JPH07267664A - Method for controlling temperature and pressure of blown fluid flow in production of tempered glass - Google Patents

Method for controlling temperature and pressure of blown fluid flow in production of tempered glass

Info

Publication number
JPH07267664A
JPH07267664A JP7804094A JP7804094A JPH07267664A JP H07267664 A JPH07267664 A JP H07267664A JP 7804094 A JP7804094 A JP 7804094A JP 7804094 A JP7804094 A JP 7804094A JP H07267664 A JPH07267664 A JP H07267664A
Authority
JP
Japan
Prior art keywords
temperature
pressure
glass
hot air
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7804094A
Other languages
Japanese (ja)
Inventor
Satoshi Hirai
聡 平井
Naoki Arai
直樹 新井
Masafumi Yamamoto
雅史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7804094A priority Critical patent/JPH07267664A/en
Publication of JPH07267664A publication Critical patent/JPH07267664A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To produce glass plate having uniform quality and free from warpage and self-propagation of crack by cooling a tempered glass plate with a blown hot air flow while controlling the temperature and the pressure of the hot air within respective specific ranges. CONSTITUTION:A glass plate is heated at 570-660 deg.C in an oven and immediately cooled to or below the distortion temperature of the glass at a cooling rate smaller than the cooling rate in spontaneous cooling in atmosphere by blowing hot air of 50-400 deg.C against the glass plate. In the above process for the production of a tempered glass, the hot air to be blown on the surface of the glass plate is controlled to a uniform temperature within 50-400 deg.C+ or -0 deg.C to + or -50 deg.C and a uniform pressure between 1-1,000Pa+ or -0Pa to + or -50Pa. This process gives a tempered glass having a central tensile stress sigmat of 85-200kg/cm<2> and the ratio of the surface compression stress sigmaC to the central tensile stress sigmat (sigmaC/sigmat) of 1.5-3.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱処理ガラス板製造時
における熱風の吹出し温度と圧力とを制御する方法に関
し、より具体的には板厚が6mm〜19mmのガラス板
を570℃〜660℃に加熱した後、このガラス板を5
0℃〜400℃の熱風を吹き付けることによりガラス板
の冷却速度を大気中の自然冷却より遅くして熱処理ガラ
ス板を製造する方法に関し、さらに具体的には、この熱
処理ガラス板の製造するに際して、その熱風の吹出し温
度と圧力とを制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the blowing temperature and pressure of hot air during the production of a heat-treated glass sheet, and more specifically, a glass sheet having a sheet thickness of 6 mm to 19 mm is 570 ° C to 660 ° C. After heating to 5
TECHNICAL FIELD The present invention relates to a method for producing a heat-treated glass sheet by blowing hot air of 0 ° C. to 400 ° C. to make the cooling rate of the glass sheet slower than natural cooling in the atmosphere, and more specifically, in producing the heat-treated glass sheet, The present invention relates to a method for controlling the blowing temperature and pressure of the hot air.

【0002】[0002]

【従来の技術】風冷強化ガラスの製造時において常温の
空気を利用する従来のガラスの冷却技術では、ガラスを
速やかに冷却することが必要である。このためその空気
圧を冷却装置ないしはその吹口で決定される特定の値以
上に管理すること、例えば10000Pa程度の高圧に
することには留意されているが、その圧力の精度につい
てはその空気供給用の駆動源である誘導電動機の精度の
成り行きに任せるままであり、その圧力を、例えば10
000Pa±0Pa〜±50Paという特定の精度に積
極的に制御することは通常行われていない。特に吹口か
ら噴出する空気の温度については常温とされるだけであ
り、その温度を50℃〜400℃の範囲にに積極的に制
御することはなかった。
2. Description of the Related Art In the conventional glass cooling technology that utilizes air at room temperature during the production of wind-cooled tempered glass, it is necessary to rapidly cool the glass. For this reason, it is noted that the air pressure is controlled to be a specific value or more determined by the cooling device or the air outlet, for example, a high pressure of about 10000 Pa is used. The precision of the induction motor, which is the drive source, remains to be determined, and the pressure is, for example, 10
Positive control to a specific accuracy of 000 Pa ± 0 Pa to ± 50 Pa is not usually performed. In particular, the temperature of the air ejected from the air outlet is only normal temperature, and the temperature is not actively controlled within the range of 50 ° C to 400 ° C.

【0003】高層ビル用等の窓ガラスとしては、風圧に
対する耐力を向上させるため、10〜20mmといった
特厚のものが使用されているが、これではその重量が著
しく増大するという欠点があり、またそれに板厚の厚い
熱線吸収ガラスや着色コ−トガラスを使用する場合に
は、熱割れの危険性が高くなる。これら欠点を回避し、
軽量化や熱割れ防止のために風冷強化ガラスを使用する
と、破壊時に細かい多数の破片になって飛散、落下して
危険である。
As a window glass for a high-rise building or the like, a glass having a special thickness of 10 to 20 mm is used in order to improve the resistance to wind pressure, but this has a drawback that the weight thereof remarkably increases. When heat-absorbing glass or colored coating glass having a large plate thickness is used, the risk of thermal cracking increases. Avoid these shortcomings,
If air-cooled tempered glass is used to reduce the weight and prevent thermal cracking, it will be dangerous as it will be scattered and dropped into many small pieces when broken.

【0004】このためガラス板の強化度を調整していわ
ゆる半強化とし、クラックの自走を防止する試みがなさ
れてきており、この例としては、例えば特開昭59−8
628号公報、特開平2−175624号公報等が挙げ
られる。これによれば、ガラス板に対して、クラックの
自走を防止し、所定の強度を付与するために、ガラス板
の冷却速度を大気中の自然冷却よりも小さくするように
し、またその中央引張応力(σt)が85〜200kg
/cm2 の範囲となり、かつその表面圧縮応力(σc)
と中央引張応力(σt)との比σc/σtが1.5〜
3.0の範囲となるように制御する必要があるが、この
ためには熱処理ガラスを製造するその時点において、そ
のような値となるようにしておく必要があり、この手法
として、ガラス板に熱風を吹付けることにより実施する
というものである。
For this reason, attempts have been made to prevent self-propagation of cracks by adjusting the degree of strengthening of the glass plate to make it so-called semi-strengthening. An example of this is, for example, JP-A-59-8.
No. 628, JP-A No. 2-175624, and the like. According to this, in order to prevent self-propagation of cracks and to impart a predetermined strength to the glass plate, the cooling rate of the glass plate is made smaller than natural cooling in the atmosphere, and the central tension Stress (σt) is 85-200kg
/ Cm 2 range and its surface compressive stress (σc)
And the central tensile stress (σt) ratio σc / σt is 1.5 to
It is necessary to control so as to be in the range of 3.0, but for this purpose, it is necessary to set such a value at the time when the heat-treated glass is manufactured. It is carried out by blowing hot air.

