこ
とにある。
The problem to be solved by this invention lies in how to reduce the leakage flux φ ′ from the gap portion of the core to reduce the eddy current, and to control the leakage flux.

(課題を解決するための手段) 上記課題を解決するために、本考案に係るトランスは、
閉磁路を形成するコアの一部にギャップを有し、前記コ
アのギャップ周囲にコイルを巻回してなり、前記ギャッ
プは2個の中空半円状の端部を接合して高透磁率の円柱
部材を内部に収納した容器によって形成されたものであ
る。
(Means for Solving the Problems) In order to solve the above problems, the transformer according to the present invention is
A cylinder having a high magnetic permeability, which has a gap in a part of a core forming a closed magnetic path, and is formed by winding a coil around the gap of the core. The gap is formed by joining two hollow semicircular ends. It is formed by a container having a member housed therein.

(作用) 上記のように構成したトランスにおいて、コイルに交流
電圧を印加し電流を流すと、コア内部に磁束が発生し、
ギャップ部の一端から他端に向かう磁束が発生する。ギ
ャップ部内に挿入された高透磁率の部材に磁束の相当部
分が通過され、ギャップ部から漏れて銅線を通過する漏
れ磁束を少くするようにして、銅線に発生するうず電流
を少くする。ギャップ部からの漏れ磁束は、容器の厚さ
及び上下2面の厚さだけでなく、その内部に収納する高
透磁率の円柱部材の面積によっても制御できる。
(Operation) In the transformer configured as described above, when an AC voltage is applied to the coil to cause a current to flow, a magnetic flux is generated inside the core,
A magnetic flux is generated from one end of the gap portion to the other end. A large portion of the magnetic flux is passed through the high-permeability member inserted in the gap portion, and the leakage magnetic flux leaking from the gap portion and passing through the copper wire is reduced to reduce the eddy current generated in the copper wire. The leakage magnetic flux from the gap portion can be controlled not only by the thickness of the container and the thickness of the two upper and lower surfaces, but also by the area of the high-permeability columnar member accommodated therein.

(実施例) 以下、本考案に係るトランスの実施例について図面を参
照して説明する。第1図は本考案の前提例の要部の概略
断面図である。第1図において、コア11は2個のU字形
のフェライトコアのそれぞれの一端部を密着させ、他端
部間に僅かの間隙を持たせたギャップ部12を構成し、図
示しないほぼ矩形状の閉磁路を形成している。ギャップ
部12及びその近傍のコア11の周囲に低圧ボビン13が配設
され、その上に一次コイル14が巻回され、さらにその上
に図示しない二次コイルが巻回される。コア11のギャッ
プ部12内部にプラスチック例えばポリエステル製のギャ
ップ部材15及びその間に挟まれた高透磁率の部材16が挿
入される。2個のギャップ部材15とその間の強磁性部材
16との厚さの合計がギャップ部12の間隔に等しくなり、
ギャップ部12の所定間隔を形成保持している。そして、
ギャップ部材15及び高透磁率の部材16が構成する磁気抵
抗が所定の値になるようにそれぞれの厚さが決定され
る。高透磁率の部材16としては例えばコア11と同様の強
磁性体であるフェライトが用いられる。
Embodiment An embodiment of the transformer according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of a main part of a premise example of the present invention. In FIG. 1, a core 11 comprises two U-shaped ferrite cores, one end portion of which is closely adhered to each other, and a gap portion 12 having a slight gap is formed between the other end portions thereof. It forms a closed magnetic circuit. A low voltage bobbin 13 is arranged around the gap portion 12 and the core 11 in the vicinity thereof, a primary coil 14 is wound on the low pressure bobbin 13, and a secondary coil (not shown) is further wound thereon. Inside the gap portion 12 of the core 11, a gap member 15 made of plastic such as polyester and a member 16 having high magnetic permeability sandwiched therebetween are inserted. Two gap members 15 and a ferromagnetic member between them
The total thickness with 16 becomes equal to the interval of the gap part 12,
The gap portion 12 is formed and held at a predetermined interval. And
The thickness of each of the gap member 15 and the high magnetic permeability member 16 is determined so that the magnetic resistance of the member 16 has a predetermined value. As the high magnetic permeability member 16, for example, ferrite, which is a ferromagnetic material similar to the core 11, is used.

