JPH07267237A - Draw-ironed can made of steel - Google Patents

Draw-ironed can made of steel

Info

Publication number
JPH07267237A
JPH07267237A JP6334194A JP6334194A JPH07267237A JP H07267237 A JPH07267237 A JP H07267237A JP 6334194 A JP6334194 A JP 6334194A JP 6334194 A JP6334194 A JP 6334194A JP H07267237 A JPH07267237 A JP H07267237A
Authority
JP
Japan
Prior art keywords
neck
steel
ironing
vickers hardness
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6334194A
Other languages
Japanese (ja)
Other versions
JP2748856B2 (en
Inventor
Kazuhisa Masuda
和久 増田
Kazuo Otsuka
一男 大塚
Kazuhiro Nishida
一弘 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP6334194A priority Critical patent/JP2748856B2/en
Publication of JPH07267237A publication Critical patent/JPH07267237A/en
Application granted granted Critical
Publication of JP2748856B2 publication Critical patent/JP2748856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PURPOSE:To prevent wrinkles at the time of neck processing, and cracking at the time of flange processing or seaming processing from occurrence, and improve the sealing property and corrosion resistance by specifying a mouth contraction percentage, plate thickness and micro-Vickers hardness of the starting part of a neck-in or its vicinity. CONSTITUTION:A draw-ironed can 1 has a side wall part 4 which is thinned by a stroke-processing, and a multi-stage neck-in processed part 5 on the top of the side wall part 4. Then, a flange 6 for seaming is connected to the top of the neck-in processed part 5, and a mouth part 7 with a smaller diameter is formed. This mouth contraction percentage is made 15% or higher, and a plate thickness at the neck-in start part P or its vicinity is specified in a range of 100-135mum. In addition, a micro-Vickers hardness Y at the neck-in start part P or its vicinity and a micro-Vickers hardness X at the inside of a bottom ground part Q are specified in a range which is specified by X+Y<=430 and Y<=240. By thinning the neck-in processed part 5, the can is made lighter, and the raw material cost is reduced. Also, a removing from a punch after stroking becomes easier, and the operatability is also improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スチール製絞りしごき
缶に関するもので、より詳細には巻締用口部が小径にネ
ックイン加工されていながら、密封性、蓋巻締部耐腐食
性及び耐フランジクラック性の組み合わせに優れたスチ
ール製絞りしごき缶に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel squeezing and ironing can, and more specifically, it has a tight sealing property, a corrosion resistance to a lid winding part and The present invention relates to a steel squeezed ironing can that has an excellent combination of flange crack resistance.

【0002】[0002]

【従来の技術】金属素材をポンチとダイスとの間で絞り
−再絞り加工、更にしごき加工に付して得られる缶体
は、缶胴部及び缶胴部と缶底部との接続部に継目がな
く、外観が良好で、底蓋の巻締及び継目形成などの操作
が不要であり、また缶胴側壁部が薄肉化されていて、金
属素材の量が少なくてよい等の利点を有することから、
飲料缶詰等の用途に広く使用されている。
2. Description of the Related Art A can body obtained by subjecting a metal material to a drawing-redrawing process between a punch and a die and an ironing process has a seam at a can body portion and a connecting portion between a can body portion and a can bottom portion. It has the advantages that it has a good appearance, does not require operations such as tightening the bottom lid and forming seams, and has a thinned can barrel side wall, which requires less metal material. From
Widely used for canned beverages.

【0003】このようなツーピース缶は、ビール、炭酸
飲料等の自生圧力を有する内容物や、窒素充填缶詰、更
に加熱殺菌缶詰等の用途に使用されることから、耐圧性
能、耐衝撃性、耐腐食性等が要求されている。アルミは
加工性に優れた素材であり、高度に薄肉化できるという
利点を有しているが、スチールに比較すると強度が3分
の1であり、また腐食性成分を含有する食品類に対して
はスチールに比して耐食性にも劣るので、加熱殺菌を必
要とする用途や、腐食成分を含有する内容物に対して
は、依然スチール缶が使用されている。
Since such a two-piece can is used for contents such as beer and carbonated beverages having an autogenous pressure, nitrogen-filled cans, heat-sterilized cans and the like, pressure-resistant performance, impact resistance and resistance Corrosiveness is required. Aluminum is a material with excellent workability and has the advantage that it can be made extremely thin, but its strength is one-third that of steel, and it is suitable for foods containing corrosive components. Since steel has poorer corrosion resistance than steel, steel cans are still used for applications requiring heat sterilization and for contents containing corrosive components.

【0004】ツーピース缶では、缶胴上部のフランジ部
において、イージーオープン蓋と巻き締めることが必要
になるが、高価なイージーオープン蓋の径を縮小させて
コストを低減させること及び巻締部の外周が缶胴の外周
よりも内側に入るようにして、外観を向上させることな
どを目的として、缶胴上部に口部を小径に絞るネックイ
ン加工を行っている。このネックイン加工も、最近では
より高度なもの、即ち多段の加工でより小径に絞ること
が要求されている。
In a two-piece can, it is necessary to wind and fasten the flange portion on the upper portion of the can body with the easy open lid. However, the diameter of the expensive easy open lid is reduced to reduce the cost and the outer circumference of the winding portion. Neck-in processing is performed on the upper part of the can body to reduce the diameter of the mouth to a smaller diameter for the purpose of improving the appearance of the can body by making it inside the outer circumference of the can body. Recently, this neck-in processing is also required to be more sophisticated, that is, to be reduced to a smaller diameter by multi-step processing.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、スチ
ール製の絞りしごき缶において、ネックイン加工部をも
含めて缶胴部の厚みを薄くすることは、缶の軽量化及び
コストの低減の点で望ましいことであるが、このような
薄肉化絞りしごき缶では、巻締部の密封性不良や耐腐食
性低下を屡々生じることがわかった。
However, in the squeezed and ironed can made of steel, reducing the thickness of the can body part including the neck-in processed part reduces the weight and cost of the can. Although desirable, it has been found that such a thinned and squeezed ironing can often results in poor sealing of the wound portion and reduced corrosion resistance.

【0006】本発明者らは、この原因について追究した
結果、上記の密封性不良や耐腐食性低下は、ネックイン
加工に際して、ネック部やフランジ部にしわが発生する
ことに原因があり、このしわを起点として、フランジ加
工や巻締加工の際、割れ(フランジ割れ)を生じること
を突き止めた。このしわの発生は、ネックイン開始部乃
至その近傍の厚みが小さくなるほど顕著であり、更にネ
ックイン加工の際の口絞り率が大きくなるほど顕著にな
る傾向がある。
As a result of investigating this cause, the inventors of the present invention have found that the above-mentioned poor sealing property and reduced corrosion resistance are caused by the generation of wrinkles in the neck portion and the flange portion during neck-in processing. It was found that cracks (flange cracks) occur during the flange processing and the winding tightening processing. The occurrence of wrinkles tends to become more prominent as the thickness at the neck-in start portion or in the vicinity thereof becomes smaller, and becomes more prominent as the aperture reduction ratio during neck-in processing increases.

【0007】従って、本発明の目的は、ネックイン加工
部の厚みが薄肉でしかも巻締用口部が小径にネックイン
加工されていながら、ネックイン加工の際のしわの発生
や、フランジ加工や巻締加工の際のフランジ割れ(フラ
ンジクラック)が防止され、その結果として密封性及び
蓋巻締部耐腐食性の組み合わせに優れたスチール製絞り
しごき缶を提供するにある。
Therefore, it is an object of the present invention to produce wrinkles during neck-in processing, flanging, and the like, while the neck-in processing portion has a thin wall and the tightening opening portion is neck-in processed to have a small diameter. It is an object of the present invention to provide a drawn and ironed can made of steel, in which flange cracks (flange cracks) at the time of winding processing are prevented and, as a result, excellent sealing performance and corrosion resistance of the lid winding portion are combined.

【0008】[0008]

【課題を解決するための手段】本発明によれば、スチー
ル板を絞りしごき加工し、且つ巻締用口部を小径にネッ
クイン加工して成るスチール製絞りしごき缶において、
口絞り率が15%以上であり、ネックイン開始部乃至そ
の近傍の板厚が100乃至135μmの範囲にあり、か
つネックイン開始部乃至その近傍のマイクロビッカース
硬度(Y)及び底接地部内側のマイクロビッカース硬度
(X)が式 X+Y ≦ 430 …(1)、好適にはX+Y ≦ 410 …(1A)、 及び Y ≦ 240 …(2)、好適にはY≦230 …(2A) で規定される範囲内にあることを特徴とする密封性、蓋
巻締部耐腐食性、耐フランジクラック性に優れたスチー
ル製絞りしごき缶が提供される。
According to the present invention, in a steel drawn and ironed can, which is formed by drawing and ironing a steel plate, and necking the winding mouth into a small diameter,
The aperture ratio is 15% or more, the thickness of the neck-in start portion or its vicinity is in the range of 100 to 135 μm, and the micro Vickers hardness (Y) and the bottom ground contact portion inside the neck-in start portion or its vicinity are The micro Vickers hardness (X) is defined by the formula: X + Y ≤430 (1), preferably X + Y ≤410 (1A), and Y ≤240 (2), preferably Y≤230 (2A). Provided is a steel squeezed ironing can which is excellent in sealing property, corrosion resistance in a lid-wound portion, and flange crack resistance, which is within the range.

【0009】[0009]

【作用】本発明による各測定は次の方法による。 1) ネックイン開始部のマイクロビッカース硬度
(Y)の測定方法 ネックイン開始部のマイクロビッカース硬度(Y)は、
ネックイン開始部について、缶円周方向に45゜おきに
8点の断面マイクロビッカース硬度(荷重50g、30
秒)を測定し、その平均値で示す。 2) 底接地部内側のマイクロビッカース硬度(X)の
測定方法 底接地部内側のマイクロビッカース硬度(X)は、底接
地部近傍内側のドーム側弧状部について、缶円周方向に
45゜おきに8点の断面マイクロビッカース硬度(荷重
50g、30秒)を測定し、その平均値で示す。 3) ネックイン開始部板厚の測定方法 ネックイン開始部板厚は、ネックイン開始部の内外面樹
脂被膜を剥離したのち、缶円周方向10点について、金
属のみの肉厚を測定し、その平均値で示す。 4) 口絞り率の測定 口絞り率(%)は次式(3)のように定義する。 口絞り率(%)=((缶胴内径−巻締部内径)×100)÷缶胴内径 …(3)
Each measurement according to the present invention is performed by the following method. 1) Method for measuring the micro Vickers hardness (Y) at the neck-in start portion The micro Vickers hardness (Y) at the neck-in start portion is
Regarding the neck-in start part, cross-section micro Vickers hardness (load 50g, 30
Second) and measure the average value. 2) Measuring method of micro-Vickers hardness (X) inside the bottom ground contacting part The micro Vickers hardness (X) inside the bottom grounding contact is measured every 45 ° in the can circumferential direction for the arc-shaped part on the dome side inside the bottom grounding contact. The cross-section micro Vickers hardness (load 50 g, 30 seconds) was measured at 8 points, and the average value is shown. 3) Neck-in start part plate thickness measurement method The neck-in start part plate thickness was measured by measuring the wall thickness of only the metal at 10 points in the can circumferential direction after peeling off the resin coating on the inner and outer surfaces of the neck-in start part. The average value is shown. 4) Measurement of aperture ratio The aperture ratio (%) is defined by the following equation (3). Squeeze rate (%) = ((can barrel inner diameter-rolling part inner diameter) x 100) / can barrel inner diameter ... (3)

【0010】本発明は、スチール板を絞りしごき加工
し、且つ巻締用口部を小径にネックイン加工して成るス
チール製絞りしごき缶に関するが、ネックイン開始部乃
至その近傍の板厚を、100乃至135μmと従来認め
られない厚みに薄くし、しかも口絞り率を15%以上と
大きくした。
The present invention relates to a steel drawn and ironed can which is formed by drawing and ironing a steel plate and necking-in the winding mouth portion to a small diameter. The thickness was reduced to 100 to 135 μm, which was not recognized in the past, and the aperture ratio was increased to 15% or more.