【0005】しかし、それでもガラス板に吹付ける熱風
の温度や圧力にむらがあると、ガラス板自体に生じる上
記所定の応力にばらつきが生じ、結果としてガラス板に
反りが発生する等の問題があるため、例えば12mmを
超えるような板厚の厚い半強化ガラスについては、現実
には量産化することが困難であった。このため高層ビル
等に用いられる窓ガラスとして充分な耐風圧強度を有
し、また熱割れがなく、さらには量産化が可能な熱処理
ガラス板を製造するために、概略、次のような技術が開
発されてきている。
However, if the temperature or pressure of the hot air blown against the glass plate is still uneven, the above-mentioned predetermined stress generated in the glass plate itself will vary, resulting in a problem that the glass plate is warped. Therefore, for example, it is difficult to mass-produce a semi-tempered glass having a thick plate thickness of more than 12 mm in reality. Therefore, in order to produce a heat-treated glass sheet that has sufficient wind pressure resistance as a window glass used for high-rise buildings, does not have thermal cracking, and can be mass-produced, the following techniques are roughly outlined: Has been developed.

【0006】すなわち、上記所定の中央引張応力σt値
及び所定の表面圧縮応力σcと中央引張応力σtとの比
は、板厚が6mm〜19mmのガラス板を570〜66
0℃に加熱した後、このガラス板を加熱炉から取り出
し、引続きこのガラス板に温度50〜400℃の熱風を
吹き付けることにより、ガラス板の冷却速度を大気中の
自然冷却より遅くすることにより実現し得るものである
が、この場合、ガラス板の表面に吹き付けるその熱風の
温度を50〜400℃±0〜50℃、望ましくは50〜
400℃±10℃の均一な温度、またその熱風の圧力を
1〜1000Pa±0〜50Pa、望ましくは1〜10
00Pa±2Paの均一な圧力となるようにすることに
より前述その応力の制御をさらに有効に実施し得るもの
である。
That is, the above-mentioned predetermined central tensile stress σt value and the ratio between the predetermined surface compressive stress σc and central tensile stress σt are 570 to 66 for a glass plate having a plate thickness of 6 mm to 19 mm.
After heating to 0 ° C, take out this glass plate from the heating furnace, and subsequently blow hot air at a temperature of 50 to 400 ° C to this glass plate to make the cooling rate of the glass plate slower than natural cooling in the atmosphere. In this case, the temperature of the hot air blown onto the surface of the glass plate is 50 to 400 ° C. ± 0 to 50 ° C., preferably 50 to 400 ° C.
Uniform temperature of 400 ° C. ± 10 ° C., and the pressure of the hot air is 1 to 1000 Pa ± 0 to 50 Pa, preferably 1 to 10
By controlling the uniform pressure of 00 Pa ± 2 Pa, the above-mentioned stress control can be more effectively carried out.

【0007】[0007]

【発明の解決しようとする課題】以上のとおり、所定の
応力値を備える熱処理ガラスを製造するためには、ガラ
ス板の冷却速度を大気中の自然放冷と同等であるか又は
それ以下まで遅くしなければならないが、このためには
熱風を使用してガラスを冷却する必要がある。しかし、
ガラスに作用する熱風の温度と圧力にむらがあると、そ
れに起因してガラス面内に発生する応力にばらつきが生
じてガラス板製品に反り等となって現れ、これが製品品
質上の欠点となる。
As described above, in order to produce a heat-treated glass having a predetermined stress value, the cooling rate of the glass plate is equal to or slower than that of natural cooling in the atmosphere. However, this requires the use of hot air to cool the glass. But,
If there is unevenness in the temperature and pressure of the hot air that acts on the glass, the stress generated in the glass surface will vary, and it will appear as warpage in the glass plate product, which becomes a defect in product quality. .

【0008】本発明は、このような事実をも前提に、関
連する各種実験を続けているうち、板厚が6〜19mm
のガラス板を570〜660℃に加熱した後、直ちにこ
のガラス板を50〜400℃の熱風を吹き付けてガラス
板の冷却速度を大気中の自然冷却より遅くして冷却する
に当たり、またその冷却速度をその板厚に応じて所定の
範囲内でガラス板の歪点以下に迄冷却するに当たり、測
定子により測定された熱風の圧力と温度とを相互に関連
させることにより、ガラス板の中央引張応力σtが85
〜200kg/cm2 の範囲となり、かつ、その表面圧
縮応力σcと中央引張応力σtとの比σc/σtが1.
5〜3.0の範囲となるように制御し得ることを見い出
し、本発明に到達するに至ったものである。
In the present invention, on the premise of such a fact, while continuing various related experiments, the plate thickness is 6 to 19 mm.
After heating the glass plate of No. 5 to 570 to 660 ° C., immediately blowing the glass plate with hot air of 50 to 400 ° C. to cool the glass plate at a cooling rate slower than natural cooling in the atmosphere, and the cooling rate. When the glass is cooled to a temperature below the strain point of the glass plate within a predetermined range according to its plate thickness, the central tensile stress of the glass plate is determined by correlating the pressure and temperature of the hot air measured by the probe. σt is 85
To 200 kg / cm 2 , and the ratio σc / σt between the surface compressive stress σc and the central tensile stress σt is 1.
The inventors have found that they can be controlled to fall within the range of 5 to 3.0, and arrived at the present invention.

【0009】すなわち、本発明は、板厚が6〜19mm
のガラス板を570〜660℃に加熱した後、直ちにこ
のガラス板に50〜400℃の熱風を吹付けてガラス板
の冷却速度を大気中の自然冷却より遅くすることによ
り、前述所定の応力値を有する熱処理ガラスを得る上で
必要な熱風の温度及び圧力の精度を実現するための具体
的な制御方法を提供することを目的とするものである。
That is, according to the present invention, the plate thickness is 6 to 19 mm.
After heating the glass plate of No. 5 to 570 to 660 ° C., immediately blowing hot air of 50 to 400 ° C. to this glass plate to make the cooling rate of the glass plate slower than natural cooling in the atmosphere, the above-mentioned predetermined stress value is obtained. It is an object of the present invention to provide a specific control method for realizing the accuracy of the temperature and pressure of hot air necessary for obtaining a heat-treated glass having

【0010】[0010]

