JPH0726789B2 - Condensing device and method for open-cycle ocean thermal energy conversion - Google Patents

Condensing device and method for open-cycle ocean thermal energy conversion

Info

Publication number
JPH0726789B2
JPH0726789B2 JP4116963A JP11696392A JPH0726789B2 JP H0726789 B2 JPH0726789 B2 JP H0726789B2 JP 4116963 A JP4116963 A JP 4116963A JP 11696392 A JP11696392 A JP 11696392A JP H0726789 B2 JPH0726789 B2 JP H0726789B2
Authority
JP
Japan
Prior art keywords
chamber
thermal energy
energy conversion
steam
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4116963A
Other languages
Japanese (ja)
Other versions
JPH05288481A (en
Inventor
武信 梶川
弘幸 高沢
雅継 天野
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4116963A priority Critical patent/JPH0726789B2/en
Publication of JPH05288481A publication Critical patent/JPH05288481A/en
Publication of JPH0726789B2 publication Critical patent/JPH0726789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は凝縮装置、特に、海洋の
表層水および深層水を各々に高温源および低温源として
利用し発電を行うようにした、いわゆる海洋温度差発電
におけるオープンサイクル方式に用いて好適な凝縮装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensing device, and more particularly to an open cycle system in so-called ocean temperature difference power generation, in which surface water and deep water of the ocean are used as a high temperature source and a low temperature source respectively to generate electricity. The present invention relates to a condenser suitable for use.

【0002】[0002]

【従来の技術】オープンサイクル海洋温度差発電は、発
電電力と共に価値のある副生成物として飲料水や工業用
水として用いることのできる淡水が得られるという利点
がある。そのため中小規模のシステムにおいても、離島
用電力および淡水供給システムとしての実用化が可能と
みられている。ただし、淡水を得るためには隔壁型の凝
縮器を設け、そこに復水させて淡水を得る必要がある。
2. Description of the Related Art Open-cycle ocean thermal energy conversion has the advantage that, together with the generated power, valuable by-products can be obtained as fresh water that can be used as drinking water or industrial water. Therefore, it is expected that even small and medium-scale systems can be put to practical use as remote island electricity and freshwater supply systems. However, in order to obtain fresh water, it is necessary to install a partition type condenser and to condense water there to obtain fresh water.

【0003】従って、従来のシステムは、図5に概念的
に示されるように、効率のよい直接接触凝縮部と隔壁型
凝縮器の多段構成の凝縮装置を含むシステムとなってい
る。
Therefore, the conventional system, as conceptually shown in FIG. 5, is a system including an efficient direct contact condenser and a multi-stage condenser of a partition type condenser.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のシステムでは、チタンなどのような耐海水性
を有する材料で構成されたシェル・アンド・チューブ方
式、またはプレート式等の凝縮器の設置とそれに冷海水
を供給するための配管、流量制御系など多くの設備とス
ペースが必要となる。隔壁型では、熱交換を行うには一
般に細管や伝熱面隙間に、1〜2m/sの流速で、冷海
水を通過させることが必要であり、このための圧力損失
が管内、水室、曲がり部などで発生しそのポンプ動力が
大きくならざるを得ない。
However, in such a conventional system, installation of a shell-and-tube type or plate type condenser made of a material having seawater resistance such as titanium. A lot of equipment and space such as piping for supplying cold seawater and a flow control system are required. In the partition type, in order to perform heat exchange, it is generally necessary to pass cold seawater through a narrow tube or a heat transfer surface gap at a flow rate of 1 to 2 m / s. It is generated at the bend and the pump power must be increased.

【0005】また、オープンサイクルでは、器内の圧力
は、0.03−0.01気圧と非常に低いため、真空気
密構造とする必要がある。そのため、機器接合部や管や
プレートでの海水側との気密を注意深く取る必要があ
り、その製作工程は、複雑となる。もし、ひとたびリー
クがあると、その箇所の発見には多大の労力を必要とす
る。
Further, in the open cycle, the pressure inside the vessel is as low as 0.03-0.01 atm, so it is necessary to have a vacuum hermetic structure. Therefore, it is necessary to carefully keep the airtightness of the equipment joint part, the pipe and the plate with the seawater side, and the manufacturing process becomes complicated. If there is a leak, it will take a lot of effort to find it.