【0011】従来、絞りしごき缶において、缶胴部をし
ごきにより上記肉厚程度に薄肉化することは勿論知られ
ているが、ネックイン加工やフランジ加工を行う部分で
は、しわやクラックのないフランジ部を形成させるため
に、上記部分のしごき加工の程度をわざと低くし、その
肉厚を一般に140μm程度の厚みとしていた。
It has been well known that the body of a drawn and ironed can is thinned to the above-mentioned thickness by ironing, but in the portion where neck-in processing or flanging is performed, there is no wrinkle or crack-free flange. In order to form the portion, the degree of ironing of the above portion was purposely lowered, and the thickness thereof was generally set to about 140 μm.

【0012】これに対して、本発明では、ネックイン加
工やフランジ加工を行う部分にも高いしごき加工を加
え、この部分をも薄肉化することにより、缶を軽量化す
ると共に、缶の素材コストも低減させることを目的とし
ている。
On the other hand, in the present invention, a high ironing process is also applied to the neck-in process and the flange process, and this part is also thinned to reduce the weight of the can and reduce the material cost of the can. Is also aimed at reducing.

【0013】板厚を100乃至135μmと限定してい
るのは、ネックイン開始部乃至その近傍の板厚が100
μmを下回ると、以下に述べる缶体の硬度の用件がたと
え本発明の関係を満足しても、口絞り率が15%以上の
場合、ネッキング成形、フランジング成形時にネック
部、フランジ部にしわやマイクロクラックなどの欠陥が
発生し、密封性、蓋巻締部耐腐食性、耐フランジクラッ
ク性が低下する。
The plate thickness is limited to 100 to 135 μm because the plate thickness at the neck-in start portion and its vicinity is 100.
If it is less than μm, even if the requirements for the hardness of the can body described below satisfy the relationship of the present invention, if the necking ratio is 15% or more, the neck part and the flange part are formed in the necking and flanging molding. Defects such as wrinkles and micro cracks occur, and the sealing property, the corrosion resistance of the lid-wound portion, and the flange crack resistance deteriorate.

【0014】一方、ネックイン開始部乃至その近傍の板
厚が135μmを越えると、口絞り率が15%以上のネ
ッキング成形、フランジ成形時の欠陥は一般に少なく、
密封性、蓋巻締部耐腐食性、耐フランジクラック性とも
に良好であるが、ネックイン加工部と缶胴部の板厚差が
大きくなるため段差ができ、しごき加工時にパンチから
の缶の抜け性(ストリップアウト性)が悪くなること、
ネックイン加工部の板厚が大きいと、ネッキング成形時
の成形荷重が大きいため、缶胴が座屈しやすく、缶胴板
厚を薄くできないこと、缶体の金属使用量が増大するた
め経済的に不利になること、また缶が重くなるため輸送
時のコストが高くなること、飲用時に重く感じて感覚的
にも不利となることなどの欠点が出て来る。
On the other hand, when the plate thickness at the neck-in start portion or in the vicinity thereof exceeds 135 μm, there are generally few defects during necking molding and flange molding with a draw ratio of 15% or more,
The sealability, corrosion resistance of the lid wrapping area, and flange crack resistance are good, but there is a step difference due to the large difference in plate thickness between the neck-in processing part and the body of the can, causing the can to fall out of the punch during ironing. Sex (strip-out property) deteriorates,
If the plate thickness of the neck-in processing part is large, the forming load during necking is large, so the can body is likely to buckle, the thickness of the can body cannot be reduced, and the metal usage of the can body increases, so it is economical. It has disadvantages such as being disadvantageous, the cost of transportation is high due to the weight of the can, and the feeling is disadvantageous because it feels heavy when drinking.

【0015】口絞り率を15%以上と特定しているの
は、缶胴に巻き締めるイージイオープン蓋を縮径し、蓋
のコストを低くすると共に、缶詰全体の外観特性、特に
安定感等を向上させるためである。
The mouth draw ratio is specified to be 15% or more. The reason is that the easy-open lid wound around the can body is reduced in diameter to reduce the cost of the lid, and the appearance characteristics of the whole canned food, especially the stability, etc. Is to improve.

【0016】本発明では、このネックイン加工部の薄肉
化と、口絞り率の向上とを達成するために、ネックイン
開始部乃至その近傍のマイクロビッカース硬度(Y)及
び底接地部内側のマイクロビッカース硬度(X)を、式 X+Y ≦ 430、特にX+Y ≦ 410、及び Y ≦ 240、特にY≦230 で規定される範囲内としたことが顕著な特徴である。
In the present invention, in order to achieve the thinning of the neck-in processed portion and the improvement of the aperture reduction ratio, the micro Vickers hardness (Y) in the neck-in starting portion or in the vicinity thereof and the micro-Vickers inside the bottom grounding portion. It is a remarkable feature that the Vickers hardness (X) is within the range defined by the formulas X + Y ≦ 430, especially X + Y ≦ 410, and Y ≦ 240, especially Y ≦ 230.

【0017】図1を参照されたい。図1は、底接地部内
側のマイクロビッカース硬度(X)を横軸、ネックイン
開始部乃至その近傍のマイクロビッカース硬度(Y)を
縦軸とし、最終絞りしごき缶の密封性、蓋巻締部耐腐食
性、耐フランジクラック性に対する評価を、優(○)、
良(△)及び不可(×)でプロットしたものである。
Please refer to FIG. FIG. 1 shows the micro-Vickers hardness (X) inside the bottom ground contact portion as the horizontal axis and the micro-Vickers hardness (Y) at or near the neck-in start portion as the vertical axis. Evaluation of corrosion resistance and flange crack resistance is excellent (○),
The plots are good (Δ) and bad (×).

【0018】この図1の結果によると、直線X+Y=4
30及びY=240よりも上側の領域では、密封不良、
蓋巻締部腐食及びフランジクラック等が発生するのに対
して、これらの直線以下の領域では、これらの欠陥が有
効に解消され、特に直線X+Y=410及びY=230
以下の領域では、密封性、蓋巻締部耐腐食性及び耐フラ
ンジクラック性の組み合わせに特に優れたスチール製絞
りしごき缶が得られることが明らかである。
According to the result of FIG. 1, the straight line X + Y = 4
In the region above 30 and Y = 240, poor sealing,
In contrast to the corrosion of the lid-wound portion and the flange crack, these defects are effectively eliminated in the region below these straight lines, and in particular, the straight lines X + Y = 410 and Y = 230.
In the following areas, it is clear that a steel drawn and ironed can having a particularly excellent combination of sealing property, corrosion resistance of the lid-wound portion and flange crack resistance can be obtained.

【0019】(X+Y)の値が430よりも大きいと、
ネッキング加工によりネック部やフランジ部にしわが発
生し易く、そのしわを起点にしてフランジ加工時に割れ
(フランジ割れ)が発生するため、インラインでのリジ
ェクト缶が多くなり、生産性が落ちることになる。また
フランジ加工時に割れまでいかなくても、フランジ部に
大きなしわがあると、しわの部分の凹凸が大きいため、
内容物充填時に蓋と接触したときに、蓋内面と局部的に
擦れ、塗膜が破れ金属が露出するため、充填された内容
物により腐食し、はなはだしい場合には穿孔腐食とな
り、また溶解した金属イオンで内容物のフレーバーが劣
化したりする。また、フランジのしわの部分は二重巻締
時にフランジクラックになり易く、密封性を低下させる
原因となる。またネック部に発生するしわは外観が悪い
ため、缶の商品価値の低下を招く。
If the value of (X + Y) is larger than 430,
Necking tends to cause wrinkles in the neck and flange portions, and cracks (flange cracks) occur at the time of flange processing starting from the wrinkles, increasing the number of in-line reject cans and reducing productivity. Even if it does not crack during flange processing, if there is a large wrinkle on the flange part, the unevenness of the wrinkle part will be large,
When it comes into contact with the lid when filling the contents, the inner surface of the lid is locally rubbed, the coating film is broken and the metal is exposed, so it is corroded by the filled contents. Ions may deteriorate the flavor of the contents. Further, the wrinkled portion of the flange is apt to be a flange crack during double winding, which causes a decrease in sealing performance. In addition, the wrinkles occurring in the neck portion have a poor appearance, which leads to a reduction in the commercial value of the can.

【0020】ネックイン開始部乃至その近傍のマイクロ
ビッカース硬度の絶対値(Y)も重要であることが理解
されるべきである。即ち、前述した(X+Y)の値が4
30以下であっても、ネック成形性が悪く、フランジ部
やネック部のしわや割れにより密封性、蓋巻締部耐腐食
性、耐フランジクラック性が劣る範囲がある。この理由
ははっきりとしてはいないが、ネックイン加工部の硬度
が同じであっても原板を絞りしごき成形した際の加工硬
化の仕方(スチール母材の種類による)により密封性、
蓋巻締部耐腐食性、耐フランジクラック性に違いがある
ものと思われる。この関係は底接地部内側のマイクロビ
ッカース硬度(X)が190以下の領域であてはまる。
It should be understood that the absolute value of the micro Vickers hardness (Y) at or near the neck-in start is also important. That is, the value of (X + Y) described above is 4
Even if it is 30 or less, the neck formability is poor, and there is a range in which the sealability, the corrosion resistance of the lid-wound portion, and the flange crack resistance are inferior due to the wrinkles and cracks of the flange portion and the neck portion. The reason for this is not clear, but even if the hardness of the neck-in processed part is the same, due to the method of work hardening (depending on the type of steel base material) when drawing and ironing the original plate, the sealing performance,
It seems that there are differences in the corrosion resistance and flange crack resistance of the lid-wound portion. This relationship applies to a region where the micro Vickers hardness (X) inside the bottom ground contact portion is 190 or less.