一次コイル14に交流電流が流れると、第2図のようにコ
ア11内に磁束φが発生し、その磁束が図示しない二次コ
イルと鎖交し、一次コイル14に流れる電流変化による磁
束変化が二次コイルに起電力を誘起させる。一方、コア
11内に発生した磁束φは、ギャップ部12で高透磁率の部
材16に向かうものと外部に漏れるものとに分かれる。す
なわち、磁束φの大部分はギャップ部12の一端面から出
て上部ギャップ部材15を通過し、高透磁率の部材16に引
き込まれ、これを通過し、下部ギャップ部材15を通過し
てギャップ部12の他端部に入って、コア11内に入ってい
く。残りの磁束φ′はギャップ部12の一端から外部に漏
れ、高透磁率の部材16に引き込まれ通過してその端部か
ら再度外部に漏れ、ギャップ部12の他端に入っていく。
したがって、漏れ磁束φ′の量は高透磁率の部材16の透
磁率あるいは厚さにより制御することができる。このと
き、漏れ磁束φ′は一次コイル14及び図示しない二次コ
イルを構成する銅線を貫き、銅線を貫く漏れ磁束φ′の
変化は、銅線に逆起電力を発生させ、これが銅線内にう
ず電流を発生させる。ところが、ギャップ部12の磁束φ
の大部分は高透磁率の部材16を通過し、外部に漏れる磁
束φ′は僅かである。したがって、銅線内に流れるうず
電流は従来の技術として説明したものと比較して極めて
少くなり、ギャップ部12付近の局部的な発熱を防ぐこと
ができる。
When an alternating current flows through the primary coil 14, a magnetic flux φ is generated in the core 11 as shown in FIG. 2, the magnetic flux interlinks with a secondary coil (not shown), and the magnetic flux changes due to the change in the current flowing through the primary coil 14. Induce an electromotive force in the secondary coil. Meanwhile, the core
The magnetic flux φ generated in 11 is divided into one that goes to the member 16 having a high magnetic permeability in the gap portion 12 and one that leaks to the outside. That is, most of the magnetic flux φ goes out from one end face of the gap portion 12, passes through the upper gap member 15, is drawn into the member 16 having high magnetic permeability, passes through this, passes through the lower gap member 15, and passes through the gap portion. It goes into the other end of 12 and goes into the core 11. The remaining magnetic flux φ ′ leaks from one end of the gap portion 12 to the outside, is drawn into the high magnetic permeability member 16 and passes therethrough, leaks to the outside again from the end portion thereof, and enters the other end of the gap portion 12.
Therefore, the amount of the leakage magnetic flux φ ′ can be controlled by the magnetic permeability or the thickness of the high magnetic permeability member 16. At this time, the leakage magnetic flux φ ′ penetrates the primary coil 14 and the copper wire forming the secondary coil (not shown), and the change of the leakage magnetic flux φ ′ penetrating the copper wire causes a counter electromotive force in the copper wire. An eddy current is generated inside. However, the magnetic flux φ of the gap 12
Most of the magnetic flux passes through the member 16 having a high magnetic permeability, and the magnetic flux φ ′ leaking to the outside is small. Therefore, the eddy current flowing in the copper wire is much smaller than that described as the conventional technique, and it is possible to prevent local heat generation in the vicinity of the gap 12.

上記のような説明を前提として、本考案に係るトランス
の実施例について説明する。
Based on the above description, an embodiment of the transformer according to the present invention will be described.