【0006】このように、オープンサイクルでは副生成
物として淡水が得られるという利点を有するものの、従
来のものにあっては、そのために余分の設備・労力・動
力等を必要とすることから、淡水は真の副生成物とは言
えず、システムの実用化に際して大きな課題となってい
る。
As described above, although the open cycle has an advantage that fresh water can be obtained as a by-product, the conventional one requires extra equipment, labor, power, etc., so that fresh water is required. Is not a true by-product, and has become a major issue in the practical application of the system.

【0007】本発明の目的は、特に、オープンサイクル
方式の海洋温度差発電の凝縮部において、隔壁型凝縮器
を別に設備することなく、本来海水と蒸気が直接接触し
てしまう直接接触凝縮器の中に淡水化を可能とする機能
を持たせることにより、凝縮装置を単純化し、設備の簡
単化、配管の単純化、材料の節約、省力化、ポンプ動力
の軽減をはかることのできる凝縮装置並びに凝縮方法を
提供することにある。
The object of the present invention is, in particular, in a direct contact condenser in which seawater and steam originally come into direct contact with each other, without separately installing a bulkhead condenser in the condensing section of the open-cycle ocean temperature difference power generation. By having a function that enables desalination in the inside, it is possible to simplify the condenser device, simplify the equipment, simplify the piping, save the material, save the labor, and reduce the pump power. To provide a condensation method.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1に記載の発明は、タービンを出た蒸気が導
かれ、下側に淡水受部が形成された第1の室と、該第1
の室の上側に連設され該第1の室の上方の第2の室に開
口する筒部材と、該第2の室内において前記筒部材の上
部開口と所定距離離間されてその上方に設けられた板部
材と、該板部材の上面に冷海水を供給する供給手段とを
備えたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to the first chamber in which the steam leaving the turbine is introduced and the fresh water receiving portion is formed on the lower side. , The first
A cylindrical member connected to the upper side of the first chamber and opening to a second chamber above the first chamber, and provided above the upper opening of the cylindrical member in the second chamber at a predetermined distance. A plate member and a supply means for supplying cold seawater to the upper surface of the plate member.

【0009】請求項2に記載の発明は、前記筒部材は先
細りで傾斜面を有し、該傾斜面に前記冷海水が一様に落
下するよう板部材の大きさや形状が設定されていること
を特徴とする。
According to a second aspect of the present invention, the tubular member has a taper and an inclined surface, and the size and shape of the plate member are set so that the cold seawater uniformly drops on the inclined surface. Is characterized by.

【0010】請求項3に記載の発明は、前記供給手段は
その一端が前記板部材の上方に臨み、他端が前記第2の
室の上方に設けられた第3の室に連通する筒部材を含む
ことを特徴とする。
According to a third aspect of the present invention, the supply member has a cylindrical member whose one end faces above the plate member and whose other end communicates with a third chamber provided above the second chamber. It is characterized by including.

【0011】請求項4に記載の発明は、前記筒部材のま
わりに直接接触凝縮を行う多孔性構成物を配置したこと
を特徴とする。
The invention according to claim 4 is characterized in that a porous component for direct contact condensation is arranged around the cylindrical member.

【0012】請求項5に記載の発明は、オープンサイク
ル海洋温度差発電システムにおいて、タービンを出た蒸
気が直接接触凝縮域に達する前に、該直接接触凝縮域で
用いられた冷海水により前記蒸気の一部から熱を奪い凝
縮させ分離した形態で淡水を得ることを特徴とする。
According to a fifth aspect of the present invention, in the open-cycle ocean thermal energy conversion system, before the steam leaving the turbine reaches the direct contact condensation zone, the cold seawater used in the direct contact condensation zone causes the steam to flow. It is characterized in that fresh water is obtained in the form of taking away heat from a part of and condensing it.

【0013】請求項6に記載の発明は、前記冷海水によ
って冷却された伝熱面により前記蒸気の一部から熱を奪
うと共に、残りの蒸気は衝突噴流熱伝達によって熱交換
を行い蒸気側で淡水を獲得した後、前記冷海水と直接接
触熱伝達により凝縮させることを特徴とする。
According to a sixth aspect of the present invention, heat is removed from a part of the steam by the heat transfer surface cooled by the cold seawater, and the remaining steam exchanges heat by collision jet heat transfer to the steam side. After the fresh water is obtained, it is condensed with the cold seawater by direct contact heat transfer.