【0021】本発明によれば、以上により、ネックイン
加工部の厚みが薄肉でしかも巻締用口部が小径にネック
イン加工されていながら、ネックイン加工の際のしわの
発生や、フランジ加工や巻締加工の際のフランジ割れ
(フランジクラック)が防止され、その結果として密封
性及び蓋巻締部耐腐食性の組み合わせに優れたスチール
製絞りしごき缶が得られる。
According to the present invention, as described above, wrinkles are generated during the neck-in processing and flange processing is performed even though the thickness of the neck-in processed portion is thin and the tightening mouth portion is neck-in processed to have a small diameter. In addition, flange cracks (flange cracks) during winding tightening are prevented, and as a result, a steel drawn and ironed can having excellent sealing performance and corrosion resistance of the lid winding portion can be obtained.

【0022】[0022]

【発明の好適態様】Preferred Embodiment of the Invention

[絞りしごき缶]本発明の絞りしごき缶の一例を示す図
2において、この絞りしごき缶1は、ブリキ等のスチー
ル板の深絞り(絞り−再絞り)とそれに続くしごき加工
とにより形成され、大まかにいって、底部2と胴部3と
からなっている。底部2は実質上素板と同一厚みであ
り、胴部3は絞りにより軸方向に延びており且つしごき
加工により薄肉化された側壁部4を備えている。
[Drawing and ironing can] In FIG. 2 showing an example of the drawing and ironing can of the present invention, this drawing and ironing can 1 is formed by deep drawing (drawing-redrawing) of a steel plate such as tinplate and subsequent ironing, Broadly speaking, it consists of a bottom part 2 and a body part 3. The bottom portion 2 has substantially the same thickness as the base plate, and the body portion 3 has a side wall portion 4 which extends in the axial direction by drawing and is thinned by ironing.

【0023】側壁部の上部には、径が次第に縮小される
ように、多段(図に示す具体例においては4段)のネッ
クイン加工部5が形成されており、このネックイン加工
部5の上に巻締用フランジ6が接続されて、縮径された
口部7を形成している。ネックイン加工部5には、多段
形状のものと、スムース形状のものとがある。
A multi-step (four steps in the specific example shown in the figure) neck-in working part 5 is formed on the upper part of the side wall so that the diameter is gradually reduced. The winding fastening flange 6 is connected to the upper portion to form a reduced diameter mouth portion 7. The neck-in processing portion 5 is classified into a multi-stage shape and a smooth shape.

【0024】底部2は、下方に向けて径の縮小するテー
パ状の外周部8と、接地部9と、接地部から上方に急激
に立ち上がっているテーパ状の内周部10と、内周部に
接続されたドーム部11とからなっており、底の変形を
防止して、自立安定性を向上させるようになっている。
The bottom portion 2 has a tapered outer peripheral portion 8 whose diameter is reduced downward, a ground contact portion 9, a tapered inner peripheral portion 10 which rises sharply upward from the ground contact portion, and an inner peripheral portion. The dome portion 11 is connected to the bottom of the dome portion 11 to prevent the bottom from being deformed and improve the self-sustaining stability.

【0025】胴部の側壁部4の径はD、口部の径はdと
すると、口絞り率Rは式 R=(D−d)/D×100 で表されるが、本発明では、この口絞り率を15%以
上、好適には16.0乃至24.0%と高度の口絞りを
行っている。
Assuming that the diameter of the side wall portion 4 of the body portion is D and the diameter of the mouth portion is d, the aperture reduction ratio R is represented by the equation R = (D−d) / D × 100. The aperture ratio is 15% or more, and preferably 16.0 to 24.0%, which is a high degree.

【0026】また、缶胴のネックイン開始部とは、図2
においてPの点、即ち第一段目のネックイン加工部をい
うが、本発明では、このネックイン加工部乃至その近傍
の板厚を100乃至135μmの範囲、好適には110
乃至130μmの範囲と著しく薄肉にしている。
The neck-in start portion of the can body is shown in FIG.
In the present invention, the point P, that is, the neck-in processed portion of the first step is referred to. In the present invention, the plate thickness in the neck-in processed portion or in the vicinity thereof is in the range of 100 to 135 μm, preferably 110.
The thickness is extremely thin in the range of to 130 μm.

【0027】ネックイン加工前の缶胴の厚みの分布を拡
大して図3に示す。従来の絞りしごき缶では、胴側壁部
4はかなり薄肉(厚みtS )にしごき加工されていると
しても、ネックイン加工部12は、上方に向けて厚さの
増大するテーパ部13を介してかなり厚肉(tP )に形
成されており、その厚み(tP )は一般に140乃至1
50μmのオーダである。これに対して、本発明の絞り
しごき缶では、ネックイン加工部12は、テーパ部13
を介して接続されているとしても、その厚肉化の程度は
かなり小さいものである。
The distribution of the thickness of the can body before neck-in processing is enlarged and shown in FIG. In the conventional squeezed ironing can, even if the barrel side wall portion 4 is ironed to a considerably thin thickness (thickness t S ), the neck-in processed portion 12 has a tapered portion 13 whose thickness increases upward. It is formed to be fairly thick (t P ), and its thickness (t P ) is generally 140 to 1
It is on the order of 50 μm. On the other hand, in the drawn and ironed can of the present invention, the neck-in processed portion 12 has the tapered portion 13
Even if they are connected via the, the degree of thickening is considerably small.

【0028】本発明の絞りしごき缶において、胴側壁部
の厚み(ts )は、一般の絞りしごき缶と同様の75乃
至90μmか、あるいはより薄い50乃至75μmの範
囲にある。tP を薄肉化することで、ネッキング加工時
の成形荷重を小さくでき、従来座屈発生のためにできな
かった缶胴板厚の薄肉化をすることができ、容器を軽量
化することができる。例えば、tP を100乃至130
μmとすると、tS を50乃至75μmにすることがで
きる。また別の観点では、ネックイン加工部と缶胴の厚
み差(tp /ts )は、従来のものが50乃至60μm
であるのに対して、20乃至60μmの範囲にある。こ
のようにtp を薄肉化することで、段差を小さくするこ
とができ、絞りしごき加工後での缶体のポンチからの型
抜きをよくすることができる。
In the squeezed and ironed can of the present invention, the thickness (t s ) of the body side wall portion is in the range of 75 to 90 μm, which is the same as that of a general squeezed and ironed can, or in the range of 50 to 75 μm, which is thinner. By making t P thinner, the forming load at the time of necking can be made smaller, the can body plate thickness can be made thinner, which was not possible due to buckling, and the container can be made lighter. . For example, t P is 100 to 130
With μm, t S can be 50 to 75 μm. From another point of view, the thickness difference (t p / t s ) between the necked-in portion and the can body is 50 to 60 μm in the conventional case.
However, it is in the range of 20 to 60 μm. By making t p thin as described above, the step can be reduced, and the can body can be easily removed from the punch after drawing and ironing.

【0029】本発明におけるネックイン加工は、ダイネ
ック、スピンネック、スクイズネック等の方法を使用す
る事ができる。ダイネックの場合、多段形状(一般に一
段での口絞り比が2乃至4%程度である4段乃至7段形
状)か或いはスムース形状で行われる。スピンネックの
場合、最終形状はスムース形状であるが、ダイネックで
ある程度の口絞りを行った後スピンネックを行うこと
や、スピンネックを1段階或いは数段階で行なうことも
できる。
For neck-in processing in the present invention, methods such as die neck, spin neck and squeeze neck can be used. In the case of a die neck, it is performed in a multi-step shape (generally a 4-step to 7-step shape in which the aperture ratio in one step is about 2 to 4%) or a smooth shape. In the case of the spin neck, the final shape is a smooth shape, but the spin neck may be performed after the die neck has been narrowed to some extent, or the spin neck may be performed in one step or in several steps.

【0030】本発明では、ネックイン加工部を薄くし
て、しかも口絞り比を向上させるために、ネックイン開
始部乃至その近傍のマイクロビッカース硬度(Y)及び
底接地部内側のマイクロビッカース硬度(X)を式 X+Y ≦ 430、好適にはX+Y ≦ 410、及び Y ≦ 240、好適にはY≦230 で規定される範囲内とする。
In the present invention, in order to make the neck-in processed portion thin and improve the aperture ratio, the micro Vickers hardness (Y) at the neck-in start portion and its vicinity and the micro Vickers hardness (inside the bottom ground contact portion) ( X) is within the range defined by the formula X + Y ≦ 430, preferably X + Y ≦ 410, and Y ≦ 240, preferably Y ≦ 230.

【0031】接地部内側とは、図2において、Qで示さ
れる部分であり、この接地部内側部分Qのマイクロビッ
カース硬度は、スチール材料そのものの加工のし易さと
密接に関係している。これらのマイクロビッカース硬度
とネックイン加工性との関係は既に詳述したとおりであ
る。用いる材料については、後で詳述する。
The inside of the ground contact portion is the portion indicated by Q in FIG. 2, and the micro Vickers hardness of this inside contact portion Q is closely related to the workability of the steel material itself. The relationship between the micro Vickers hardness and the neck-in workability is as described in detail above. The materials used will be described in detail later.

【0032】本発明の絞りしごき缶の底形状は、絞りし
ごき加工の途中或いは終段で平底を型で底打ちすること
により形成される。底の形状及び寸法は、缶と缶の積み
重ね性であるスタッカブル性と耐内圧性を考慮し、接地
部の径(du )を蓋径より約5〜10mm小さくするこ
とが一般的である。かつ接地部からのドーム部の高さ
(HB)は接地部の径(du )の約20%程度である。
The bottom shape of the drawn and ironed can of the present invention is formed by bottoming a flat bottom with a mold during or at the end of drawing and ironing. Regarding the shape and size of the bottom, the diameter (d u ) of the grounding portion is generally smaller than the lid diameter by about 5 to 10 mm in consideration of stackability between cans and stackability and internal pressure resistance. Moreover, the height (HB) of the dome portion from the ground contact portion is about 20% of the diameter (d u ) of the ground contact portion.

【0033】[スチール素材]本発明に用いるスチール
素材は、冷延鋼板を基材とした表面処理鋼板で、絞りし
ごき缶に成形したときのマイクロビッカース硬度(X)
及び(Y)が前述した範囲となるようなものである。
[Steel Material] The steel material used in the present invention is a surface-treated steel sheet having a cold-rolled steel sheet as a base material, and has a micro Vickers hardness (X) when formed into a drawn and ironed can.
And (Y) are within the above-mentioned range.