第3図は本考案の一実施例を説明する図であり、高透磁
率の部材とそれを収容する容器の一部破断の組立斜視図
である。第3図において、高透磁率の部材163は第1図
のものと同様に薄い円板状に形成し、例えばフェライト
で構成している。高透磁率の部材163は2個の中空半円
状のプラスチック製の容器17に収容される。容器17は高
透磁率の部材163を収納した後、端面を接着剤で接合
し、円板状に形成される。高透磁率の部材163と容器17
と一体化した容器17の円板状の上下面がギャップ部の面
に向かい合うように挿入される。このように一体化する
ことにより取り扱いが簡単になりトランスの組立が行な
い易くなる。また、容器17の中に高透磁率部材162を一
体に収納したことにより、漏れ磁束を制御できるように
なる。すなわち、高透磁率の部材163の厚さをL1、円板
状の上下の面積をS1、透磁率をμ1、容器17の厚さをL
2、ギャップ部と向かい合う面の面積をS2、透磁率をμ
2とすると、高透磁率の部材163の磁気抵抗Rm1は、 Rm1=L1/μ1・S1、 容器17が高透磁率の部材163と重なる部分の磁気抵抗Rm2
は、 Rm2=(L2−L1)/μ2・S1、 容器17が高透磁率部材163と重ならない部分の磁気抵抗R
m3は、 Rm3=L2/μ2・(S2−S1) であり、この高透磁率の部材163を収納した容器17が形
成するギャップ部の合成磁気抵抗Rmは、 1/Rm=1/(Rm1+Rm2)+1/Rm3 で与えられる。これらの各部分の厚さL1,L2や高透磁率
の部材163の面積S2によっても合成磁気抵抗Rmを決定で
き、従って、漏れ磁束の量を制御できる。
FIG. 3 is a view for explaining an embodiment of the present invention, and is a partially cutaway assembly perspective view of a member having a high magnetic permeability and a container accommodating the member. In FIG. 3, the member 163 having a high magnetic permeability is formed in the shape of a thin disk as in the case of FIG. 1, and is made of, for example, ferrite. The high magnetic permeability member 163 is housed in two hollow semicircular plastic containers 17. The container 17 is formed into a disc shape by accommodating the member 163 having high magnetic permeability and then joining the end faces with an adhesive. High permeability member 163 and container 17
The disc-shaped upper and lower surfaces of the container 17 integrated with are inserted so as to face the surface of the gap portion. Such integration facilitates handling and facilitates assembly of the transformer. Further, since the high magnetic permeability member 162 is integrally housed in the container 17, the leakage magnetic flux can be controlled. That is, the thickness of the member 163 having a high magnetic permeability is L1, the upper and lower areas of the disk shape are S1, the magnetic permeability is μ1, and the thickness of the container 17 is L1.
2, the area of the surface facing the gap is S2, the magnetic permeability is μ
2, the magnetic resistance Rm1 of the high magnetic permeability member 163 is Rm1 = L1 / μ1 · S1, and the magnetic resistance Rm2 of the portion where the container 17 overlaps the high magnetic permeability member 163.
Is Rm2 = (L2-L1) / μ2 · S1, the magnetic resistance R of the part where the container 17 does not overlap with the high magnetic permeability member 163.
m3 is Rm3 = L2 / μ2 · (S2-S1), and the combined magnetic resistance Rm of the gap formed by the container 17 accommodating the high magnetic permeability member 163 is 1 / Rm = 1 / (Rm1 + Rm2) It is given by + 1 / Rm3. The combined magnetic resistance Rm can also be determined by the thicknesses L1 and L2 of these portions and the area S2 of the high magnetic permeability member 163, and thus the amount of leakage magnetic flux can be controlled.

第4図は第1図の前提例から派生する他の第1の参考例
を説明する断面図であり、第1図のものと同様の高透磁
率の部材164がプラスチック154でコーティングされてい
るものである。
FIG. 4 is a sectional view for explaining another first reference example derived from the premise example of FIG. 1, and a member 164 having a high magnetic permeability similar to that of FIG. 1 is coated with plastic 154. It is a thing.