【0014】[0014]

【作用】本発明によれば、タービンを出た蒸気は下側に
淡水受部が形成された第1の室に導かれ、該第1の室の
上側に連設され第1の室の上方の第2の室に開口する筒
部材で加速されつつ上昇する。そして、噴流となった蒸
気は該筒部材の上部開口と所定距離離間されてその上方
に設けられ上面が供給冷海水によって冷却された板部材
の下面に衝突し、衝突噴流熱伝達により一部が凝縮し落
下する。該落下した凝縮水、すなわち、淡水は第1の室
の淡水受部で受けられる。一方、凝縮しなかった残りの
蒸気は板部材と筒部材の開口との間から第2の室に進
み、板部材の上面に供給され落下している冷海水によっ
て直接接触凝縮が行われる。
According to the present invention, the steam exiting the turbine is guided to the first chamber in which the fresh water receiving portion is formed on the lower side, and the steam is continuously provided on the upper side of the first chamber and above the first chamber. The cylinder member that opens to the second chamber of the cylinder moves up while being accelerated. Then, the steam that has become a jet flow collides with the lower surface of the plate member, which is provided a certain distance apart from the upper opening of the cylindrical member and is provided above the cylindrical member, and whose upper surface is cooled by the supplied cold seawater. It condenses and falls. The dropped condensed water, that is, fresh water, is received by the fresh water receiving portion of the first chamber. On the other hand, the remaining uncondensed vapor proceeds from between the plate member and the opening of the tubular member to the second chamber, where direct contact condensation is performed by the cold seawater that is supplied to the upper surface of the plate member and is falling.

【0015】[0015]

【実施例】以下、本発明の実施例を添附図面を参照しつ
つ説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0016】図1に本発明を適用したオープンサイクル
海洋温度差発電システムの概要を表わす半断面斜視図を
示す。
FIG. 1 is a half sectional perspective view showing an outline of an open cycle ocean thermal energy conversion system to which the present invention is applied.

【0017】その基本的構成要素は、蒸発部10,ター
ビン・発電部20および凝縮部30である。
The basic constituent elements are an evaporator 10, a turbine / power generator 20, and a condenser 30.

【0018】蒸発部10は、ポンプ等により温海水が導
入される温海水室12とその上方の蒸発室14とを備え
ている。温海水室12と蒸発室14との隔壁16には蒸
発室14側に突出させて多数の噴流管18が形成され温
海水を蒸発室14内に噴流させる。
The evaporation section 10 is provided with a warm seawater chamber 12 into which warm seawater is introduced by a pump or the like, and an evaporation chamber 14 above it. A large number of jet pipes 18 are formed on the partition wall 16 between the warm seawater chamber 12 and the evaporation chamber 14 so as to project toward the evaporation chamber 14 side, and the warm seawater is jetted into the evaporation chamber 14.

【0019】タービン・発電部20においては、蒸発室
14と連通するダクト22内にタービン24が設けら
れ、タービン24の出口側には中央に中空の柱状体25
を備えた環状の膨張室26が形成されている。タービン
24に駆動される発電機28は柱状体25の中空部内で
外部に露出されて設けられている。
In the turbine / power generation section 20, a turbine 24 is provided in a duct 22 communicating with the evaporation chamber 14, and a hollow columnar body 25 is provided in the center of the outlet side of the turbine 24.
An annular expansion chamber 26 is formed. The generator 28 driven by the turbine 24 is provided outside in the hollow portion of the columnar body 25.

【0020】凝縮部30は、タービン24から膨張室2
6を介して出た蒸気が導入される第1の室としての第1
環状室32,第1環状室32の上方に形成された第2の
室としての第2環状室34、さらに、第2環状室34の
上方に形成された第3の室としての第3環状室36を備
えている。第1環状室32はその下側が上述の膨張室2
6からの導入口29よりも低く形成され、凝縮された淡
水を貯留することができる淡水受部32Aとされてい
る。従って、第1環状室32の底部、すなわち淡水受部
32Aの底面には弁32Bを備えた淡水取出管32Cが
接続されており、必要に応じて淡水を取出すことができ
る。
The condenser section 30 is connected to the expansion chamber 2 from the turbine 24.
First as the first chamber into which the steam discharged through 6 is introduced
Annular chamber 32, second annular chamber 34 as a second chamber formed above the first annular chamber 32, and third annular chamber as a third chamber formed above the second annular chamber 34. Equipped with 36. The lower side of the first annular chamber 32 is the expansion chamber 2 described above.
It is lower than the inlet 29 from 6 and serves as a fresh water receiving portion 32A capable of storing condensed fresh water. Therefore, the fresh water extraction pipe 32C equipped with the valve 32B is connected to the bottom of the first annular chamber 32, that is, the bottom surface of the fresh water receiver 32A, and fresh water can be taken out as necessary.