【0034】一般に、スチール素材の硬度は、その素材
そのものが有する硬度と、素材が受ける加工硬化との両
方が影響する。即ち、冷延鋼板の硬度は、冷間圧延率が
大きくなれば、何れも硬度が増加する傾向にあることは
間違いがないが、比較的小さな圧延率でも硬度の大きい
ものや硬度の小さいものがあり、また圧延率の増加に伴
って、硬度の増大の著しいものや硬度の増大が比較的小
さいものがあり、その硬化特性は千差万別である。それ
ら硬度に影響する因子としては、成分(炭素や窒素など
の侵入型固溶元素、マンガンやリンなどの置換型固溶元
素などの量)、析出物(セメンタイトなどの炭化物や窒
化物などの量や分布状態)、結晶粒径、などがあり、熱
間圧延条件、焼鈍条件、過時効処理、二次冷間圧延量、
などで鋼の特性が大きく変化することは良く知られてい
る。また、製缶工程では、洗浄乾燥や塗料焼き付け等の
熱処理が必須不可欠のものであるが、これらの熱処理で
の時効硬化の影響も無視できない。
Generally, the hardness of a steel material is affected by both the hardness of the material itself and the work hardening that the material undergoes. That is, there is no doubt that the hardness of the cold-rolled steel sheet tends to increase as the cold rolling rate increases, but the hardness of the cold-rolled steel sheet is large or low even at a relatively low rolling rate. In addition, as the rolling rate increases, there are some with a remarkable increase in hardness and some with a relatively small increase in hardness, and their hardening characteristics vary widely. Factors that affect the hardness include the amount of components (the amount of interstitial solid solution elements such as carbon and nitrogen, the amount of substitutional solid solution elements such as manganese and phosphorus) and the amount of precipitates (such as cementite and other carbides and nitrides). Distribution state), grain size, etc., hot rolling conditions, annealing conditions, overaging treatment, secondary cold rolling amount,
It is well known that the characteristics of steel change greatly due to such factors. Further, in the can manufacturing process, heat treatments such as washing and drying and paint baking are indispensable, but the effect of age hardening in these heat treatments cannot be ignored.

【0035】後述する例に示すとおり、冷間圧延20%
をした後210℃で5分の熱処理をしたときの断面マイ
クロビッカース硬度が170以下であり、しかも冷間圧
延70%をした後210℃で5分の熱処理をしたときの
断面マイクロビッカース硬度が210以下である特性を
持った冷延鋼板は、本発明の目的に適合していることが
わかった。
As shown in the examples described later, cold rolling 20%
The micro Vickers hardness of the cross section after heat treatment at 210 ° C. for 5 minutes is 170 or less, and the micro Vickers hardness of the cross section after heat treatment at 210 ° C. for 5 minutes is 210 or less. It has been found that cold-rolled steel sheets having the following characteristics are suitable for the purpose of the present invention.

【0036】基材となる冷延鋼板は、低炭素鋼または極
低炭素鋼からなるのが良い。低炭素鋼では、一般に炭素
の含有量が0.01乃至0.10重量%、特に0.01
乃至0.06重量%が望ましい。その他の成分としてマ
ンガンの含有量が0.05乃至0.60重量%、アルミ
の含有量が0.01乃至0.15重量%で、残余が不可
避不純物と鉄とからなるものが特に適している。極低炭
素鋼では、一般に炭素の含有量が0.0005乃至0.
008重量%、特に0.0005乃至0.004重量%
が望ましい。その他の成分としてマンガンの含有量が
0.05乃至0.60重量%、アルミの含有量が0.0
1乃至0.15重量%で、残余が不可避不純物と鉄とか
らなるもの、及びそれにNbあるいはTiあるいはその
両方が0.0005乃至0.04重量%含まれているも
のが特に適している。一般的に、本発明における鋼に関
しては、固溶炭素の少ない鋼が望ましい。その理由は、
固溶炭素が原板硬度とともに加工硬化に対する影響が大
きいことによる。固溶炭素が多いと、XもYも増大し、
密封性などに欠陥が出やすい。すなわち、これらの成分
の鋼を使用し、固溶炭素を下げることにより、実施例の
ような特性を得ることができる。
The cold-rolled steel sheet as the base material is preferably made of low carbon steel or ultra low carbon steel. In low carbon steel, the carbon content is generally 0.01 to 0.10% by weight, especially 0.01
To 0.06% by weight is desirable. As other components, those having a manganese content of 0.05 to 0.60% by weight, an aluminum content of 0.01 to 0.15% by weight, and a balance consisting of inevitable impurities and iron are particularly suitable. . Ultra-low carbon steel generally has a carbon content of 0.0005 to 0.
008% by weight, especially 0.0005 to 0.004% by weight
Is desirable. As other components, the manganese content is 0.05 to 0.60% by weight, and the aluminum content is 0.0.
It is particularly suitable that the content is 1 to 0.15% by weight and the balance consists of unavoidable impurities and iron, and that it contains 0.0005 to 0.04% by weight of Nb and / or Ti. Generally, regarding the steel in the present invention, a steel having a small amount of solute carbon is desirable. The reason is,
This is because solute carbon has a great influence on the work hardening as well as the hardness of the original plate. When the amount of solute carbon is large, both X and Y increase,
Defects are likely to occur in hermeticity. That is, it is possible to obtain the characteristics as in the embodiment by using the steels having these components and reducing the solid solution carbon.

【0037】冷延鋼板における平均結晶粒径もその硬度
に重要な影響をもたらし、粒径が大きい方が鋼は一般に
軟質であるが、粒径が大きすぎるとネック加工が不均質
になるため、平均結晶粒径は一般に低炭素鋼で8.0μ
m以下、極低炭素鋼で12.0μm以下が望ましい。
The average crystal grain size in the cold-rolled steel sheet also has an important effect on its hardness, and the larger the grain size is, the generally softer the steel is. However, if the grain size is too large, necking becomes inhomogeneous. Average grain size is generally 8.0μ for low carbon steel
m or less, and 12.0 μm or less for ultra-low carbon steel is desirable.

【0038】本発明に用いるスチール素材は、耐腐食性
や加工性の点で表面処理鋼板からなっていることが好ま
しく、この表面処理鋼板としては、冷間圧延鋼板を焼鈍
後、調質圧延あるいは二次冷間圧延し、亜鉛メッキ、錫
メッキ、ニッケルメッキ、電解クロム酸処理、クロム酸
処理等の表面処理の一種または二種以上行ったものを用
いることができる。
The steel material used in the present invention is preferably a surface-treated steel sheet from the viewpoint of corrosion resistance and workability. As this surface-treated steel sheet, a cold-rolled steel sheet is annealed and then temper-rolled or Secondary cold rolling and one or more surface treatments such as zinc plating, tin plating, nickel plating, electrolytic chromic acid treatment, and chromic acid treatment can be used.

【0039】表面処理鋼板の好適な例は、缶外面側は
0.7乃至15g/m2 特に0.7乃至5.6g/
2 、缶内面側は0.0乃至15g/m2 特に0.0乃
至5.6g/m2 の錫メッキ量を有するブリキ板であ
る。このブリキ板は錫メッキ層の溶融処理を行ったブラ
イト板(リフロー板)であっても、また溶融処理を行っ
ていないマット板(ノーリフロー)であっても良い。前
者のブライト板では、溶融処理にともなって、錫の一部
が下地の鉄中に拡散して錫−鉄合金層を形成しており、
このものは耐食性に特に優れている。後者のマット板
は、メッキ錫が粒状に付着したもので加工性、即ち絞り
しごき加工性に優れている。このブリキ板は、金属クロ
ム換算で、クロム量が1乃至30mg/m2 となるよう
なクロメート処理或いはクロム酸/リン酸処理或いはリ
ン酸処理が行われていることが望ましい。
A preferred example of the surface-treated steel sheet is 0.7 to 15 g / m 2 on the outer surface side of the can, particularly 0.7 to 5.6 g / m 2.
m 2, the can inner surface side is a tin plate having a tin plating amount of 0.0 to 15 g / m 2, especially 0.0 to 5.6 g / m 2. This tin plate may be a bright plate (reflow plate) having a tin-plated layer subjected to a melting treatment, or a mat plate (no reflow) having not been subjected to a melting treatment. In the former bright plate, a part of tin diffuses into the underlying iron to form a tin-iron alloy layer with the melting treatment,
This product is particularly excellent in corrosion resistance. The latter mat plate is one in which plated tin is attached in a granular form and is excellent in workability, that is, draw ironing workability. It is desirable that this tin plate has been subjected to chromate treatment, chromic acid / phosphoric acid treatment or phosphoric acid treatment so that the amount of chromium becomes 1 to 30 mg / m 2 in terms of metal chromium.

【0040】好適な表面処理鋼板の他の例は、電解クロ
ム酸処理鋼板であり、特に10乃至200mg/m2
金属クロム層と1乃至50mg/m2 (金属クロム換
算)のクロム酸化物層とを備えたものであり、このもの
は塗膜密着性と耐腐食性との組合せに優れている。また
スチール板の元板厚は、一般のスチール製絞りしごき缶
と同様で、0.24乃至0.32mmのものが使用でき
る。また、従来より薄い0.17乃至0.23mmのも
のも使用でき、この場合軽量であり経済性に優れ、ネッ
クイン部板厚が同じであれば、原板からの加工量がより
小さいため、ネックイン開始部硬度をより小さくでき
る。
Another example of a suitable surface-treated steel sheet is an electrolytic chromic acid-treated steel sheet, in particular, a metal chromium layer of 10 to 200 mg / m 2 and a chromium oxide layer of 1 to 50 mg / m 2 (metal chromium conversion). And is excellent in the combination of coating film adhesion and corrosion resistance. The base plate thickness of the steel plate is the same as that of a general steel drawn and ironed can, and a plate having a thickness of 0.24 to 0.32 mm can be used. Also, thinner than 0.17 to 0.23 mm can be used, and in this case it is lightweight and economical, and if the plate thickness of the neck-in part is the same, the processing amount from the original plate is smaller, so the neck The hardness of the in-start portion can be further reduced.

【0041】更に他の例としてはアルミニウムメッキ、
アルミニウム圧接等を施したアルミニウム被覆鋼板が用
いられる。また、缶内面側に熱可塑性樹脂をラミネート
したぶりき板も使用される。
Still another example is aluminum plating,
An aluminum-coated steel plate subjected to aluminum pressure welding or the like is used. Further, a tin plate in which a thermoplastic resin is laminated on the inner surface side of the can is also used.

【0042】[絞りしごき成形]スチール素材の絞りし
ごき加工は、それ自体公知の方法で行うことができる。
即ち、このスチール素材をを円板等の形状に剪断し、こ
れを絞りポンチと絞りダイスとの間で一段或いは多段の
絞り加工に賦する。絞り成形は大径の浅いカップへの前
絞り成形と小径の深絞りカップへの深絞り成形とでも行
うことができ、この深絞り成形工程では、肉厚を均一化
するためカップ側壁部の上方部分に軽度のしごきを加え
るようにしてもよい。絞り成形に際しては、素材に潤滑
剤を適用することもできる。絞り加工は室温で行い得る
のは勿論であるが、室温よりも若干高めの温度で加工を
行うこともできる。
[Drawing and Ironing Forming] The drawing and ironing of the steel material can be carried out by a method known per se.
That is, this steel material is sheared into a shape such as a disk, and this is subjected to a single-stage or multi-stage drawing process between the drawing punch and the drawing die. The draw forming can be performed either by pre-drawing a large-diameter shallow cup or by deep-drawing a small-diameter deep-drawing cup. A slight ironing may be added to the part. A lubricant may be applied to the raw material at the time of drawing. Needless to say, the drawing process can be performed at room temperature, but the drawing process can be performed at a temperature slightly higher than room temperature.