第5図は第1図の前提例から派生する他の第2の参考例
の組立分解図である。第5図において、低圧ボビン135
の略中央すなわち組み立てたときにコアのギャップ部が
形成される箇所に支持部18を設けてあり、高透磁率の部
材165を低圧ボビン135内に収容支持し、その上にプラス
チックシートのギャップ部材155を重ねるものである。
図示しないコアの一端部はギャップ部材155の上面に当
接し、コアの他端部は支持部18の下面に当接することに
なり、ギャップ間隔はギャップ部材155、高透磁率の部
材165及び支持部18の厚さの合計で決定される。このよ
うにすることにより、高透磁率の部材を収納した状態で
低圧ボビンを取り扱うことができ、高透磁率の部材を付
加しても意識しないで取り扱うことができる。
FIG. 5 is an exploded view of another second reference example derived from the premise example of FIG. In FIG. 5, low pressure bobbin 135
A support portion 18 is provided at a substantially central position of the core, that is, at a position where a gap portion of the core is formed when assembled, a high magnetic permeability member 165 is accommodated and supported in the low pressure bobbin 135, and a plastic sheet gap member is provided thereon. Overlaps 155.
One end of the core (not shown) comes into contact with the upper surface of the gap member 155, and the other end of the core comes into contact with the lower surface of the support portion 18. The gap interval is the gap member 155, the high magnetic permeability member 165 and the support portion. Determined by a total of 18 thicknesses. By doing so, the low-pressure bobbin can be handled in a state where the high-permeability member is housed, and even if the high-permeability member is added, it can be handled without being aware of it.

(考案の効果) 以上説明した通り、本考案のトランスは上記のように構
成されているので、ギャップ部からの漏れ磁束を少くす
ることができ、うず電流を極めて少くすることができ
る。そのため、以下のように種々の利点を有する。すな
わち、うず電流によるギャップ部の局部発熱を小さくす
ることができて、温度上昇を防ぐことができ、発熱によ
る部品不良を少くすることができる。漏れ磁束が小さく
なるから磁束密度を小さくすることが出来、磁束密度が
飽和しない範囲で、コア径を小さくすることが出来、ト
ランス設計に余裕度がでてくる。また、うず電流が少く
なり発熱が少くなり、絶縁トランスの場合、絶縁の種類
をA種絶縁からY種絶縁のようにおとすことができる。
さらに、温度上昇を防ぐことができるため、高インチ用
FBT(画質品位を高くし、印加電圧を高くすることによ
り明るい画面を得て、高精細、高画質用に用いられる)
でも、従来の小さいコア径の標準タイプで可能となる。
なる。さらに、ギャップを2個の中空半円状の端部を接
合して高透磁率の円板状部材を内部に収納した容器によ
って形成したので、漏れ磁束の量を制御することができ
るとともに、容易にコア間にセットでき、取り扱いが簡
単になり、トランスの組み立てが行い易くなるという利
点がある。
(Effect of the Invention) As described above, since the transformer of the present invention is configured as described above, it is possible to reduce the leakage magnetic flux from the gap portion and extremely reduce the eddy current. Therefore, it has various advantages as follows. That is, it is possible to reduce local heat generation in the gap portion due to the eddy current, prevent an increase in temperature, and reduce defective parts due to heat generation. Since the leakage magnetic flux becomes small, the magnetic flux density can be made small, and the core diameter can be made small in the range in which the magnetic flux density is not saturated, which gives a margin to the transformer design. Further, since the eddy current is small and the heat generation is small, the insulation type can be changed from the A type insulation to the Y type insulation.
Furthermore, since it can prevent the temperature rise, it is suitable for high inches.
FBT (Used for high definition and high image quality by obtaining a bright screen by increasing the image quality and applying voltage.)
However, it is possible with the conventional standard type with a small core diameter.
Become. Further, since the gap is formed by the container in which the two semi-circular hollow end portions are joined and the disc-shaped member having high magnetic permeability is housed inside, the amount of leakage magnetic flux can be controlled and at the same time easy. It has the advantages that it can be set between the cores, it is easy to handle, and the transformer can be easily assembled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の前提例の要部の概略断面図、第2図は
磁束の分布を説明する図、第3図は本考案の実施例の一
部破断の組立斜視図、第4図は第1の参考例の断面図、
第5図は第2の参考例の組立分解図、第6図は従来のフ
ライバックトランスの要部概略断面図である。 11…コア、12…ギャップ部、13,132…低圧ボビン、14…
一次コイル、15,153…ギャップ部材、16,162,163…高透
磁率の部材、17…容器、18…支持部
FIG. 1 is a schematic sectional view of a main part of a premise example of the present invention, FIG. 2 is a view for explaining a distribution of magnetic flux, FIG. 3 is a partially broken assembly perspective view of an embodiment of the present invention, and FIG. Is a cross-sectional view of the first reference example,
FIG. 5 is an exploded view of the second reference example, and FIG. 6 is a schematic sectional view of a main part of a conventional flyback transformer. 11 ... Core, 12 ... Gap part, 13, 132 ... Low pressure bobbin, 14 ...
Primary coil, 15,153 ... Gap member, 16,162, 163 ... High magnetic permeability member, 17 ... Container, 18 ... Support part