【問題点を解決するための手段】本発明は、ガラス板を
加熱炉中で570℃〜660℃に加熱した後、直ちに該
ガラス板に50℃〜400℃の熱風を吹付けてその冷却
速度を大気中の自然冷却より遅くしてガラス板の歪点以
下迄冷却する熱処理ガラスの製造法において、ガラス板
の表面に吹付ける熱風を50℃〜400℃±0℃〜±5
0℃、望ましくは50〜400℃±10℃の温度範囲の
均一な温度と、1Pa〜1000Pa±0Pa〜±50
Pa、望ましくは1〜1000Pa±2Paの均一な圧
力となるように制御することを特徴とするガラス板の中
央引張応力σtが85〜200kg/cm2 の範囲にあ
り、かつその表面圧縮応力σcと中央引張応力σtとの
比σc/σtが1.5〜3.0の範囲にある熱処理ガラ
スの製造方法を提供する。
According to the present invention, a glass plate is heated to 570 ° C. to 660 ° C. in a heating furnace and, immediately thereafter, hot air of 50 ° C. to 400 ° C. is blown on the glass plate to cool it. In the method for producing a heat-treated glass in which the temperature of the glass plate is cooled to a strain point of the glass plate or lower by slowing the temperature below the natural cooling in the atmosphere, hot air blown onto the surface of the glass plate is 50 ° C to 400 ° C ± 0 ° C to ± 5
0 ° C., preferably a uniform temperature in the temperature range of 50 to 400 ° C. ± 10 ° C. and 1 Pa to 1000 Pa ± 0 Pa to ± 50
The central tensile stress σt of the glass plate is in the range of 85 to 200 kg / cm 2 , and the surface compressive stress σc thereof is controlled to be a uniform pressure of Pa, preferably 1 to 1000 Pa ± 2 Pa. Provided is a method for producing a heat-treated glass having a ratio σc / σt with respect to a central tensile stress σt in a range of 1.5 to 3.0.

【0011】また、本発明は、板厚が6mm〜19mm
のガラス板を加熱炉中で570℃〜660℃に加熱した
後、直ちにこのガラス板を50℃〜400℃の熱風を吹
き付けてガラス板の冷却速度Kを大気中の自然冷却より
遅くし、その冷却速度Kを、板厚に応じて下記(1)〜
(5)の範囲内でガラス板の歪点以下迄冷却する熱処理
ガラスの製造方法において、ガラス板の表面に吹付ける
熱風を50℃〜400℃±0℃〜±50℃、望ましくは
50〜400℃±10℃の均一な温度範囲と、1Pa〜
1000Pa±0Pa〜±50Pa、望ましくは1〜1
000Pa±2Paの均一な圧力範囲となるように制御
することを特徴とする ガラス板の中央引張応力σtが
85〜200kg/cm2 の範囲にあり、かつその表面
圧縮応力σcと中央引張応力σtとの比σc/σtが
1.5〜3.0の範囲にある熱処理ガラスの製造方法を
提供するものである。 (1) 板厚6mmの場合は、2.33≦K≦4.34
(℃/sec) (2) 板厚8mmの場合は、1.79≦K≦3.14
(℃/sec) (3) 板厚10mmの場合は、1.38≦K≦2.7
8(℃/sec) (4) 板厚12mmの場合は、1.00≦K≦1.5
9(℃/sec) (5) 板厚15mmの場合は、0.69≦K≦1.1
6(℃/sec) (6) 板厚19mmの場合は、0.58≦K≦0.9
1(℃/sec)
In the present invention, the plate thickness is 6 mm to 19 mm.
After heating the glass plate of (1) to 570 ° C to 660 ° C in a heating furnace, immediately blowing hot air of 50 ° C to 400 ° C on the glass plate to make the cooling rate K of the glass plate slower than natural cooling in the atmosphere. The cooling rate K is set according to the following (1)-
In the method for producing heat-treated glass in which the temperature is below the strain point of the glass plate within the range of (5), hot air blown onto the surface of the glass plate is 50 ° C to 400 ° C ± 0 ° C to ± 50 ° C, preferably 50 to 400. ℃ ± 10 ℃ uniform temperature range and 1Pa ~
1000 Pa ± 0 Pa to ± 50 Pa, preferably 1 to 1
The central tensile stress σt of the glass plate is in the range of 85 to 200 kg / cm 2 , and the surface compressive stress σc and the central tensile stress σt are controlled such that the pressure is controlled to be a uniform pressure range of 000 Pa ± 2 Pa. The present invention provides a method for producing heat-treated glass having a ratio σc / σt of 1.5 to 3.0. (1) 2.33 ≦ K ≦ 4.34 when the plate thickness is 6 mm
(° C / sec) (2) When the plate thickness is 8 mm, 1.79 ≦ K ≦ 3.14
(° C / sec) (3) When the plate thickness is 10 mm, 1.38 ≦ K ≦ 2.7.
8 (° C / sec) (4) If the plate thickness is 12 mm, 1.00 ≦ K ≦ 1.5
9 (° C / sec) (5) When the plate thickness is 15 mm, 0.69 ≦ K ≦ 1.1
6 (° C / sec) (6) When the plate thickness is 19 mm, 0.58 ≦ K ≦ 0.9
1 (℃ / sec)

【0012】また本発明は、上記熱処理ガラスの製造方
法において、熱風発生炉内、ダクト吹口内又はガラス冷
却装置内に熱風の温度と圧力とを測定する測定子を設置
し、ガラス冷却時の温度と圧力をダイナミックに計測
し、熱風の温度又は圧力が変化したときに、その変化し
た両因子そのものを制御するだけでなく、相関する別の
因子、すなわち温度に対しては圧力を、圧力に対しては
温度を制御することにより、目的とするガラス板表面圧
縮応力値が得られるように熱風の温度と圧力との間に一
定の比例関係を予め設定することにより、送風ファンの
回転数、ダクト内ダンパ−の開度、流体昇温用のバ−ナ
−、電気ヒ−タ−及び/又は熱媒流量を制御することを
特徴とする熱処理ガラスの製造方法を提供するものであ
る。
Further, in the present invention, in the above method for producing heat-treated glass, a measuring element for measuring the temperature and pressure of hot air is installed in the hot air generating furnace, the duct outlet or the glass cooling device, and the temperature at the time of cooling the glass is set. And the pressure are dynamically measured, and when the temperature or pressure of the hot air changes, not only both the changed factors themselves are controlled, but also another correlated factor, that is, the pressure for the temperature and the pressure for the pressure. In order to obtain the desired glass plate surface compression stress value by controlling the temperature, a constant proportional relationship between the temperature and the pressure of the hot air is preset so that the rotation speed of the blower fan and the duct are It is intended to provide a method for producing heat-treated glass, which is characterized by controlling an opening of an inner damper, a burner for heating a fluid, an electric heater and / or a flow rate of a heat medium.