【0043】上記絞り加工に際して、下記式(4) で定義される絞り比は、一般に1.2 乃至2.0 特に1.3 乃
至1.9 の範囲内にあることが好ましく、下記式(5) で定義される再絞り比は、一般に1.1 乃至1.6 特に1.15
乃至1.5 の範囲内にあることが好ましい。
In the above drawing process, the following formula (4) Generally, the aperture ratio defined by is preferably in the range of 1.2 to 2.0, particularly 1.3 to 1.9. The redrawing ratio defined in general is 1.1 to 1.6, especially 1.15.
It is preferably in the range of 1.5 to 1.5.

【0044】絞り成形及び再しぼり成形に際して、スチ
ール板或いは更にカップに、各種滑剤、例えば流動パラ
フィン、合成パラフィン、食用油、水添食用 油、パー
ム油、各種天然ワックス、ポリエチレンワックス、合成
エステルを塗布して成形を行うのがよい。滑剤の塗布量
は、その種類によっても相違するが、一般に0.1 乃至10
mg/dm2 、特に0.2 乃至5 mg/dm2 の範囲内にあるのがよ
く、滑剤の塗布は、これを溶融状態で表面にスプレー塗
布あるいはロール塗布することにより行われる。
At the time of drawing and re-squeezing, various lubricants such as liquid paraffin, synthetic paraffin, edible oil, hydrogenated edible oil, palm oil, various natural waxes, polyethylene wax and synthetic ester are applied to a steel plate or a cup. It is better to carry out molding. The amount of lubricant applied varies depending on the type, but is generally 0.1 to 10
It is preferably in the range of mg / dm 2 , particularly 0.2 to 5 mg / dm 2 , and the lubricant is applied in the molten state by spray coating or roll coating on the surface.

【0045】絞り加工或いは更に再絞り加工されたカッ
プを、しごきポンチとしごきダイスとの組み合わせを用
いて、一段乃至多段のしごき加工を行う。しごき加工に
際して、しごきポンチとしごきダイスとのクリアランス
をカップ側壁部の肉厚よりも小さくしておくことによ
り、この側壁部は延伸され、薄肉化される。
The drawn or further redrawn cup is subjected to a single-stage or multi-stage ironing process using a combination of an ironing punch and an ironing die. During the ironing process, the clearance between the ironing punch and the ironing die is made smaller than the wall thickness of the cup side wall portion, whereby the side wall portion is stretched and thinned.

【0046】下記式(6) RI=(tb−ts)/tb×100 …(6) 式中、tbはしごき加工前のスチール素材の厚みであ
り、tsはしごき加工後のスチール素材の厚みである、
で定義されるしごき率(RI)は、一段のしごきで2乃
至60%、全体としてのしごきで20乃至85%の範囲
にあるのが望ましい。
Formula (6) R I = (t b −t s ) / t b × 100 (6) In the formula, t b is the thickness of the steel material before ironing, and t s is after ironing. Is the thickness of the steel material,
The ironing rate (R I ) defined by is preferably in the range of 2 to 60% in one step of ironing and 20 to 85% in the total ironing.

【0047】しごき加工に際して、図3に相当する寸法
及び形状のしごきポンチを使用し、ネックイン開始部乃
至その近傍の厚みが100乃至135μmで、しかもそ
のマイクロビッカース硬度が前記式を満足するようにし
ごき加工を行うのはいうまでもない。
At the time of ironing, an ironing punch having a size and shape corresponding to FIG. 3 is used, and the thickness of the neck-in start portion or its vicinity is 100 to 135 μm and the micro Vickers hardness thereof satisfies the above formula. It goes without saying that ironing is performed.

【0048】尚、しごき加工終了後カップの底打ちを行
って底部にドームを形成させておくのがよい。また、し
ごき加工に際して、しごきダイスと加工される側壁部と
を潤滑し且つこれを冷却するために、水性クーラントを
加工部分に吹き付けて加工を行うのがよい。水性クーラ
ントとしては、前述した潤滑剤を、界面活性剤と共に水
性媒体中に分散させ、乳化させたものが使用される。あ
るいは合成エステルなどの水溶性のクーラントも使用さ
れる。
After the ironing process is completed, the cup is preferably bottomed to form a dome on the bottom. Further, at the time of ironing, in order to lubricate and cool the ironing die and the side wall portion to be processed, it is preferable to spray an aqueous coolant on the processed portion for processing. As the aqueous coolant, the above-mentioned lubricant is dispersed in an aqueous medium together with a surfactant and emulsified. Alternatively, a water-soluble coolant such as synthetic ester is also used.

【0049】[後処理]得られる絞りしごきカップを、
ポンチから抜き取った後、脱脂洗浄等の前処理を行い、
次いで表面処理等の後処理を行うことができる。この表
面処理としては、缶の耐食性を向上させ、また塗料との
密着性を向上させるような燐酸処理、クロム酸処理、ジ
ルコン酸処理、タンニン酸やアクリル樹脂等の水溶性高
分子による処理が挙げられる。絞りしごき缶の表面処理
は、この缶に処理液をスプレーすることにより容易に行
われる。処理後の缶を水洗し乾燥して、以下に示す塗装
処理を行う。
[Post-treatment] The obtained squeezed ironing cup is
After removing from the punch, perform pretreatment such as degreasing cleaning,
Then, a post-treatment such as surface treatment can be performed. Examples of this surface treatment include phosphoric acid treatment, chromic acid treatment, zirconic acid treatment, and treatment with a water-soluble polymer such as tannic acid and acrylic resin, which improve the corrosion resistance of the can and also improve the adhesion to the paint. To be The surface treatment of the squeezed and ironed can is easily performed by spraying the treatment liquid on the can. After the treatment, the can is washed with water, dried, and subjected to the following coating treatment.

【0050】保護塗料としては、熱硬化性及び熱可塑性
樹脂から成る任意の保護塗料:例えば、フェノール−エ
ポキシ塗料、アミノ−エポキシ塗料等の変性エポキシ塗
料;例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニ
ル−酢酸ビニル共重合体部分ケン化物、塩化ビニル−酢
酸ビニル−無水マレイン酸共重合体、エポキシ変性−、
エポキシアミノ変性−或はエポキシフェノール変性−ビ
ニル塗料等のビニルまたは変性ビニル塗料;アクリル樹
脂系塗料;スチレン−ブタジエン系共重合体等の合成ゴ
ム系塗料等の単独または2種以上の組合せが使用され
る。スチールに対する密着性と耐腐食性の点では、塗膜
形成性樹脂成分の一部としてエポキシ成分を含む塗料が
好ましい。
As the protective coating, any protective coating composed of thermosetting and thermoplastic resins: modified epoxy coating such as phenol-epoxy coating, amino-epoxy coating and the like; vinyl chloride-vinyl acetate copolymer, chloride Vinyl-vinyl acetate copolymer partially saponified product, vinyl chloride-vinyl acetate-maleic anhydride copolymer, epoxy modified-,
Epoxyamino-modified or epoxyphenol-modified vinyl or modified vinyl coatings such as vinyl coatings; acrylic resin coatings; synthetic rubber coatings such as styrene-butadiene copolymers, or a combination of two or more thereof. It From the viewpoint of adhesion to steel and corrosion resistance, a paint containing an epoxy component as a part of the film-forming resin component is preferable.

【0051】これらの塗料は、エナメル或はラッカー等
の有機溶媒溶液の形で、或は水性分散液または水溶液の
形で、ローラ塗装、スプレー塗装、浸漬塗装、静電塗
装、電気泳動塗装等の形で金属素材に施す。勿論、前記
樹脂塗料が熱硬化性の場合には、必要により塗料を焼付
ける。
These paints are used in the form of an organic solvent solution such as enamel or lacquer, or in the form of an aqueous dispersion or aqueous solution, such as roller coating, spray coating, dip coating, electrostatic coating, electrophoretic coating and the like. Shaped on metal material. Of course, when the resin paint is thermosetting, the paint is baked if necessary.

【0052】保護塗装は、耐腐食性と加工性の見地か
ら、一般に2乃至30μm 、特に3乃至20μm の厚み
(乾燥状態)を有することが望ましい。また、塗装後の
缶の加工性を向上させるために、塗膜中に、各種滑剤を
含有させることもできる。
From the viewpoint of corrosion resistance and workability, the protective coating preferably has a thickness (dry state) of generally 2 to 30 μm, particularly 3 to 20 μm. Further, various lubricants may be contained in the coating film in order to improve the workability of the can after coating.

【0053】本発明のスチール製絞りしごき缶では、水
性塗料を用いることもできる。即ち、内面保護塗膜の形
成には、スプレー塗装が一般に使用されるが、水性塗料
を用いると、大気中への溶剤の揮散の問題がなく、環境
保全や公害防止の点で利点が奏せられる。水性塗料とし
ては、塗膜形成樹脂成分の少なくとも一部としてカルボ
キシル基含有アクリル樹脂成分及びエポキシ樹脂成分を
含有し、該アクリル樹脂成分のカルボキシル基がアンモ
ニウム塩またはアミン塩の形と成ることにより、該塗膜
形成樹脂成分がO/W型エマルジョン粒子の形で存在す
る乳化型熱硬化型水性塗料が好適に使用される。
In the steel squeezed ironing can of the present invention, an aqueous paint can be used. That is, spray coating is generally used to form the inner surface protective coating, but using a water-based coating does not have the problem of solvent volatilization into the atmosphere, and is advantageous in terms of environmental protection and pollution prevention. To be The water-based coating material contains a carboxyl group-containing acrylic resin component and an epoxy resin component as at least a part of the coating film forming resin component, and the carboxyl group of the acrylic resin component is in the form of an ammonium salt or an amine salt. An emulsion thermosetting water-based coating composition in which the coating film forming resin component is present in the form of O / W emulsion particles is preferably used.

【0054】塗料の焼き付けは、塗料の種類によっても
相違するが、一般に180乃至210℃の温度で、30
乃至120秒間程度行う。塗料の焼き付けには、熱風循
環炉、赤外線加熱炉等を用いることができる。
Although the baking of the paint varies depending on the kind of the paint, it is generally performed at a temperature of 180 to 210 ° C. for 30 hours.
It is performed for about 120 seconds. A hot air circulating furnace, an infrared heating furnace, or the like can be used for baking the paint.