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】閉磁路を形成するコアの一部にギャップを
有し、前記コアのギャップ周囲にコイルを巻回してなる
トランスにおいて、 前記ギャップは2個の中空半円状の端部を接合して高透
磁率の円板状部材を内部に収納した容器によって形成さ
れた ことを特徴とするトランス。
1. A transformer having a gap in a part of a core forming a closed magnetic path and winding a coil around the gap of the core, wherein the gap joins two hollow semicircular ends. Then, the transformer is formed by a container having a disk-shaped member of high magnetic permeability contained therein.
JP1989036542U 1989-03-31 1989-03-31 Trance Expired - Lifetime JPH0726828Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989036542U JPH0726828Y2 (en) 1989-03-31 1989-03-31 Trance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989036542U JPH0726828Y2 (en) 1989-03-31 1989-03-31 Trance

Publications (2)

Publication Number Publication Date
JPH02129712U JPH02129712U (en) 1990-10-25
JPH0726828Y2 true JPH0726828Y2 (en) 1995-06-14

Family

ID=31542863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989036542U Expired - Lifetime JPH0726828Y2 (en) 1989-03-31 1989-03-31 Trance

Country Status (1)

Country Link
JP (1) JPH0726828Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099419U (en) * 1974-01-16 1975-08-18
JPS5121444A (en) * 1974-08-15 1976-02-20 Nippon Telegraph & Telephone Ingujetsutopurintaa niokeru rokasochi

Also Published As

Publication number Publication date
JPH02129712U (en) 1990-10-25

Similar Documents

Publication Publication Date Title
ATE171546T1 (en) USE OF A MINIATURIZED COIL ARRANGEMENT PRODUCED USING PLANAR TECHNOLOGY FOR THE DETECTION OF FERROMAGNETIC SUBSTANCES
WO2001054150A1 (en) Inverter transformer
JPH0726828Y2 (en) Trance
US6545582B2 (en) Magnetic core having an effective magnetic bias and magnetic device using the magnetic core
JPH0115142Y2 (en)
JPH11201707A (en) Differential transformer for hydraulic equipment
JPH0115140Y2 (en)
JPH0557824U (en) Trance
JPH10135044A (en) Inductance element
JPH0726816Y2 (en) High frequency inductor
JPS5831383Y2 (en) Houden Touan Teiki
JP3009560U (en) Electromagnetic drive type magneto-optical device
JP3547061B2 (en) Self-excited push-pull inverter for neon tube lighting
RU2265253C1 (en) Transformer reducing error of in-service potential transformers
JPH075617Y2 (en) Electromagnetic device
JPH06124844A (en) Magnetism leakage transformer
JPH0121535Y2 (en)
JP2563934Y2 (en) Magnetic core with gap
JP2003124037A (en) Inverter transformer
JPS5815728Y2 (en) proportional solenoid valve
JPH0391210A (en) Transformer
JP3063557B2 (en) choke coil
JP3032468B2 (en) Magnetic circuit and non-reciprocal circuit device having temperature compensation structure
TW587260B (en) Inverter transformer
JPS634394Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term