【0021】第1環状室32と第2環状室34との隔壁
33には多数の円錐台形をした筒部材35が第2環状室
34内に突出されて設けられている。本実施例における
筒部材35は、先細りで先端に上部開口35Aを、側方
に傾斜面35Bを有している。
In the partition wall 33 between the first annular chamber 32 and the second annular chamber 34, a large number of truncated cone-shaped tubular members 35 are provided so as to project into the second annular chamber 34. The tubular member 35 in this embodiment is tapered and has an upper opening 35A at the tip and an inclined surface 35B at the side.

【0022】筒部材35を含む隔壁33は、耐海水性か
つ良熱伝導性の材料で製作することが好ましく、筒部材
35の形状としては本例の円錐台形や後に例示する円筒
形状の他に、角錐台形、放物面台形、半球面台形や角筒
形状でもよい。また、その表面は平滑面、内側溝付き
面、外側溝付き面、両面溝付き面であってもよい。
The partition wall 33 including the tubular member 35 is preferably made of a material having seawater resistance and good thermal conductivity. The tubular member 35 may have a shape other than the truncated cone shape of this example or the cylindrical shape exemplified later. The shape may be a truncated pyramid, a parabolic trapezoid, a hemispherical trapezoid, or a prismatic shape. The surface may be a smooth surface, an inner grooved surface, an outer grooved surface, or a double-sided grooved surface.

【0023】耐圧的にはほぼ均圧条件で使用されるの
で、後述のように落下水流に耐え得る強度であればよ
く、薄肉材料でよい。
Since it is used under pressure equalization conditions in terms of pressure resistance, a thin material may be used as long as it has a strength capable of withstanding a falling water flow as described later.

【0024】さらに、各筒部材35の上方には、その上
部開口35Aと所定距離離間されて、開口35Aの径よ
りも大きな径を有する板部材としての分離プレート37
が設けられている。本実施例にあっては、図2に示すよ
うに、分離プレート37はステー37Aでもって水平に
筒部材35に支持されている。分離プレート37は衝突
噴流熱伝達と気液の方向を制御する機能を有しており、
これらが満たされれば、その形状としては、平坦円板、
放射状溝付や縁取り付板、あるいは傘状や逆傘状であっ
てもよい。
Further, a separating plate 37, which is a plate member having a diameter larger than the diameter of the opening 35A, is spaced above the upper opening 35A of the cylindrical member 35 by a predetermined distance.
Is provided. In the present embodiment, as shown in FIG. 2, the separation plate 37 is horizontally supported by the tubular member 35 with the stay 37A. The separation plate 37 has a function of controlling the heat transfer of the impinging jet and the direction of gas-liquid,
If these are satisfied, the shape is a flat disc,
It may have a radial groove, a edging plate, or an umbrella shape or an inverted umbrella shape.

【0025】さらに、該各分離プレート37の上方には
第2環状室34と第3環状室36との隔壁38に冷海水
供給のためのノズル39が設けられている。そして、第
3環状室36には給水管36Aが接続されており、ポン
プにより冷海水が供給される。なお、前述の第2環状室
34にあっては、第1環状室32との隔壁33よりもや
や上側に排水管34Aが接続されている。
Further, a nozzle 39 for supplying cold seawater is provided above the separation plate 37 in a partition wall 38 between the second annular chamber 34 and the third annular chamber 36. A water supply pipe 36A is connected to the third annular chamber 36, and cold seawater is supplied by a pump. In the above-mentioned second annular chamber 34, the drain pipe 34A is connected to the first annular chamber 32, slightly above the partition wall 33.