【0055】[ネックイン加工]本発明によれば、この
ようにして得られた塗装缶胴にネックイン加工を行う。
ネックイン加工は、既に指摘したとおり、口絞り率が1
5%以上となるように、一段或いは多段で行う。この
際、ネックイン開始部乃至その近傍のマイクロビッカー
ス硬度が、前記式(1)及び(2)を満足する範囲とな
っていることが重要であることも既に指摘したとおりで
ある。口絞りには、ダイ絞り、ローラ絞りやへら絞りを
用いることができる。ネックイン加工に次いで、フラン
ジダイ或いはスピンロールを用いてフランジ加工等を行
って、最終缶胴とする。尚、ネックイン加工がローラ絞
りの場合、通常フランジ成形も同時に行なう。
[Neck-in Processing] According to the present invention, the thus-obtained coated can body is subjected to neck-in processing.
Neck-in processing, as already pointed out, has an aperture ratio of 1
It is carried out in one step or multiple steps so that it is 5% or more. At this time, it has already been pointed out that it is important that the micro Vickers hardness at or near the neck-in start portion is within a range that satisfies the above expressions (1) and (2). As the aperture stop, a die stop, a roller stop or a spatula stop can be used. Following neck-in processing, flange processing is performed using a flange die or a spin roll to obtain a final can body. When the neck-in processing is roller drawing, usually flange formation is also performed at the same time.

【0056】[0056]

【実施例】本発明を次の例で更に詳しく説明する。The present invention will be described in more detail by the following examples.

【0057】測定及び評価は、実施例・比較例を通じ、
次の条件で評価を行った。 1) 製缶時のフランジクラックによるアウト缶数 作製した絞りしごき缶1,000,000 缶をインラインのフラ
ンジクラック検出器で検査し、フランジクラックによる
アウト缶数で評価した。 2) 蓋巻締部耐腐食性評価 フランジクラック検出器を通した後の絞りしごき缶10
0缶にコカコーラを常法にて充填・巻締し、37℃に6
カ月正立(蓋が上方向)で保管したのち、蓋巻締部の缶
胴側の腐食点数を調査し、1缶当たりの腐食点数で表わ
した。 3) 密封性評価 フランジクラック検出器を通した後の絞りしごき缶1,
000缶にコカコーラを常法にて充填・巻締し、37℃
に1年間倒立(蓋が下方向)で保管したのち、蓋巻締部
から液が漏洩した缶数を調べた。
The measurement and evaluation were carried out through Examples and Comparative Examples.
The evaluation was performed under the following conditions. 1) Number of out cans due to flange cracks during can making 1,000,000 cans of drawn and ironed cans were inspected with an inline flange crack detector, and evaluated by the number of out cans due to flange cracks. 2) Corrosion resistance evaluation of the lid-wound portion Squeeze iron can 10 after passing through the flange crack detector
Coca-Cola is filled and wound in 0 cans at 6 ℃ at 37 ℃
After storing it upright (with the lid facing upward), the corrosion score on the can body side of the lid winding part was investigated and expressed as the corrosion score per can. 3) Sealability evaluation Squeeze iron can 1 after passing through the flange crack detector 1.
Coca-Cola in 000 cans is filled and wound in a conventional manner at 37 ° C.
After storing it upside down for 1 year (with the lid facing down), the number of cans in which the liquid leaked from the lid winding part was checked.

【0058】[実施例1−1]冷間圧延20%をした後
210℃5分の熱処理をしたときの断面マイクロビッカ
ース硬度が175、冷間圧延70%をした後210℃5
分の熱処理をしたときの断面マイクロビッカース硬度が
182となる特性の板厚0.220mmの極低炭素(炭
素量0.0015重量%、箱型焼鈍)鋼板上にすずめっ
きをし、E2.8/2.8のすずめっき鋼板(ぶりき)
を製造した。この鋼板を、ブランク径142mmにブラ
ンキング後、1st絞り(絞り比1.6)でカップを成
形後、再絞り(絞り比1.3)としごき成形(3工程)
及びドーム成形を行い、ネックイン開始部の板厚が0.
130mmである缶胴内径65.8mmの絞りしごきカ
ップを成形し、缶高さが123mmになるようにトリミ
ングし、洗浄乾燥した後、外面を印刷し加熱焼付した
後、内面をスプレー塗装し加熱焼付けし、その後、ネッ
ク相当部をダイネック方式で6段ネック形状の口絞り加
工で内径52.4mm(口絞り率20.4%)に縮径し
た後、フランジング加工し、再度内面をスプレー塗装し
加熱焼付けし、絞りしごき缶を作製した。
[Example 1-1] The micro Vickers hardness of the cross section when heat-treated at 210 ° C for 5 minutes after cold rolling 20% was 175, and after cold rolling was 70% 210 ° C 5
Minute ultra-low carbon (0.0015 wt% carbon, box type annealed) steel sheet having a thickness of 0.220 mm and having a cross-sectional micro-Vickers hardness of 182, is tin-plated with E2.8. /2.8 tin-plated steel plate (tin)
Was manufactured. After blanking this steel plate to a blank diameter of 142 mm, after forming a cup with 1st drawing (drawing ratio 1.6), redrawing (drawing ratio 1.3) and ironing (3 steps)
And dome molding was performed, and the plate thickness at the neck-in start part was 0.
A squeezing and ironing cup with an inner diameter of 130 mm, which is 65.8 mm, is molded, trimmed to a height of 123 mm, washed, dried, printed on the outer surface, heat-baked, and then spray-painted on the inner surface and baked. After that, the neck equivalent part is reduced to an inner diameter of 52.4 mm (narrowing ratio of 20.4%) by a 6-step neck-shaped necking process using a die-neck method, then flanged, and the inner surface is spray-coated again. It was heated and baked to make a squeezed ironing can.

【0059】このようにして得た絞りしごき缶につい
て、ネックイン開始部のマイクロビッカース硬度
(Y)、底接地部内側のマイクロビッカース硬度(X)
とネックイン開始部のマイクロビッカース硬度(Y)の
加算値(X+Y)、ネックイン開始部板厚、口絞り率な
どの測定値と、密封性評価、蓋巻締部耐腐食性評価、製
缶時のフランジクラックによるアウト缶数評価を行っ
た。その結果を表1に示す。
Regarding the drawn and ironed can thus obtained, the micro Vickers hardness (Y) at the neck-in start portion and the micro Vickers hardness (X) inside the bottom ground contact portion
And micro-Vickers hardness (Y) addition value at neck-in start part (X + Y), measured value of neck-in start part plate thickness, mouth draw ratio, etc., and evaluation of sealing property, corrosion resistance evaluation of lid wrapping part, can manufacturing The number of out cans was evaluated by the flange crack at that time. The results are shown in Table 1.

【0060】[実施例1−2〜1−6、比較例1−1〜
1−3]実施例1−2、1−3、1−4、1−5、1−
6、比較例1−1、1−2、1−3は、(冷間圧延20
%をした後210℃5分の熱処理をしたときの断面マイ
クロビッカース硬度、冷間圧延70%をした後210℃
5分の熱処理をしたときの断面マイクロビッカース硬
度)がそれぞれ(183,202)、(170,21
0)、(198,201)、(170,213)、(1
96,217)、(201,212)、(171,22
2)、(220,251)となる特性の板厚0.220
mmの鋼板上にすずめっきをし、E2.8/2.8のす
ずめっき鋼板(ぶりき)を製造したこと以外は実施例1
−1と同様にして絞りしごき缶を作製した。このときの
鋼板はそれぞれ、極低炭素(炭素量0.0022重量
%、連続焼鈍)鋼板、低炭素(炭素量0.037重量
%、連続焼鈍)鋼板、極低炭素(炭素量0.0032重
量%、連続焼鈍)鋼板、低炭素(炭素量0.032重量
%、連続焼鈍)鋼板、低炭素(炭素量0.040重量
%、連続焼鈍)鋼板、極低炭素(炭素量0.0044重
量%、連続焼鈍)鋼板、極低炭素(炭素量0.0032
重量%、連続焼鈍)鋼板、低炭素(炭素量0.051重
量%、連続焼鈍)鋼板である。このようにして得た絞り
しごき缶について、実施例1−1と同様にして、ネック
イン開始部のマイクロビッカース硬度(Y)、底接地部
内側のマイクロビッカース硬度(X)とネックイン開始
部のマイクロビッカース硬度(Y)の加算値(X+
Y)、ネックイン開始部板厚、口絞り率などの測定値
と、密封性評価、蓋巻締部耐腐食性評価、製缶時のフラ
ンジクラックによるアウト缶数評価を行った。その結果
を表1に示す。
[Examples 1-2 to 1-6, Comparative examples 1-1 to 1-1]
1-3] Examples 1-2, 1-3, 1-4, 1-5, 1-
6, Comparative Examples 1-1, 1-2, 1-3, (cold rolling 20
% Vickers hardness after heat treatment at 210 ° C. for 5 minutes, cold rolling 70% at 210 ° C.
The cross-sectional micro Vickers hardness after heat treatment for 5 minutes is (183, 202) and (170, 21), respectively.
0), (198, 201), (170, 213), (1
96,217), (201,212), (171,22)
2), plate thickness 0.220 with characteristics of (220, 251)
Example 1 except that an E2.8 / 2.8 tin-plated steel plate (tin plate) was produced by tin-plating on a steel plate of mm.
A squeezed ironing can was produced in the same manner as in -1. The steel sheets at this time were ultra-low carbon (carbon content 0.0022% by weight, continuous annealing) steel sheet, low carbon (carbon content 0.037% by weight, continuous annealing) steel sheet, and ultra-low carbon (carbon content 0.0032 weight%). %, Continuous annealing steel sheet, low carbon (carbon content 0.032% by weight, continuous annealing) steel sheet, low carbon (carbon content 0.040% by weight, continuous annealing) steel sheet, ultra-low carbon (carbon content 0.0044% by weight) , Continuous annealing steel plate, ultra-low carbon (carbon content 0.0032)
% By weight, continuous annealed steel sheet, and low carbon (amount of carbon 0.051% by weight, continuous annealed) steel sheet. Regarding the drawn and ironed can thus obtained, in the same manner as in Example 1-1, the micro Vickers hardness (Y) at the neck-in start portion, the micro Vickers hardness (X) at the inside of the bottom ground contact portion, and the neck-in start portion Micro Vickers hardness (Y) addition value (X +
Y), measured values such as the plate thickness at the neck-in start part and the drawing ratio, the sealing property evaluation, the corrosion resistance evaluation at the lid winding part, and the number of out cans due to flange cracks during can making were evaluated. The results are shown in Table 1.