【0013】換言すれば、本発明は、上記熱処理ガラス
の製造方法において、熱風温度を、その温度測定子から
の出力に関係なく、50〜400℃±0〜50℃、望ま
しくは50〜400℃±10℃の温度範囲内の一定の値
に固定した条件下において、圧力のみを、圧力測定子か
らの出力に基づき1〜1000Pa±0〜50Pa、望
ましくは1〜1000Pa±2Paの均一な圧力となる
ようにダイナミックに制御することを特徴とする熱処理
ガラスの製造方法を提供するものである。
In other words, according to the present invention, in the above method for producing heat-treated glass, the hot air temperature is 50 to 400 ° C. ± 0 to 50 ° C., preferably 50 to 400 ° C., regardless of the output from the temperature probe. Under the condition of being fixed to a constant value within a temperature range of ± 10 ° C., the pressure should be a uniform pressure of 1 to 1000 Pa ± 0 to 50 Pa, preferably 1 to 1000 Pa ± 2 Pa, based on the output from the pressure gauge. The present invention provides a method for producing heat-treated glass, which is characterized by dynamically controlling so that

【0014】また、本発明は、前記熱処理ガラスの製造
方法において、熱風の温度と圧力のうちの一方を固定し
た状態において、熱風の温度と圧力のうちのその他方
を、その他方が温度のときは温度測定子を設けてそこか
らの出力により、またその他方が圧力のときは圧力測定
子を設けてそこからの出力に基づき、その他方の温度範
囲又は圧力範囲が均一となるようにダイナミックに制御
することを特徴とする熱処理ガラスの製造方法を提供す
るものである。
In the method for producing heat-treated glass according to the present invention, when one of the temperature and the pressure of the hot air is fixed and the other of the temperature and the pressure of the hot air is the temperature, the other is the temperature. Is equipped with a temperature probe and output from it, and when the other is pressure, a pressure probe is installed and based on the output from it, the other temperature range or pressure range is dynamically adjusted to be uniform. The present invention provides a method for producing heat-treated glass, which is characterized by controlling.

【0015】この場合、上記その仕方としては、熱風温
度を50℃〜400℃±0℃〜±50℃、望ましくは5
0〜400℃±10℃の温度範囲内の一定の値に固定し
た条件下において、圧力のみを、圧力測定子からの出力
に基づき、1Pa〜1000Pa±0Pa〜±50P
a、望ましくは1〜1000Pa±2Paの範囲の均一
な圧力となるようにダイナミックに制御する態様を採る
ことができ、また、これとは逆に、その熱風圧力を、1
〜1000Pa±0〜50Pa、望ましくは1〜100
0Pa±2Paの圧力範囲内の一定値に固定した条件下
において、温度のみを、温度測定子からの出力に基づ
き、50〜400℃±0〜50℃、望ましくは50〜4
00℃±10℃となるようにダイナミックに制御する態
様を採ることができる。
In this case, the hot air temperature is 50 ° C to 400 ° C ± 0 ° C to ± 50 ° C, preferably 5
Under the condition of being fixed to a constant value within a temperature range of 0 to 400 ° C. ± 10 ° C., only the pressure is 1 Pa to 1000 Pa ± 0 Pa to ± 50 P based on the output from the pressure gauge.
a, preferably, a mode of dynamically controlling so as to obtain a uniform pressure in the range of 1 to 1000 Pa ± 2 Pa, and conversely, the hot air pressure is set to 1
~ 1000Pa ± 0-50Pa, preferably 1-100
Under the condition of being fixed to a constant value within the pressure range of 0 Pa ± 2 Pa, only the temperature is 50 to 400 ° C. ± 0 to 50 ° C., preferably 50 to 4 ° C., based on the output from the temperature probe.
It is possible to adopt a mode in which the temperature is dynamically controlled so as to be 00 ° C. ± 10 ° C.

【0016】[0016]

【実施例】以下、図面に基づき本発明の実施例を説明す
るが、本発明がこの実施例に限定されるものでないこと
は勿論である。図1は、本発明を実施するのに好適な熱
処理装置の一例を示すもので、ガラスの搬送方向から見
た要部正面図である。
Embodiments of the present invention will be described below with reference to the drawings, but it goes without saying that the present invention is not limited to these embodiments. FIG. 1 shows an example of a heat treatment apparatus suitable for carrying out the present invention, and is a front view of the main parts as seen from the glass conveying direction.

【0017】図1中、1はガラス、2は搬送手段、3は
送風機すなわちファンであり、この送風機3は電動機4
によって駆動される。5はヒ−タ−、6は送風ダクト、
7はダンパ−、8は吹付け手段であり、この吹付け手段
8にはガラスへ向けた吹口が設けられている。送風機3
から送り出された空気等の流体は、送風ダクト6の途中
に設置されたヒ−タ−5によって加熱されて所定温度の
熱風とされ、送風ダクト6を介して吹付け手段8に送り
込まれ、その吹付け手段8の吹口からガラス表面に吹き
出させる。
In FIG. 1, 1 is glass, 2 is a conveying means, 3 is a blower or fan, and this blower 3 is an electric motor 4
Driven by. 5 is a heater, 6 is a ventilation duct,
Reference numeral 7 is a damper, and 8 is a spraying means, and this spraying means 8 is provided with a blowout port directed to the glass. Blower 3
A fluid such as air sent from the air is heated by a heater 5 installed in the air duct 6 into hot air of a predetermined temperature, and is sent to the blowing means 8 through the air duct 6 and It is blown out onto the glass surface from the blowing port of the blowing means 8.

【0018】この際、その吹口から吹き出し、ガラスに
作用する熱風の温度は、ヒ−タ−が供給する単位時間当
たりの熱量と加熱前の流体自体の温度や加熱後にガラス
以外の、例えばダクトと接触した際に生じる熱交換によ
ってダイナミックにすなわち動的に変化する。また、熱
風の圧力も、送風機3の回転の安定性や熱風の温度変化
等如何により温度の場合と同様にダイナミックに変化す
る。
At this time, the temperature of the hot air blown from the blower outlet and acting on the glass is the amount of heat supplied by the heater per unit time and the temperature of the fluid itself before heating or after heating other than glass, such as a duct. It changes dynamically, that is, dynamically due to the heat exchange that occurs upon contact. Also, the pressure of the hot air dynamically changes in the same manner as the temperature, depending on the stability of the rotation of the blower 3 and the temperature change of the hot air.