【0026】上記構成になる本実施例においては、ポン
プにより温海水室12に海洋の表層水である温海水(約
27℃程度)が供給され、蒸発室14においてその0.
5%程度が蒸気となる。その蒸気圧は約0.03気圧で
あり、膨張室26における蒸気圧約0.015気圧にな
るよう膨張する間に、タービン24を回し発電を行う。
タービン24から出た蒸気は導入口29を通り第1環状
室32に入り、筒部材35に導かれる(蒸気の流れを矢
印Aで示す)。筒部材35において、蒸気は加速され、
その開口35Aから噴出し分離プレート37に衝突す
る。分離プレート37には、その上面にポンプにより第
3環状室36に供給された海洋の深層水である冷海水
が、ノズル39を介して落下噴出されており、この冷海
水はさらに分離プレート37の外縁から流下膜となって
落下し、筒部材35の傾斜面35Bに落下衝突している
(冷海水の流れを矢印Bで示す)。この結果、上述の筒
部材35内で加速されている蒸気の一部は傾斜面35B
の内側の伝熱面において凝縮し、第1環状室32の下側
の淡水受部32Aに落下し貯えられる。一方、筒部材3
5内で凝縮しなかった蒸気は、前述のように、分離プレ
ート37の下面に衝突して衝突噴流熱伝達によりその一
部が凝縮して淡水受部32Aに落下し貯えられるが、大
部分は第2環状室34側に向かう。そして、この蒸気は
上述の落下流下膜と直接接触を行いつつ、筒部材35の
傾斜面35Bに落下衝突する。ここで、十分撹拌混合が
行われ、冷海水は蒸気と直接接触を行うと共に、傾斜面
35Bから強制対流熱伝達により熱を奪い、前述の淡水
製造のための冷熱源となる。落下冷海水は十分熱交換を
行った後、第2環状室34の底部を経て、排水管34A
を介して外部に排水される。
In the present embodiment having the above-mentioned structure, warm seawater (about 27 ° C.) which is the surface water of the ocean is supplied to the warm seawater chamber 12 by the pump, and the warm seawater (about 27 ° C.) is supplied to the warm seawater chamber 12.
About 5% becomes steam. The vapor pressure is about 0.03 atm, and the turbine 24 is rotated to generate electricity while the vapor pressure in the expansion chamber 26 is expanded to about 0.015 atm.
The steam discharged from the turbine 24 enters the first annular chamber 32 through the inlet 29 and is guided to the tubular member 35 (the flow of steam is indicated by arrow A). In the tubular member 35, the steam is accelerated,
It spouts from the opening 35A and collides with the separation plate 37. On the upper surface of the separation plate 37, cold seawater, which is the deep sea water supplied to the third annular chamber 36 by a pump, is dropped and ejected through the nozzle 39, and this cold seawater is further discharged from the separation plate 37. It falls as a falling film from the outer edge and falls and collides with the inclined surface 35B of the tubular member 35 (the flow of cold seawater is indicated by arrow B). As a result, a part of the steam accelerated in the above-mentioned tubular member 35 has a slope 35B.
Is condensed on the heat transfer surface inside and is dropped and stored in the fresh water receiving portion 32A below the first annular chamber 32. On the other hand, the tubular member 3
As described above, the vapor that has not condensed in 5 collides with the lower surface of the separation plate 37 and a portion thereof is condensed by the collision jet heat transfer and drops into the fresh water receiving portion 32A and is stored, but most of it is Towards the second annular chamber 34 side. Then, the vapor falls and collides with the inclined surface 35B of the tubular member 35 while directly contacting with the above falling falling film. Here, sufficient agitation and mixing are performed, the cold seawater makes direct contact with the steam, and at the same time, heat is taken from the inclined surface 35B by forced convection heat transfer, and becomes the cold heat source for the fresh water production described above. After the drop cold seawater has sufficiently exchanged heat, it passes through the bottom of the second annular chamber 34 and then to the drain pipe 34A.
It is drained to the outside via.

【0027】淡水化比率は、システム設計時にほぼ任意
に決定することができるが、オープンサイクル海洋温度
差発電では、海水流量の約0.5%が蒸気となり、それ
をすべて淡水化すると淡水流量が膨大となり、全量淡水
化をさせるニーズは特殊な規模を除いては余りないの
で、このような純然たる副生成物という位置付けでも必
要十分な淡水量を獲得することができる。制御範囲は全
蒸気量の10〜80%程度が可能である。
The desalination ratio can be determined almost arbitrarily at the time of system design, but in open cycle ocean thermal energy conversion, about 0.5% of the seawater flow rate becomes steam, and if all of it is desalinated, the desalination flow rate will change. It becomes enormous, and the need for total desalination is not large except for a special scale, so it is possible to obtain the necessary and sufficient amount of desalination even with such a position as a pure by-product. The control range can be about 10 to 80% of the total amount of steam.

【0028】次に、本発明の他の実施例を図4を参照し
つつ説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

【0029】本実施例は、前実施例に比べ直接接触伝熱
を効果的に行うことができるようにしたものであり、円
筒形の筒部材35′のまわりに高分子材料等の耐海水性
を有する素材で構成された多孔性構造物40が配置され
ている。さらに、分離プレート37′が逆傘形状をな
し、その中心において第1環状室32の底面に立設され
たステム41によって支持されている。そして、分離プ
レート37′の外縁が多孔性構造物40の上方に位置す
る大きさに設定されている。そのほかの構成は前実施例
と同様であるから、同一部位には同一符号を付し重複説
明を避ける。
In this embodiment, heat transfer in direct contact can be effectively performed as compared with the previous embodiment, and a seawater resistance such as a polymer material is provided around a cylindrical tubular member 35 '. The porous structure 40 composed of a material having Further, the separation plate 37 'has an inverted umbrella shape, and is supported at its center by a stem 41 standing on the bottom surface of the first annular chamber 32. The outer edge of the separation plate 37 'is set to a size located above the porous structure 40. Since other configurations are the same as those of the previous embodiment, the same parts are designated by the same reference numerals to avoid redundant description.

【0030】本実施例においては、淡水は分離プレート
37′の下面においてのみ生成され、その生成された淡
水は一部落下するが、大半は逆傘形状の分離プレート3
7′の下面とステム41とを伝わり第1環状室32の下
側の淡水受部32Aに貯えられる。
In the present embodiment, fresh water is generated only on the lower surface of the separation plate 37 ', and the generated fresh water partially falls, but most of it is an inverted umbrella-shaped separation plate 3'.
It is transmitted through the lower surface of 7'and the stem 41 and stored in the fresh water receiving portion 32A below the first annular chamber 32.

【0031】筒部材35′は出入口の面積比が1であ
り、蒸気の残存運動エネルギーのみを利用できるので、
余分な圧力損失が発生しない。
Since the area ratio of the inlet and outlet of the tubular member 35 'is 1, and only the residual kinetic energy of steam can be used,
No extra pressure loss.

【0032】また、凝縮しなかった蒸気は分離プレート
37′の外縁からの落下流下膜と直接接触するか多孔性
構造物40内で効果的に直接接触伝熱が行われ凝縮され
る。
The uncondensed vapor is directly contacted with the falling film falling from the outer edge of the separation plate 37 'or is effectively directly contacted with heat in the porous structure 40 to be condensed.

【0033】[0033]

【発明の効果】本発明によれば、タービンを出た蒸気が
導かれ、下側に淡水受部が形成された第1の室と、該第
1の室の上側に連設され該第1の室の上方の第2の室に
開口する筒部材と、該第2の室内において前記筒部材の
上部開口と所定距離離間されてその上方に設けられた板
部材と、該板部材の上面に冷海水を供給する供給手段と
を設けるようにしたので、一つの凝縮装置によって発電
に必要な蒸気の凝縮器の役目をはたせると同時にその一
部の蒸気を効果的に凝縮させて淡水を得ることができ、
淡水製造のために蒸気を分離したり、冷水配管を別に引
きまわしたりする必要がなく、凝縮装置を単純化するこ
とができる。従って、性能の向上、正味出力の向上、設
備費用の節約、保守の省力化などの多面的効果を得るこ
とができる。
According to the present invention, the steam leaving the turbine is guided, and the first chamber in which the fresh water receiving portion is formed on the lower side and the first chamber connected to the upper side of the first chamber are connected to each other. A cylindrical member opening to a second chamber above the chamber, a plate member provided above the upper opening of the cylindrical member at a predetermined distance in the second chamber, and an upper surface of the plate member. Since a supply means for supplying cold seawater is provided, one condenser serves as a condenser for the steam necessary for power generation, and at the same time, a part of the steam is effectively condensed to obtain fresh water. Can
There is no need to separate steam or separate cold water pipes for fresh water production, which simplifies the condenser. Therefore, it is possible to obtain various effects such as improvement of performance, improvement of net output, saving of equipment cost, and labor saving of maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したオープンサイクル海洋温度差
発電システムの概要を示す半断面斜視図である。
FIG. 1 is a half cross-sectional perspective view showing an outline of an open-cycle ocean thermal energy conversion system to which the present invention is applied.

【図2】本発明の一実施例を示す部分拡大断面図であ
る。
FIG. 2 is a partially enlarged sectional view showing an embodiment of the present invention.

【図3】本発明の一実施例を示す半断面斜視図である。FIG. 3 is a half sectional perspective view showing an embodiment of the present invention.

【図4】本発明の他の実施例を示す半断面斜視図であ
る。
FIG. 4 is a half sectional perspective view showing another embodiment of the present invention.

【図5】従来例を示す断面概念図である。FIG. 5 is a conceptual sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

10 蒸発部 20 タービン・発電部 30 凝縮部 32 第1環状室 32A 淡水受部 34 第2環状室 35,35′ 筒部材 36 第3環状室 37,37′ 分離プレート 39 ノズル 40 多孔性構造物 41 ステム 10 Evaporator 20 Turbine / Power Generator 30 Condenser 32 First Annular Chamber 32A Fresh Water Receptor 34 Second Annular Chamber 35, 35 'Cylinder Member 36 Third Annular Chamber 37, 37' Separation Plate 39 Nozzle 40 Porous Structure 41 Stem

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 タービンを出た蒸気が導かれ、下側に淡
水受部が形成された第1の室と、 該第1の室の上側に連設され該第1の室の上方の第2の
室に開口する筒部材と、 該第2の室内において前記筒部材の上部開口と所定距離
離間されてその上方に設けられた板部材と、 該板部材の上面に冷海水を供給する供給手段とを備えた
ことを特徴とするオープンサイクル海洋温度差発電用の
凝縮装置。
1. A first chamber, into which steam exiting the turbine is introduced, and a fresh water receiving portion is formed on a lower side, and a first chamber above the first chamber, which is connected to the upper side of the first chamber. A tubular member opening to the second chamber, a plate member provided above the upper opening of the tubular member at a predetermined distance in the second chamber, and a supply of cold seawater to the upper surface of the plate member A condensing device for open-cycle ocean thermal energy conversion, comprising:
【請求項2】 前記筒部材は先細りで傾斜面を有し、該
傾斜面に前記冷海水が一様に落下するよう板部材の大き
さや形状が設定されていることを特徴とする請求項1に
記載のオープンサイクル海洋温度差発電用の凝縮装置。
2. The tubular member has a taper and an inclined surface, and the size and shape of the plate member are set so that the cold seawater uniformly drops on the inclined surface. The condensing device for open cycle ocean thermal energy conversion described in.
【請求項3】 前記供給手段はその一端が前記板部材の
上方に臨み、他端が前記第2の室の上方に設けられた第
3の室に連通する筒部材を含むことを特徴とする請求項
1または2に記載のオープンサイクル海洋温度差発電用
の凝縮装置。
3. The supply means includes a tubular member whose one end faces above the plate member and whose other end communicates with a third chamber provided above the second chamber. The condensing device for open-cycle ocean thermal energy conversion according to claim 1 or 2.
【請求項4】 前記筒部材のまわりに直接接触凝縮を行
う多孔性構成物を配置したことを特徴とする請求項1に
記載のオープンサイクル海洋温度差発電用の凝縮装置。
4. The condensing device for open-cycle ocean thermal energy conversion according to claim 1, wherein a porous structure for performing direct contact condensation is arranged around the cylindrical member.
【請求項5】 オープンサイクル海洋温度差発電システ
ムにおいて、タービンを出た蒸気が直接接触凝縮域に達
する前に、該直接接触凝縮域で用いられた冷海水により
前記蒸気の一部から熱を奪い凝縮させ分離した形態で淡
水を得ることを特徴とするオープンサイクル海洋温度差
発電用の凝縮方法。
5. In the open cycle ocean thermal energy conversion system, before the steam leaving the turbine reaches the direct contact condensation zone, the cold seawater used in the direct contact condensation zone removes heat from a part of the steam. A condensing method for open cycle ocean thermal energy conversion characterized by obtaining fresh water in a condensed and separated form.
【請求項6】 前記冷海水によって冷却された伝熱面に
より前記蒸気の一部から熱を奪うと共に、残りの蒸気は
衝突噴流熱伝達によって熱交換を行い蒸気側で淡水を獲
得した後、前記冷海水と直接接触熱伝達により凝縮させ
ることを特徴とする請求項5に記載のオープンサイクル
海洋温度差発電用の凝縮方法。
6. The heat transfer surface cooled by the cold seawater removes heat from a part of the steam, and the remaining steam exchanges heat by collision jet heat transfer to obtain fresh water on the steam side, and then, The condensing method for open-cycle ocean thermal energy conversion according to claim 5, wherein the condensing is performed by direct contact heat transfer with cold seawater.
JP4116963A 1992-04-09 1992-04-09 Condensing device and method for open-cycle ocean thermal energy conversion Expired - Lifetime JPH0726789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116963A JPH0726789B2 (en) 1992-04-09 1992-04-09 Condensing device and method for open-cycle ocean thermal energy conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116963A JPH0726789B2 (en) 1992-04-09 1992-04-09 Condensing device and method for open-cycle ocean thermal energy conversion

Publications (2)

Publication Number Publication Date
JPH05288481A JPH05288481A (en) 1993-11-02
JPH0726789B2 true JPH0726789B2 (en) 1995-03-29

Family

ID=14700082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116963A Expired - Lifetime JPH0726789B2 (en) 1992-04-09 1992-04-09 Condensing device and method for open-cycle ocean thermal energy conversion

Country Status (1)

Country Link
JP (1) JPH0726789B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899043B2 (en) 2010-01-21 2014-12-02 The Abell Foundation, Inc. Ocean thermal energy conversion plant
KR102273491B1 (en) 2010-01-21 2021-07-07 더 아벨 파운데이션, 인크. Ocean thermal energy conversion power plant
US9086057B2 (en) 2010-01-21 2015-07-21 The Abell Foundation, Inc. Ocean thermal energy conversion cold water pipe
WO2012009541A2 (en) * 2010-07-14 2012-01-19 The Abell Foundation, Inc. Industrial ocean thermal energy conversion processes
US9151279B2 (en) 2011-08-15 2015-10-06 The Abell Foundation, Inc. Ocean thermal energy conversion power plant cold water pipe connection
BR112015008522B1 (en) 2012-10-16 2021-01-19 The Abell Foundation, Inc. heat exchange plate and heat exchanger

Also Published As

Publication number Publication date
JPH05288481A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
US5395483A (en) Rotary apparatus for combined multi flashing and boiling liquids
JP6456407B2 (en) Evaporator
US4353217A (en) Direct contact type multi-stage steam condenser system
WO2020045659A1 (en) Desalination and temperature difference power generation system
JPH0726789B2 (en) Condensing device and method for open-cycle ocean thermal energy conversion
US8833744B2 (en) Condenser
JP2967186B2 (en) Fresh water production apparatus and method for open cycle ocean temperature difference power generation
SE514560C2 (en) Apparatus for evapoative cooling of a liquid product
RU65395U1 (en) Desalination plant
KR100680319B1 (en) Structure of a tube of evaporator for freshwater
RU2115737C1 (en) Multiple-effect evaporator
CA1120798A (en) Method and apparatus for feeding condensate to a high pressure vapor generator
CN108379997B (en) Small multi-channel steam condensation liquid collector
RU2173668C2 (en) Deaeration-distillation heat-exchanger
CN211060690U (en) Ultrasonic water vapor condensation device
SU1672112A1 (en) Steam cooler
RU2080141C1 (en) Tower multistage desalter
SU1339388A1 (en) Heat exchanger
RU2159907C1 (en) Sectional liquid separator for industrial ammonia refrigerating plants
JPH0243901A (en) Direct contact type evaporator
SU1731248A1 (en) Film evaporator
JPH03137901A (en) Evaporator
KR200359727Y1 (en) structure of a tube of evaporator for freshwater
SU1634570A1 (en) Distilling plant
SU1539497A1 (en) Heat-exchange device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term