【0061】[実施例2−1]実施例1−1と同じ(圧
延−硬度)特性をもつ板厚0.220mmの極低炭素
(炭素量0.0015重量%、箱型焼鈍)鋼板上にすず
めっきをし、E2.8/2.8のすずめっき鋼板(ぶり
き)を製造した。この鋼板をブランク径142mmにブ
ランキング後、1st絞り(絞り比1.6)でカップを
成形後、再絞り(絞り比1.3)としごき成形(3工
程)及びドーム成形を行い、ネックイン開始部の板厚が
0.100mmである缶胴内径65.8mmの絞りしご
きカップを成形し、缶高さが123mmになるようにト
リミングし、洗浄乾燥した後、外面を印刷し加熱焼付し
た後、内面をスプレー塗装し加熱焼付けし、その後、ネ
ック相当部をダイネック方式で2段ネック形状の口絞り
加工で内径60.0mm(口絞り率8.8%)に縮径し
た後、2段階のロールネック方式でスムース形状の内径
52.4mm(1段目の内径56.2mm、総口絞り率
20.4%)の縮径とフランジング加工を行い、再度内
面をスプレー塗装し加熱焼付けし、絞りしごき缶を作製
した。
Example 2-1 On an extremely low carbon (0.0015 wt% carbon amount, box-type annealed) steel sheet having a plate thickness of 0.220 mm and having the same (rolling-hardness) characteristics as in Example 1-1. Tinning was performed to produce an E2.8 / 2.8 tinned steel plate (tin plate). After blanking this steel plate to a blank diameter of 142 mm, after forming a cup with 1st drawing (drawing ratio 1.6), redrawing (drawing ratio 1.3), ironing (3 steps) and dome forming, neck-in After forming a squeezing and ironing cup with a can body inner diameter of 65.8 mm having a plate thickness of 0.100 mm at the starting portion, trimming so that the can height becomes 123 mm, washing and drying, printing the outer surface and heating and baking. , The inner surface is spray-painted and heat-baked, and then the neck equivalent part is reduced to an inner diameter of 60.0 mm (narrowing ratio of 8.8%) by a necking process with a two-step neck shape using a die-neck method. Roll-neck type smooth inner diameter 52.4mm (first step inner diameter 56.2mm, total aperture reduction ratio 20.4%) diameter reduction and flanging processing, spray coating the inner surface again and heat bake, Diaphragm Ironing was produced cans.

【0062】このようにして得た絞りしごき缶につい
て、実施例1−1と同様にして、ネックイン開始部のマ
イクロビッカース硬度(Y)、底接地部内側のマイクロ
ビッカース硬度(X)とネックイン開始部のマイクロビ
ッカース硬度(Y)の加算値(X+Y)、ネックイン開
始部板厚、口絞り率などの測定値と、密封性評価、蓋巻
締部耐腐食性評価、製缶時のフランジクラックによるア
ウト缶数評価を行った。その結果を表1に示す。
With respect to the drawn and ironed can thus obtained, in the same manner as in Example 1-1, the micro Vickers hardness (Y) at the neck-in start portion, the micro Vickers hardness (X) inside the bottom ground contact portion and the neck-in Micro Vickers hardness (Y) addition value (X + Y) at the start, measured values such as neck-in start part plate thickness, mouth draw ratio, etc., and sealability evaluation, lid wrapping part corrosion resistance evaluation, canning flange The number of out cans due to cracks was evaluated. The results are shown in Table 1.

【0063】[比較例2−1]ネック相当部の板厚が
0.095mmであること以外は、実施例2−1と同様
にして絞りしごき缶を作製した。このようにして得た絞
りしごき缶について、実施例1−1と同様にして、ネッ
クイン開始部のマイクロビッカース硬度(Y)、底接地
部内側のマイクロビッカース硬度(X)とネックイン開
始部のマイクロビッカース硬度(Y)の加算値(X+
Y)、ネックイン開始部の板厚、口絞り率などの測定値
と、密封性評価、蓋巻締部耐腐食性評価、製缶時のフラ
ンジクラックによるアウト缶数評価を行った。その結果
を表1に示す。
[Comparative Example 2-1] A drawn and ironed can was produced in the same manner as in Example 2-1 except that the plate thickness of the neck-corresponding portion was 0.095 mm. Regarding the drawn and ironed can thus obtained, in the same manner as in Example 1-1, the micro Vickers hardness (Y) at the neck-in start portion, the micro Vickers hardness (X) at the inside of the bottom ground contact portion, and the neck-in start portion Micro Vickers hardness (Y) addition value (X +
Y), measured values such as the plate thickness at the neck-in start portion and the draw ratio, the sealing property evaluation, the corrosion resistance evaluation of the lid winding portion, and the number of out cans due to the flange crack at the time of can making were evaluated. The results are shown in Table 1.

【0064】[実施例3−1]実施例1−1と同じ(圧
延−硬度)特性をもつ板厚0.220mmの極低炭素
(炭素量0.0015重量%、箱型焼鈍)鋼板上にすず
めっきをし、E2.8/2.8のすずめっき鋼板(ぶり
き)を製造し、ネック相当部をダイネック方式で5段ネ
ック形状の口絞り加工で内径54.90mm(口絞り率
16.6%)に縮径した事以外は、実施例1−1と同様
にして絞りしごき缶を作製した。
Example 3-1 On an extremely low carbon (0.0015% by weight carbon content, box-type annealed) steel sheet having a plate thickness of 0.220 mm and having the same (rolling-hardness) characteristics as in Example 1-1. Tin-plated E2.8 / 2.8 steel plate (tin plated) is tin-plated, and the neck-corresponding part is die-necked with a five-step neck-shaped necking process to obtain an inner diameter of 54.90 mm (ringing ratio 16. A squeezed iron can was produced in the same manner as in Example 1-1, except that the diameter was reduced to 6%.

【0065】このようにして得た絞りしごき缶につい
て、実施例1−1と同様にして、ネックイン開始部のマ
イクロビッカース硬度(Y)、底接地部内側のマイクロ
ビッカース硬度(X)とネックイン開始部のマイクロビ
ッカース硬度(Y)の加算値(X+Y)、ネックイン開
始部の板厚、口絞り率などの測定値と、密封性評価、蓋
巻締部耐腐食性評価、製缶時のフランジクラックによる
アウト缶数評価を行った。その結果を表1に示す。
With respect to the drawn and ironed can thus obtained, in the same manner as in Example 1-1, the micro Vickers hardness (Y) at the neck-in start portion, the micro Vickers hardness (X) inside the bottom ground contact portion and the neck-in Measured values such as added value (X + Y) of micro Vickers hardness (Y) at the start portion, plate thickness at the neck-in start portion, mouth draw ratio, etc. The number of out cans was evaluated by the flange crack. The results are shown in Table 1.

【0066】[実施例3−2]ネック相当部をダイネッ
ク方式で2段ネック形状の口絞り加工で内径60.0m
m(口絞り率8.8%)に縮径した後、2段階のロール
ネック方式でスムース形状の内径50.0mm(1段目
55.0mm、総口絞り率24.0%)に縮径した事以
外は実施例3−1と同様にして絞りしごき缶を作製し
た。
[Embodiment 3-2] The neck-corresponding portion is die-necked and the inner diameter is 60.0 m when the necking is performed in a two-stage neck shape
After reducing the diameter to m (perforation rate 8.8%), the diameter is reduced to 50.0 mm (first step 55.0 mm, total aperture rate 24.0%) with a smooth shape using a two-stage roll neck system. A squeezed and ironed can was produced in the same manner as in Example 3-1 except for the above.

【0067】このようにして得た絞りしごき缶につい
て、実施例1−1と同様にして、ネックイン開始部のマ
イクロビッカース硬度(Y)、底接地部内側のマイクロ
ビッカース硬度(X)とネックイン開始部のマイクロビ
ッカース硬度(Y)の加算値(X+Y)、ネックイン開
始部の板厚、口絞り率などの測定値と、密封性評価、蓋
巻締部耐腐食性評価、製缶時のフランジクラックによる
リジェクト数評価を行った。その結果を表1に示す。
With respect to the drawn and ironed can thus obtained, in the same manner as in Example 1-1, the micro Vickers hardness (Y) at the neck-in start portion, the micro Vickers hardness (X) inside the bottom ground contact portion and the neck-in Measured values such as added value (X + Y) of micro Vickers hardness (Y) at the start portion, plate thickness at the neck-in start portion, mouth draw ratio, etc. The number of rejects due to the flange crack was evaluated. The results are shown in Table 1.

【0068】[実施例3−3]ネックイン開始部の板厚
を0.100mmにしたこと以外は、実施例3−2と同
様にして絞りしごき缶を作製した。このようにして得た
絞りしごき缶について、実施例1−1と同様にして、ネ
ックイン開始部のマイクロビッカース硬度(Y)、底接
地部内側のマイクロビッカース硬度(X)とネックイン
開始部のマイクロビッカース硬度(Y)の加算値(X+
Y)、ネックイン開始部の板厚、口絞り率などの測定値
と、密封性評価、蓋巻締部耐腐食性評価、製缶時のフラ
ンジクラックによるリジェクト数評価を行った。その結
果を表1に示す。
[Example 3-3] A drawn and ironed can was produced in the same manner as in Example 3-2 except that the plate thickness of the neck-in start portion was set to 0.100 mm. Regarding the drawn and ironed can thus obtained, in the same manner as in Example 1-1, the micro Vickers hardness (Y) at the neck-in start portion, the micro Vickers hardness (X) at the inside of the bottom ground contact portion, and the neck-in start portion Micro Vickers hardness (Y) addition value (X +
Y), the measured values such as the plate thickness at the neck-in start portion and the mouth-drawing ratio, the sealability evaluation, the lid-wrapping portion corrosion resistance evaluation, and the number of rejects due to flange cracks during can making were performed. The results are shown in Table 1.

【0069】[0069]

【表1】 [Table 1]

【0070】実施例1−1〜1−6,2−1,3−1〜
3−3、比較例1−1〜1−3,2−1から、スチール
板を絞りしごき加工し、且つ巻締用口部を小径にネック
イン加工して成るスチール製絞りしごき缶において、口
絞り率が15%以上であり、ネックイン開始部の板厚が
100乃至135μmの範囲にあり、かつネックイン開
始部のマイクロビッカース硬度Y及び底接地部内側のマ
イクロビッカース硬度Xが式 X+Y≦430 Y≦240 で規定される範囲内にあることを特徴とするスチール製
絞りしごき缶は、密封性に優れ、巻締部の腐食性が少な
く、製缶時のフランジクラック性に優れることが分か
る。
Examples 1-1 to 1-6, 2-1, 3-1 to
3-3, from Comparative Examples 1-1 to 1-3 and 2-1, a steel drawn and ironed can formed by drawing and ironing a steel plate and necking the winding mouth into a small diameter. The drawing ratio is 15% or more, the plate thickness at the neck-in start portion is in the range of 100 to 135 μm, and the micro-Vickers hardness Y at the neck-in start portion and the micro-Vickers hardness X at the inside of the bottom ground contact portion are expressed by the formula X + Y ≦ 430. It can be seen that the steel drawn and ironed can, which is characterized by being in the range defined by Y ≦ 240, has excellent sealing property, less corrosiveness at the winding portion, and excellent flange cracking property during can making.