【0019】本発明は、そのように動的にすなわちダイ
ナミックに変化する熱風温度及び/又はその圧力を測定
子により検出し、この検出値を基に冷却速度を所定値に
制御するものである。このため、吹付け手段8の吹出し
部の直近に温度測定子すなわち温度検出センサ−9と圧
力測定子すなわち圧力検出センサ−10とを設置し、温
度検出センサ−9をヒ−タ−コントロ−ラ−11に連動
させ、また圧力検出センサ−10はダンパ−コントロ−
ラ−12及び/又は電動機コントロ−ラ−13に連動さ
せる。なお、図中14〜17は、これら連動用信号の伝
達系統を示すものである。
According to the present invention, the hot air temperature and / or the pressure thereof which dynamically changes, that is, dynamically changes, is detected by a measuring element, and the cooling rate is controlled to a predetermined value based on the detected value. For this reason, a temperature measuring element, that is, a temperature detecting sensor-9 and a pressure measuring element, that is, a pressure detecting sensor-10 are installed in the immediate vicinity of the blowing portion of the blowing means 8, and the temperature detecting sensor-9 is used as a heater controller. -11, and the pressure detection sensor-10 is a damper controller.
It is interlocked with the motor 12 and / or the motor controller 13. In addition, 14 to 17 in the figure show the transmission system of these interlocking signals.

【0020】これにより、吹付け手段7の吹出部におけ
る熱風の温度と圧力とを検出し、この値が予め設定した
値からずれたときに、ヒ−タ−コントロ−ラ−10によ
りヒ−タ−4への供給熱量を制御し、またダンパ−コン
トロ−ラ−11によるダンパ−6の開度の調整、制御や
電動機コントロ−ラ−12による送風機3の回転数を調
整、制御し、それら温度及び/又は圧力が所定の値に戻
るように制御するものである。
As a result, the temperature and pressure of the hot air at the blowing portion of the blowing means 7 are detected, and when these values deviate from preset values, the heater controller 10 causes the heater to operate. -4, the amount of heat supplied to the -4 is controlled, the opening of the damper 6 is adjusted and controlled by the damper controller 11, and the rotation speed of the blower 3 is adjusted and controlled by the electric motor controller 12, and the temperatures thereof are controlled. And / or controlling the pressure to return to a predetermined value.

【0021】なお、ヒ−タ−4としては、電気ヒ−タ
−、気体、液体又は固体燃料の燃焼ガス、熱媒流体その
他各種の熱源を使用することができ、また圧力検出セン
サ−8及び温度検出センサ−9の設置位置としては、そ
のように吹き付け手段7の吹出し部の直近のほか、吹口
内やガラス冷却装置内等の適宜の位置に設置することも
可能である。
As the heater 4, an electric heater, combustion gas of gas, liquid or solid fuel, heat medium fluid and various other heat sources can be used, and pressure detecting sensor 8 and The temperature detection sensor 9 can be installed at a proper position such as in the blower opening or in the glass cooling device, in addition to the position near the blowing portion of the blowing means 7 as described above.

【0022】以上例示のガラス冷却装置において、これ
を実際に操作するに際しては、その温度と圧力とを同時
にともに制御することは勿論であるが、他態様として
は、その温度と圧力との間における相互の相対的変化に
対する応答特性如何により、熱風温度とその圧力とのう
ちの一方をセンサ−の出力には関係なく一定の値ないし
は状態に固定しておき、これら温度と圧力とのうちの他
の一方だけを検出センサ−の出力如何により、ダイナミ
ックにすなわち動的にコントロ−ルする制御方法も採り
得る。
In the glass cooling device illustrated above, when the glass cooling device is actually operated, it is needless to say that both the temperature and the pressure are controlled at the same time. Depending on the response characteristics to the relative change of each other, one of the hot air temperature and its pressure is fixed to a constant value or state regardless of the output of the sensor, and the other of these temperature and pressure is fixed. A control method in which only one of them is controlled dynamically depending on the output of the detection sensor may be adopted.

【0023】この態様を一歩具体的に述べると、例えば
所定の温度近辺において、所定の圧力を実現した状態
で、送風機3に設置されたモ−タ−の回転数をインバ−
タ−等を使用して一定の値に固定したり、ダンパ−6の
ダンパ−軸を固定してその開度を一定にしたりし、風圧
を圧力検出センサ−8からのダイナミックな出力に関係
なく設定した上で、熱風温度のみについて、ヒ−タ−4
へ供給する電力量、燃料量又は熱媒量のうちの1つ又は
それ以上をダイナミックにコントロ−ルすることにより
実施することができる。この態様の場合には、特に熱風
温度の僅かな変化により圧力が急激に変化するような系
において有効である。なお、本例においてガラス板を6
10℃まで加熱した後に、速度4.3m/secの熱風
を吹き付けた。
More specifically, this mode will be described in one step. For example, in the vicinity of a predetermined temperature, a predetermined pressure is realized, and the rotational speed of the motor installed in the blower 3 is controlled by the inverter.
The wind pressure is fixed regardless of the dynamic output from the pressure detection sensor-8 by fixing it to a constant value using a motor or the like, or by fixing the damper shaft of the damper 6 to make its opening constant. After setting, only for hot air temperature, Heater-4
It can be implemented by dynamically controlling one or more of the amount of electric power, the amount of fuel, or the amount of heat medium supplied to the device. This embodiment is particularly effective in a system in which the pressure changes abruptly with a slight change in hot air temperature. In this example, 6 glass plates are used.
After heating to 10 ° C., hot air having a speed of 4.3 m / sec was blown.

【0024】このように、本発明においては、前記熱処
理ガラスの製造方法において、そのガラスに前述所定の
表面圧縮応力値を得るために、熱風の温度又は圧力が変
化したとき、その変化した因子そのものを制御するだけ
でなく、相互に相関連する別の因子、すなわち温度に対
しては圧力を、圧力に対しては温度を制御することによ
り、ガラス板につき、目的とするその表面圧縮応力値が
得られるよう、熱風の温度と圧力間に一定の比例関係を
予じめ設定することにより実施することができるもので
ある。
As described above, in the present invention, in the method for producing heat-treated glass, when the temperature or pressure of hot air is changed in order to obtain the predetermined surface compressive stress value in the glass, the changed factor itself is obtained. Not only controlling, but also another interrelated factor, namely pressure for temperature and temperature for pressure, the desired surface compressive stress value for a glass sheet is As can be obtained, it can be carried out by presetting a constant proportional relationship between the temperature and the pressure of the hot air.

【0025】図2は、実測値に基づいて、この比例関係
すなわち熱風の温度及び圧力とガラス表面圧縮応力値と
の関係を示したグラフである。図示のとおり、一定の風
圧下で熱風温度が上昇した場合には、ガラス表面圧縮応
力値は低下するが、これとは逆に、熱風温度が低下した
場合には、応力値は上昇する。
FIG. 2 is a graph showing the proportional relationship, that is, the relationship between the temperature and pressure of the hot air and the compressive stress value on the glass surface, based on the measured values. As shown in the figure, when the hot air temperature increases under a constant wind pressure, the glass surface compressive stress value decreases, but conversely, when the hot air temperature decreases, the stress value increases.

【0026】図2において、例えば初めA点で動作して
いたところ、操作状況等の変化により熱風温度が上昇
し、動作点がB点に変化したとすると、そのままではガ
ラス表面応力値は当初の値370kgf/cm2 前後か
ら約310kgf/cm2 前後へ低下するが、この場合
には、圧力を上げ動作点をC点へ変更することにより、
当初のガラス表面応力値370kgf/cm2 前後を得
ることができるるようになるわけである。
In FIG. 2, for example, when operating at point A for the first time, but the hot air temperature rises due to changes in operating conditions and the operating point changes to point B, the glass surface stress value remains unchanged from the initial value. Although decreases from the value 370kgf / cm 2 before and after the about 310kgf / cm 2 before and after, in this case, by changing the operating point increases the pressure to the point C,
The initial glass surface stress value of about 370 kgf / cm 2 can be obtained.

【0027】本発明においては、このように熱処理ガラ
スの製造時における、熱風の温度と圧力が変動する生産
状況下において、一定のガラス表面圧縮応力値を実現す
るためには、熱風の温度が上昇したら圧力を上げ、また
温度が下降したら圧力を下げることにより、ガラス表面
応力値を所定値内になるように制御することができ、ガ
ラス表面応力値を目標値の範囲内に管理することができ
る。
According to the present invention, in order to achieve a constant glass surface compressive stress value under the production conditions in which the temperature and pressure of the hot air fluctuate during the production of the heat-treated glass, the temperature of the hot air rises. Then, by increasing the pressure and lowering the temperature when the temperature decreases, the glass surface stress value can be controlled to be within a predetermined value, and the glass surface stress value can be managed within a target value range. .

【0028】これを一歩具体的に説明すると、このよう
な熱風の温度及び圧力とガラス表面応力値との関係を予
め制御系にインプットしておき、温度、圧力の変化に対
してこれらを直接に制御するだけではなく、相関する因
子、すなわち、温度に対しては圧力を、圧力に対しては
温度を制御することにより、熱処理ガラスについて目標
とするガラス表面圧縮応力を得ることが実現できるもの
である。
Explaining this step concretely, such a relationship between the temperature and pressure of hot air and the glass surface stress value is input to the control system in advance, and these are directly applied to changes in temperature and pressure. It is possible to obtain the target glass surface compressive stress for heat-treated glass by controlling not only the control, but also the correlating factors, that is, the pressure for temperature and the temperature for pressure. is there.

【0029】すなわち、熱風の温度及び/又は圧力が変
化したときに、その変化した因子そのものを制御するだ
けでなく、相互に相関連する別の因子、すなわち温度に
対しては圧力、圧力に対しては温度を制御することによ
り、目的とするガラス表面圧縮応力値が得られるように
熱風の温度と圧力間に一定の比例関係を予め設定するこ
とにより制御する。本発明によれば、これにより所期の
ガラス板表面圧縮応力値を得ることができるものであ
る。
That is, when the temperature and / or pressure of the hot air changes, not only the changed factor itself is controlled, but also another factor interrelated with each other, that is, pressure for temperature, pressure for pressure. The temperature is controlled by presetting a constant proportional relation between the temperature and the pressure of the hot air so that the desired compressive stress value on the glass surface can be obtained. According to the present invention, it is possible to obtain a desired glass plate surface compressive stress value.

【0030】[0030]

【発明の効果】以上のとおり、本発明によれば、熱処理
ガラスの製造方法において、ガラス板に作用する熱風の
温度及び/又は圧力を制御することにより、温度と圧力
にむらを生じることなく、ガラス板の冷却速度を確実に
制御することができ、これにより、ガラス板の中央引張
応力σtが85〜200kg/cm2 の範囲となり、か
つその表面圧縮応力σcと中央引張応力σtとの比σc
/σtが1.5〜3.0の範囲となるように確実に制御
することができる。
As described above, according to the present invention, in the method for producing heat-treated glass, the temperature and / or the pressure of the hot air acting on the glass plate are controlled so that the temperature and the pressure are uniform. The cooling rate of the glass plate can be reliably controlled, whereby the central tensile stress σt of the glass plate is in the range of 85 to 200 kg / cm 2 , and the ratio σc of the surface compressive stress σc and the central tensile stress σt.
It is possible to reliably control / σt to fall within the range of 1.5 to 3.0.

【0031】また、本発明によれば、熱風の温度や圧力
のむらに起因してガラス面内に発生する応力のばらつき
をなくし、またこれによって生じる反りをなくすること
により、品質の揃ったガラス板製品を連続して製造する
ことができる。このため、本発明によって得られる熱処
理ガラス板は、耐風圧強度が実用上十分であり、熱割れ
することがない。また、衝撃等によりたとえクラックが
入ってもそのクラックが自走せず、また細かい破片とな
ることがなく、それが飛散、落下する危険性がないこと
等により、ビル、住宅等の建築用として有用であり、熱
線吸収ガラス、着色コ−トガラス、熱線反射ガラス等の
ガラス板としても好適に使用することができる。
Further, according to the present invention, variations in stress generated in the glass surface due to unevenness in temperature and pressure of hot air are eliminated, and warpage caused by this is eliminated, so that a glass plate of uniform quality is obtained. The product can be manufactured continuously. Therefore, the heat-treated glass plate obtained by the present invention has practically sufficient wind pressure resistance and does not crack due to heat. In addition, even if a crack enters due to impact, etc., the crack does not self-propelled and does not become fine fragments, and there is no danger of scattering or falling, so it is suitable for buildings, houses, etc. It is useful and can be suitably used as a glass plate for heat ray absorbing glass, colored coat glass, heat ray reflecting glass and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する熱処理装置の一例を示す要部
正面図。
FIG. 1 is a front view of an essential part showing an example of a heat treatment apparatus for carrying out the present invention.

【図2】熱風の温度・圧力とガラス表面圧縮応力値の関
係を示したグラフ。
FIG. 2 is a graph showing the relationship between the temperature and pressure of hot air and the compressive stress value on the glass surface.

【符号の説明】 1 ガラス 2 搬送手段 3 送風機 4 送風機用電動機 5 ヒ−タ− 6 送風ダクト 7 ダンパ− 8 吹付け手段 9 温度検出センサ− 10 圧力検出センサ− 11 ヒ−タ−コントロ−ラ 12 ダンパ−コントロ−ラ− 13 電動機ドライバ− 14〜17 信号伝達系統[Explanation of Codes] 1 glass 2 conveying means 3 blower 4 electric motor for blower 5 heater 6 blower duct 7 damper 8 blowing means 9 temperature detection sensor 10 pressure detection sensor 11 heater controller 12 Damper controller 13 Electric motor driver 14-17 Signal transmission system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ガラス板を加熱炉中で570℃〜660℃
に加熱した後、直ちに該ガラス板に50℃〜400℃の
熱風を吹付けてその冷却速度を大気中の自然冷却より遅
くしてガラス板の歪点以下迄冷却する熱処理ガラスの製
造法において、ガラス板の表面に吹付ける熱風を50℃
〜400℃±0℃〜±50℃の均一な温度と、1Pa〜
1000Pa±0Pa〜±50Paの均一な圧力となる
ように制御することを特徴とする、ガラス板の中央引張
応力σtが85〜200kg/cm2 の範囲にあり、か
つその表面圧縮応力σcと中央引張応力σtとの比σc
/σtが1.5〜3.0の範囲にある熱処理ガラスの製
造方法。
1. A glass plate in a heating furnace at 570 ° C. to 660 ° C.
In the method for producing heat-treated glass, immediately after heating to 50 ° C., hot air of 50 ° C. to 400 ° C. is blown to the glass plate to cool the glass plate to a temperature below the strain point of the glass plate by making the cooling rate slower than natural cooling in the atmosphere, Hot air blown onto the surface of the glass plate at 50 ° C
~ 400 ℃ ± 0 ℃ ~ ± 50 ℃ uniform temperature and 1Pa ~
The central tensile stress σt of the glass plate is in the range of 85 to 200 kg / cm 2 , and the surface compressive stress σc and the central tensile force are controlled so as to obtain a uniform pressure of 1000 Pa ± 0 Pa to ± 50 Pa. Ratio to stress σt σc
/ [Sigma] t is in the range of 1.5 to 3.0.
【請求項2】板厚が6mm〜19mmのガラス板を加熱
炉中で570℃〜660℃に加熱した後、直ちにこのガ
ラス板を50℃〜400℃の熱風を吹き付けてガラス板
の冷却速度Kを大気中の自然冷却より遅くし、その冷却
速度Kを、板厚に応じて下記(1)〜(5)の範囲内で
ガラス板の歪点以下迄冷却する熱処理ガラスの製造方法
において、ガラス板の表面に吹付ける熱風を50℃〜4
00℃±0℃〜±50℃の均一な温度と、1Pa〜10
00Pa±0Pa〜±50Paの均一な圧力となるよう
に制御することを特徴とする、ガラス板の中央引張応力
σtが85〜200kg/cm2 の範囲にあり、かつそ
の表面圧縮応力σcと中央引張応力σtとの比σc/σ
tが1.5〜3.0の範囲にある熱処理ガラスの製造方
法。 (1) 板厚6mmの場合は、2.33≦K≦4.34
(℃/sec) (2) 板厚8mmの場合は、1.79≦K≦3.14
(℃/sec) (3) 板厚10mmの場合は、1.38≦K≦2.7
8(℃/sec) (4) 板厚12mmの場合は、1.00≦K≦1.5
9(℃/sec) (5) 板厚15mmの場合は、0.69≦K≦1.1
6(℃/sec) (6) 板厚19mmの場合は、0.58≦K≦0.9
1(℃/sec)
2. A glass plate having a plate thickness of 6 mm to 19 mm is heated to 570 ° C. to 660 ° C. in a heating furnace and immediately thereafter, hot air of 50 ° C. to 400 ° C. is blown onto the glass plate to cool the glass plate at a cooling rate K. In the method for producing a heat-treated glass, the cooling rate K is slower than the natural cooling in the atmosphere, and the cooling rate K is cooled to the strain point of the glass plate or less within the range of (1) to (5) below according to the plate thickness. Hot air blown onto the surface of the plate is 50 ° C to 4
Uniform temperature of 00 ° C ± 0 ° C to ± 50 ° C and 1 Pa to 10
The central tensile stress σt of the glass plate is in the range of 85 to 200 kg / cm 2 , and the surface compressive stress σc and the central tensile force are controlled so that the pressure becomes uniform from 00 Pa ± 0 Pa to ± 50 Pa. Ratio to stress σt σc / σ
A method for producing heat-treated glass, wherein t is in the range of 1.5 to 3.0. (1) 2.33 ≦ K ≦ 4.34 when the plate thickness is 6 mm
(° C / sec) (2) When the plate thickness is 8 mm, 1.79 ≦ K ≦ 3.14
(° C / sec) (3) When the plate thickness is 10 mm, 1.38 ≦ K ≦ 2.7.
8 (° C / sec) (4) If the plate thickness is 12 mm, 1.00 ≦ K ≦ 1.5
9 (° C / sec) (5) When the plate thickness is 15 mm, 0.69 ≦ K ≦ 1.1
6 (° C / sec) (6) When the plate thickness is 19 mm, 0.58 ≦ K ≦ 0.9
1 (℃ / sec)
【請求項3】熱風発生炉内、ダクト吹口内又はガラス冷
却装置内に熱風の温度と圧力とを測定する測定子を設置
し、ガラス冷却時の温度と圧力をダイナミックに計測
し、熱風の温度又は圧力が変化したときに、その変化し
た両因子そのものを制御するだけでなく、温度に対して
は圧力を、圧力に対しては温度を制御することにより、
目的とするガラス板表面圧縮応力値が得られるように熱
風の温度と圧力との間に一定の比例関係を予め設定する
ことにより、送風ファンの回転数、ダクト内ダンパ−の
開度、流体昇温用のバ−ナ−、電気ヒ−タ−及び/又は
熱媒流量を制御することを特徴とする請求項1又は2記
載の熱処理ガラスの製造方法。
3. A hot-air temperature is provided by installing a measuring element for measuring the temperature and pressure of hot air in a hot-air generating furnace, a duct outlet or a glass cooling device, and dynamically measuring the temperature and pressure during glass cooling. Or, when the pressure changes, not only by controlling both the changed factors themselves, but also by controlling the pressure for temperature and the temperature for pressure,
By presetting a constant proportional relationship between the temperature and pressure of the hot air so that the target glass plate surface compressive stress value can be obtained, the rotation speed of the blower fan, the opening of the damper in the duct, and the fluid rise. The method for producing heat-treated glass according to claim 1 or 2, wherein the burner for heating, the electric heater and / or the flow rate of the heat medium is controlled.
【請求項4】熱風発生炉内、ダクト吹口内又はガラス冷
却装置内に熱風の温度及び圧力の少なくとも一方を測定
する測定子を設置し、熱風の温度と圧力のうちの一方を
固定した状態において、熱風の温度と圧力のうちのその
他方を、前記測定子からの出力に基づき、その他方の温
度範囲又は圧力範囲が均一となるようにダイナミックに
制御することを特徴とする請求項1又は2記載の熱処理
ガラスの製造方法。
4. A measuring element for measuring at least one of the temperature and the pressure of the hot air is installed in the hot air generating furnace, the duct outlet or the glass cooling device, and one of the temperature and the pressure of the hot air is fixed. 3. The other one of the temperature and the pressure of the hot air is dynamically controlled based on the output from the probe so that the other temperature range or pressure range becomes uniform. A method for producing the heat-treated glass as described.
【請求項5】熱風温度を50℃〜400℃±0℃〜±5
0℃の温度範囲内の一定の値に固定した条件下におい
て、圧力のみを、圧力測定子からの出力に基づき、1P
a〜1000Pa±0Pa〜±50Paの範囲の均一な
圧力となるようにダイナミックに制御することを特徴と
する請求項4記載の熱処理ガラスの製造方法。
5. A hot air temperature of 50 ° C. to 400 ° C. ± 0 ° C. to ± 5
Under the condition that the temperature is fixed at a constant value within the temperature range of 0 ° C, only 1P is applied based on the output from the pressure gauge.
The method for producing heat-treated glass according to claim 4, wherein the pressure is dynamically controlled so as to obtain a uniform pressure in the range of a to 1000 Pa ± 0 Pa to ± 50 Pa.
【請求項6】熱風圧力を1Pa〜1000Pa±0Pa
〜±50Paの圧力範囲内の一定の値に固定した条件下
において、温度のみを、温度測定子からの出力に基づ
き、50℃〜400℃±0℃〜±50℃となるようにダ
イナミックに制御することを特徴とする請求項4記載の
熱処理ガラスの製造方法。
6. A hot air pressure of 1 Pa to 1000 Pa ± 0 Pa
Under the condition of fixed to a constant value within the pressure range of ± 50 Pa, only the temperature is dynamically controlled based on the output from the temperature probe to be 50 ° C to 400 ° C ± 0 ° C to ± 50 ° C. The method for producing heat-treated glass according to claim 4, wherein
JP7804094A 1994-03-23 1994-03-23 Method for controlling temperature and pressure of blown fluid flow in production of tempered glass Pending JPH07267664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7804094A JPH07267664A (en) 1994-03-23 1994-03-23 Method for controlling temperature and pressure of blown fluid flow in production of tempered glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7804094A JPH07267664A (en) 1994-03-23 1994-03-23 Method for controlling temperature and pressure of blown fluid flow in production of tempered glass

Publications (1)

Publication Number Publication Date
JPH07267664A true JPH07267664A (en) 1995-10-17

Family

ID=13650725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7804094A Pending JPH07267664A (en) 1994-03-23 1994-03-23 Method for controlling temperature and pressure of blown fluid flow in production of tempered glass

Country Status (1)

Country Link
JP (1) JPH07267664A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006060A1 (en) * 2010-07-08 2012-01-12 Eiji Terao Method of manufacturing glass substrate and method of manufacturing electronic components
US20120006061A1 (en) * 2010-07-08 2012-01-12 Eiji Terao Method of manufacturing glass substrate and method of manufacturing electronic components
US20120006467A1 (en) * 2010-07-08 2012-01-12 Noboru Kawai Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US9296638B2 (en) 2014-07-31 2016-03-29 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US12064938B2 (en) 2019-04-23 2024-08-20 Corning Incorporated Glass laminates having determined stress profiles and methods of making the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006060A1 (en) * 2010-07-08 2012-01-12 Eiji Terao Method of manufacturing glass substrate and method of manufacturing electronic components
US20120006061A1 (en) * 2010-07-08 2012-01-12 Eiji Terao Method of manufacturing glass substrate and method of manufacturing electronic components
US20120006467A1 (en) * 2010-07-08 2012-01-12 Noboru Kawai Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US8596092B2 (en) * 2010-07-08 2013-12-03 Seiko Instruments Inc. Method of manufacturing through electrode-attached glass substrate
US8656736B2 (en) * 2010-07-08 2014-02-25 Seiko Instruments Inc. Method of manufacturing glass substrate and method of manufacturing electronic components
US10005691B2 (en) 2014-07-31 2018-06-26 Corning Incorporated Damage resistant glass article
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US9783448B2 (en) 2014-07-31 2017-10-10 Corning Incorporated Thin dicing glass article
US9802853B2 (en) 2014-07-31 2017-10-31 Corning Incorporated Fictive temperature in damage-resistant glass having improved mechanical characteristics
US9975801B2 (en) 2014-07-31 2018-05-22 Corning Incorporated High strength glass having improved mechanical characteristics
US9296638B2 (en) 2014-07-31 2016-03-29 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US10077204B2 (en) 2014-07-31 2018-09-18 Corning Incorporated Thin safety glass having improved mechanical characteristics
US10233111B2 (en) 2014-07-31 2019-03-19 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US9776905B2 (en) 2014-07-31 2017-10-03 Corning Incorporated Highly strengthened glass article
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US12064938B2 (en) 2019-04-23 2024-08-20 Corning Incorporated Glass laminates having determined stress profiles and methods of making the same
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US12043575B2 (en) 2019-08-06 2024-07-23 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Similar Documents

Publication Publication Date Title
JPH07267664A (en) Method for controlling temperature and pressure of blown fluid flow in production of tempered glass
US6427488B1 (en) Method for heating glass sheets to be tempered or heat-strengthened
US4860231A (en) Calibration technique for variable speed motors
US8074473B2 (en) Method for quenching formed glass sheets
US4703747A (en) Excess air control
JP3505755B2 (en) Glass plate heat treatment equipment
CN105936586A (en) Glass heating furnace and heating method
JPH10245636A (en) Method for heating and cooling non-heat treated steel and apparatus thereof
CN113864986A (en) Air conditioner control method
JPH0519696Y2 (en)
CA1189406A (en) Thermally controlled vent damper
CN107500519B (en) Glass plate tempering process control method
CN208733182U (en) A kind of natural gas direct-heating type aging furnace
CN208038304U (en) Reflective annealing furnace
CN106863564B (en) Concrete sample curing room and its temperature control method
JP2710438B2 (en) Baking method of powder coated metal plate
JPH07190627A (en) Tunnel type continuous baking furnace
CN114087736B (en) Constant-temperature dehumidification control method based on system reliability and air conditioner
JP4000475B2 (en) Heat amount adjustment method of heating furnace
CN208717416U (en) Hot wall type ion nitriding furnace
CN203922999U (en) Reinforced glass production facility
JP2607795B2 (en) Method and apparatus for adjusting processing conditions of continuous furnace
CN107562085B (en) Method for controlling glass plate toughening technological process according to energy consumption
KR100411635B1 (en) Secondary air humidity control device of glass melting furnace and glass melting furnace equipped with this control device
CN107352780A (en) A kind of glass processing device and processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040517

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713