【0071】また、これらの缶品質は、 X+Y≦410 Y≦230 で規定される範囲内で特に優れることが分かる。Further, it can be seen that the quality of these cans is particularly excellent within the range defined by X + Y ≦ 410 Y ≦ 230.

【0072】実施例と比較例を図1に示す。○△×の評
点基準は次の通りである。
FIG. 1 shows an example and a comparative example. The evaluation criteria for ○ △ x are as follows.

【0073】[0073]

【発明の効果】本発明によれば、以上により、ネックイ
ン加工部の厚みが薄肉でしかも巻締用口部が小径にネッ
クイン加工されていながら、ネックイン加工の際のしわ
の発生や、フランジ加工や巻締加工の際のフランジ割れ
(フランジクラック)が防止され、その結果として密封
性及び蓋巻締部耐腐食性の組み合わせに優れたスチール
製絞りしごき缶が得られる。また、ネックイン加工部を
薄肉化することで、缶の軽量化と素材コストの低減とが
可能となり、またしごき後のポンチからの抜き取りも容
易であるなど、作業性の点でも多くの利点が達成され
る。
As described above, according to the present invention, wrinkles are generated during neck-in processing even though the thickness of the neck-in processing portion is thin and the tightening mouth portion is neck-in processed to have a small diameter. Flange cracks (flange cracks) at the time of flanging and winding are prevented, and as a result, a steel drawn and ironed can having excellent sealing performance and corrosion resistance of the lid winding portion can be obtained. In addition, by reducing the thickness of the neck-in processing part, it is possible to reduce the weight of the can and reduce the material cost, and it is easy to remove it from the punch after ironing, so there are many advantages in terms of workability as well. To be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】底接地部内側のマイクロビッカース硬度(X)
を横軸、ネックイン開始部乃至その近傍のマイクロビッ
カース硬度(Y)を縦軸とし、最終絞りしごき缶の密封
性、蓋巻締部耐腐食性、耐フランジクラック性に対する
評価を、優(○)、良(△)及び不可(×)でプロット
したグラフである。
[Fig. 1] Micro Vickers hardness (X) inside the bottom ground contact part
Is the horizontal axis, and the vertical axis is the micro-Vickers hardness (Y) at or near the neck-in start portion and the vertical axis, and the final drawing and ironing can sealability, corrosion resistance at the lid-wrapping portion, and flange crack resistance are evaluated as excellent (○ ), Good (Δ) and bad (x).

【図2】本発明の絞りしごき缶の一例を示す一部断面側
面図である。
FIG. 2 is a partial cross-sectional side view showing an example of the squeezed ironing can of the present invention.

【図3】ネックイン加工前の缶胴の厚みの分布を拡大し
て示す拡大断面図である。
FIG. 3 is an enlarged cross-sectional view showing an enlarged distribution of the thickness of the can body before neck-in processing.

【符号の説明】[Explanation of symbols]

1 絞りしごき缶 2 底部 3 胴部 4 側壁部 5 ネックイン加工部 6 巻締用フランジ 7 縮径された口部 8 テーパ状の外周部 9 接地部 10 テーパ状の内周部 11 ドーム部 12 ネックイン加工部 13 テーパ部 1 Squeeze ironing can 2 Bottom part 3 Body part 4 Side wall part 5 Neck-in processing part 6 Clamping flange 7 Reduced diameter part 8 Tapered outer peripheral part 9 Grounding part 10 Taper inner peripheral part 11 Dome part 12 Neck IN processing part 13 Tapered part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 スチール板を絞りしごき加工し、且つ巻
締用口部を小径にネックイン加工して成るスチール製絞
りしごき缶において、口絞り率が15%以上であり、ネ
ックイン開始部乃至その近傍の板厚が100乃至135
μmの範囲にあり、かつネックイン開始部乃至その近傍
のマイクロビッカース硬度(Y)及び底接地部内側のマ
イクロビッカース硬度(X)が式 X+Y ≦ 430 及び Y ≦ 240 で規定される範囲内にあることを特徴とする密封性、蓋
巻締部耐腐食性、耐フランジクラック性に優れたスチー
ル製絞りしごき缶。
1. A steel drawn and ironed can obtained by drawing and ironing a steel plate and necking-in a winding mouth into a small diameter, wherein the draw ratio is 15% or more, and the neck-in starting part or The plate thickness in the vicinity is 100 to 135
μm, and the micro Vickers hardness (Y) at or near the neck-in start portion and the micro Vickers hardness (X) inside the bottom ground contact portion are within the ranges specified by the formulas X + Y ≦ 430 and Y ≦ 240. A steel squeezing and ironing can with excellent sealing performance, corrosion resistance at the lid wrapping area, and flange crack resistance.
【請求項2】 スチール板を絞りしごき加工し、且つ巻
締用口部を小径にネックイン加工して成るスチール製絞
りしごき缶において、口絞り率が15%以上であり、ネ
ックイン開始部乃至その近傍の板厚が100乃至135
μmの範囲にあり、かつネックイン開始部乃至その近傍
のマイクロビッカース硬度(Y)及び底接地部内側のマ
イクロビッカース硬度(X)が式 X+Y ≦ 410 及び Y ≦ 230 で規定される範囲内にあることを特徴とする密封性、蓋
巻締部耐腐食性、耐フランジクラック性に優れたスチー
ル製絞りしごき缶。
2. A steel drawn and ironed can obtained by drawing and ironing a steel plate and necking-in a winding mouth into a small diameter, wherein the draw ratio is 15% or more, and the neck-in starting portion or The plate thickness in the vicinity is 100 to 135
μm, and the micro Vickers hardness (Y) at or near the neck-in start portion and the micro Vickers hardness (X) inside the bottom ground contact portion are within the ranges defined by the formulas X + Y ≦ 410 and Y ≦ 230. A steel squeezing and ironing can with excellent sealing performance, corrosion resistance at the lid wrapping area, and flange crack resistance.
【請求項3】 スチール板が極低炭素鋼板で、含有炭素
量が0.0005乃至0.0080重量%である請求項
1,2のスチール製絞りしごき缶。
3. The steel drawn and ironing can according to claim 1, wherein the steel plate is an ultra-low carbon steel plate and the carbon content is 0.0005 to 0.0080% by weight.
【請求項4】 スチール板が低炭素鋼板で、含有炭素量
が0.010乃至0.060重量%である請求項1,2
のスチール製絞りしごき缶。
4. The steel plate is a low carbon steel plate, and the carbon content is 0.010 to 0.060% by weight.
Steel squeezing ironing can.
【請求項5】 ネックイン開始部板厚が100乃至13
0μmであり、かつ缶胴部板厚が50乃至75μmであ
る請求項3,4のスチール製絞りしごき缶。
5. The neck-in starting portion has a plate thickness of 100 to 13.
The drawn and ironed can made of steel according to claim 3, having a thickness of 0 μm and a can body plate thickness of 50 to 75 μm.
【請求項6】 スチール板の元板厚が0.17乃至0.
23mmである請求項5のスチール製絞りしごき缶。
6. The original thickness of the steel plate is 0.17 to 0.
The steel squeezed ironing can of claim 5 having a size of 23 mm.
JP6334194A 1994-03-31 1994-03-31 Iron drawn iron can Expired - Fee Related JP2748856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334194A JP2748856B2 (en) 1994-03-31 1994-03-31 Iron drawn iron can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334194A JP2748856B2 (en) 1994-03-31 1994-03-31 Iron drawn iron can

Publications (2)

Publication Number Publication Date
JPH07267237A true JPH07267237A (en) 1995-10-17
JP2748856B2 JP2748856B2 (en) 1998-05-13

Family

ID=13226449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334194A Expired - Fee Related JP2748856B2 (en) 1994-03-31 1994-03-31 Iron drawn iron can

Country Status (1)

Country Link
JP (1) JP2748856B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130609A1 (en) * 2017-12-28 2019-07-04 大和製罐株式会社 Aerosol can body having corrugated machined part on trunk part and method for manufacturing aerosol can body
WO2023084891A1 (en) * 2021-11-09 2023-05-19 東洋製罐グループホールディングス株式会社 Resin-coated aluminum-alloy drawn-and-ironed can

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225156A1 (en) 2020-05-07 2021-11-11 東洋製罐株式会社 Can container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130609A1 (en) * 2017-12-28 2019-07-04 大和製罐株式会社 Aerosol can body having corrugated machined part on trunk part and method for manufacturing aerosol can body
CN111770885A (en) * 2017-12-28 2020-10-13 大和制罐株式会社 Aerosol can body having uneven processed portion in main body portion, and method for manufacturing same
JPWO2019130609A1 (en) * 2017-12-28 2021-01-07 大和製罐株式会社 Aerosol can body having uneven processing part on the body and its manufacturing method
EP3733554A4 (en) * 2017-12-28 2021-09-15 Daiwa Can Company Aerosol can body having corrugated machined part on trunk part and method for manufacturing aerosol can body
WO2023084891A1 (en) * 2021-11-09 2023-05-19 東洋製罐グループホールディングス株式会社 Resin-coated aluminum-alloy drawn-and-ironed can

Also Published As

Publication number Publication date
JP2748856B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US5179854A (en) Process for production of draw-ironed can
US5105645A (en) Method of redrawing metal cup
US4962659A (en) Redrawing method
JPH0422519A (en) Thinned wall drawn can
US5360649A (en) Thickness-reduced draw-formed can
US4762245A (en) Easy-open can lid
US4541546A (en) Draw-ironed metal vessel having circumferential side seam
EP0688615B1 (en) Containers
JP2748856B2 (en) Iron drawn iron can
US4454960A (en) Draw-ironed can formed of surface-treated steel plate and process for preparation thereof
JPH01178325A (en) Forming method for can barrel of two-piece can
Matsubayashi Metal containers
JP2640057B2 (en) Single side coated steel sheet for DI can
EP0109986B1 (en) Draw-ironed metal vessel having circumferential side seam
JPH02219743A (en) Can cylinder for two-piece can and its manufacture
JP3571753B2 (en) High-rigidity surface-treated thin steel sheet for drawing or drawing and ironing cans
JPH0890119A (en) Lightweight steel can having excellent flange formability and strength
JPH04235295A (en) Steel sheet for di can excellent in printability on the outside face of can and rusting resistance
JPH04365893A (en) Fluororesin composite plated steel sheet for di can
KR810002141B1 (en) Anti-buckling seamless container
KR20060053839A (en) 3-piece steel can and fabrication method thereof
JPH0230526A (en) Steel sheet for can and can lid, can body and can lid
JPH04365892A (en) Fluororesin composite plated steel sheet for di can excellent in printing property of outer surface and rust preventing property
JPH04154986A (en) Plated steel sheet for di can and its production
JPH04128385A (en) Drawn and ironed can made of tin plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees