JPH07265787A - Static coating method for resin molding - Google Patents

Static coating method for resin molding

Info

Publication number
JPH07265787A
JPH07265787A JP5710994A JP5710994A JPH07265787A JP H07265787 A JPH07265787 A JP H07265787A JP 5710994 A JP5710994 A JP 5710994A JP 5710994 A JP5710994 A JP 5710994A JP H07265787 A JPH07265787 A JP H07265787A
Authority
JP
Japan
Prior art keywords
alkylene oxide
complex
resin molded
oxide derivative
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5710994A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiraiwa
徹男 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP5710994A priority Critical patent/JPH07265787A/en
Publication of JPH07265787A publication Critical patent/JPH07265787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide a static coating method of superior coating properties, superior adhesiveness and superior productivity which generates no physical and coloring problems for a resin molding. CONSTITUTION:A coating material having charge on a molding is sprayed and made to adhere, after a complex composed of 2-6C alkylene oxide derivative having number-average molecular weight of 150-30,000 and containing 4-30C alkyl, alkenyl aryl or alkyl aryl at least on one end of a molecular terminal and soluble electrytic salt is kneaded into a molding raw material, and a molding surface prepared by forming a kneaded matter is corona discharge treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂成形体の静電塗装
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrostatically coating resin moldings.

【0002】[0002]

【従来の技術】従来の樹脂成形体の静電塗装方法として
は、例えば特開昭50−66538号公報記載のよう
に、樹脂成形体表面に、導電性金属粉末を含有した導電
塗料を塗布する等して導電性のプライマ−層を形成し導
電性を付与した後、静電塗装を行う方法、またはカーボ
ンブラック、カーボンファイバー、導電性マイカ等の無
機質系導電物質を樹脂成形体原料に練り込んだ後成形
し、静電塗装を行う方法等がある。
2. Description of the Related Art As a conventional electrostatic coating method for a resin molded body, a conductive coating material containing a conductive metal powder is applied to the surface of the resin molded body as described in, for example, JP-A-50-66538. Etc. to form a conductive primer layer to impart conductivity, and then electrostatically paint, or knead an inorganic conductive material such as carbon black, carbon fiber, conductive mica into the raw material of the resin molded body. After that, it can be molded and then electrostatically coated.

【0003】しかしながら、特開昭50−66538号
公報記載のように、樹脂成形体表面に導電性プライマ−
層を形成する場合には、樹脂成形体表面と表面に塗布し
た導電性プライマ−との密着性が悪く、これを改良する
ためには多種類の導電性プライマ−層を多層にわたって
形成せざるを得なくなり、このことから導電性や生産性
に問題を生ずるだけでなく、導電性プライマ−の多種類
使用による塗布の際のロスやコスト面にも問題があっ
た。
However, as described in JP-A-50-66538, a conductive primer is formed on the surface of a resin molding.
When forming a layer, the adhesion between the surface of the resin molded body and the conductive primer applied to the surface is poor, and in order to improve this, it is necessary to form many kinds of conductive primer layers in multiple layers. As a result, there is a problem not only in terms of conductivity and productivity, but also in loss and cost during coating due to the use of many kinds of conductive primers.

【0004】さらにカーボンブラック、カーボンファイ
バー、導電性マイカ等の無機質系導電物質を練り込んで
静電塗装を行う場合には、これらの物質を樹脂成形体原
料に多量に練り込まざるを得ないため、樹脂成形体の物
質劣化が起こりやすく、また樹脂成形体の着色により静
電塗装表面の色相に影響する等の問題点があった。
Further, when an inorganic conductive material such as carbon black, carbon fiber or conductive mica is kneaded to perform electrostatic coating, a large amount of these materials must be kneaded into the raw material of the resin molding. However, there is a problem that the resin molded body is apt to be deteriorated in substance and that the coloring of the resin molded body affects the hue of the electrostatically coated surface.

【0005】また最近、特開平3−101875号公報
によって、ポリオキシアルキレンポリオ−ルと可溶性電
解質塩との錯体を樹脂成形体原料に練り込み、その混練
物を成形し得られた成形体表面をプラズマ処理した後、
静電塗装する方法が開示されたが、この方法はプラズマ
処理がバッチ式のため、生産性に劣り、さらに減圧下で
成形品を処理しなければならないという問題点があっ
た。
Further, recently, according to Japanese Patent Application Laid-Open No. 3-101875, a complex of polyoxyalkylene polyol and a soluble electrolyte salt was kneaded into a resin molded material, and the kneaded product was molded to obtain a molded product surface. After plasma treatment,
Although a method of electrostatic coating has been disclosed, this method has a problem in that the plasma treatment is a batch method, so that the productivity is inferior and the molded product must be treated under reduced pressure.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来法の欠点を解消し、樹脂成形体の物性及び着色に問
題を生ずることなく、塗着性及び付着性に優れ、かつ生
産性に優れた静電塗装方法を提供することである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional method, does not cause a problem in the physical properties and coloration of the resin molded product, is excellent in the coating property and the adhesive property, and has a high productivity. To provide an excellent electrostatic coating method.

【0007】[0007]

【課題を解決するための手段】本発明では、特定のアル
キレンオキシド誘導体を樹脂成形体原料に練り込み、成
形した後に成形体表面をコロナ放電処理し、成形体表面
を静電塗装特性に適したものに改質しうることを見出
し、上記課題を解決した。
In the present invention, a specific alkylene oxide derivative is kneaded into a raw material for a resin molded body, and after molding, the surface of the molded body is subjected to corona discharge treatment to make the surface of the molded body suitable for electrostatic coating characteristics. The inventors have found that it can be modified into one, and have solved the above problems.

【0008】すなわち、本発明は、(イ)数平均分子量
が150〜30000で分子末端の少なくとも一端に炭
素数4〜30のアルキル基、アルケニル基、アリール基
又はアルキルアリール基を有する炭素数2〜6のアルキ
レンオキシド誘導体とこれらに可溶性の電解質塩との錯
体を、(ロ)樹脂成形体原料に練り込み、その混練物を
成形し、得られた成形体表面をコロナ放電処理した後、
該成形体に荷電を有する塗料を噴霧、付着させることを
特徴とする樹脂成形体の静電塗装方法である。
That is, the present invention (a) has a number average molecular weight of 150 to 30,000 and an alkyl group having 4 to 30 carbon atoms, an alkenyl group, an aryl group or an alkylaryl group having 2 to 2 carbon atoms at least at one end of the molecule. The complex of the alkylene oxide derivative of 6 and an electrolyte salt soluble in these is kneaded into the (b) resin molded material, the kneaded product is molded, and the obtained molded product surface is subjected to corona discharge treatment,
An electrostatic coating method for a resin molded body, which comprises spraying and attaching a charged coating material to the molded body.

【0009】本発明で使用する錯体としては、前記のご
とく、炭素数2〜6のアルキレンオキシド誘導体とこれ
らに可溶性の電解質塩とから形成されるものが挙げられ
る。
Examples of the complex used in the present invention include those formed from an alkylene oxide derivative having 2 to 6 carbon atoms and an electrolyte salt soluble therein, as described above.

【0010】アルキレンオキシド誘導体としては、炭素
数4〜30の活性水素基含有化合物に、触媒存在下で炭
素数2〜6のアルキレンオキシドを単独付加重合または
それらの2種以上を共重合させ、生成物をイオン交換
法、中和濾過法もしくは吸着法などの一般的に知られる
精製法で処理して得られる化合物が挙げられる。
The alkylene oxide derivative is produced by homopolymerization of an alkylene oxide having 2 to 6 carbon atoms with a compound having an active hydrogen group having 4 to 30 carbon atoms in the presence of a catalyst, or copolymerization of two or more thereof. Examples thereof include compounds obtained by treating the substance with a generally known purification method such as an ion exchange method, a neutralization filtration method, or an adsorption method.

【0011】かかる炭素数4〜30の活性水素基含有化
合物としては、ブチルアルコール、ペンチルアルコー
ル、ヘキシルアルコール、オクチルアルコール、ドデシ
ルアルコール、ヘキサデシルアルコール、オクタデシル
アルコール等の炭素数4〜30のアルコール類、ノネニ
ルアルコール、デセニルアルコール、オクタデセニルア
ルコール等の炭素数4〜30のアルケニルアルコール
類、オクチルフェノール、ノニルフェノール、ジノニル
フェノール、ドデシルフェノールなどの炭素数4〜30
のフェノール類、オクチルアミン、ドデシルアミン、オ
クタデシルアミン等の炭素数4〜30のアルキルアミン
類、ベンジルアルコール、フェネチルアルコール等であ
るが、好ましくは炭素数8〜20、特に好ましくは炭素
数12〜18のアルキル基、アルケニル基、アリール
基、アルキルアリール基を有する活性水素基含有化合物
等が挙げられる。
Examples of the active hydrogen group-containing compound having 4 to 30 carbon atoms include alcohols having 4 to 30 carbon atoms such as butyl alcohol, pentyl alcohol, hexyl alcohol, octyl alcohol, dodecyl alcohol, hexadecyl alcohol and octadecyl alcohol, C4 to C30 alkenyl alcohols such as nonenyl alcohol, decenyl alcohol and octadecenyl alcohol, etc., C4 to C30 such as octylphenol, nonylphenol, dinonylphenol and dodecylphenol.
Of C4 to C30 alkylamines such as phenols, octylamine, dodecylamine and octadecylamine, benzyl alcohol, phenethyl alcohol and the like, but preferably 8 to 20 carbon atoms, particularly preferably 12 to 18 carbon atoms. And an active hydrogen group-containing compound having an alkyl group, an alkenyl group, an aryl group, or an alkylaryl group.

【0012】炭素数が4より小さいと錯体と樹脂成形体
原料との相溶性が悪く、錯体が樹脂成形体からブリード
アウトしやすくなるため、静電塗装後の塗膜に悪影響を
及ぼす可能性が高い。炭素数が30より大きいと、錯体
と樹脂成形体原料との相溶性がよくなり、錯体が樹脂成
形体表面に存在しにくくなり、コロナ処理の効果が小さ
くなるため、塗着効率が向上しにくい。
When the carbon number is less than 4, the compatibility between the complex and the raw material for the resin molded product is poor, and the complex easily bleeds out from the resin molded product, which may adversely affect the coating film after electrostatic coating. high. When the carbon number is more than 30, the compatibility between the complex and the raw material for the resin molded product is improved, the complex is less likely to exist on the surface of the resin molded product, and the effect of corona treatment is reduced, so that the coating efficiency is difficult to improve. .

【0013】炭素数2〜6のアルキレンオキシドとして
は、エチレンオキシド、プロピレンオキシド、1,2−
ブチレンオキシド、1,2−ヘキセンオキシド、シクロ
ヘキセンオキシド等が挙げられる。
Examples of the alkylene oxide having 2 to 6 carbon atoms include ethylene oxide, propylene oxide and 1,2-
Butylene oxide, 1,2-hexene oxide, cyclohexene oxide and the like can be mentioned.

【0014】アルキレンオキシド誘導体の数平均分子量
は150〜30000であり、好ましくは数平均分子量
が150〜10000、特に好ましくは数平均分子量が
150〜5000である。数平均分子量が30000を
越えると錯体と樹脂成形体原料との相溶性が良くなり、
錯体が樹脂成形体表面に存在しにくくなり、コロナ処理
の効果が小さくなるため塗着効率が向上しにくい。
The alkylene oxide derivative has a number average molecular weight of 150 to 30,000, preferably 150 to 10,000, and particularly preferably 150 to 5,000. When the number average molecular weight exceeds 30,000, the compatibility between the complex and the raw material for the resin molded body is improved,
It becomes difficult for the complex to exist on the surface of the resin molded body, and the effect of corona treatment becomes small, so that it is difficult to improve the coating efficiency.

【0015】錯体を形成するもう一つの成分である可溶
性の電解質塩としては、塩化リチウム、臭化リチウム、
臭化ナトリウム、ヨウ化リチウム、ヨウ化ナトリウム、
ヨウ化カリウム、硝酸リチウム、過塩素酸リチウム、過
塩素酸ナトリウム、チオシアン酸リチウム、チオシアン
酸ナトリウム、チオシアン酸カリウム、ホウフッカリチ
ウム等の無機イオン塩が挙げられる。
The soluble electrolyte salt which is another component forming the complex includes lithium chloride, lithium bromide,
Sodium bromide, lithium iodide, sodium iodide,
Examples thereof include inorganic ion salts such as potassium iodide, lithium nitrate, lithium perchlorate, sodium perchlorate, lithium thiocyanate, sodium thiocyanate, potassium thiocyanate, and lithium borofluoride.

【0016】錯体形成における電解質塩の添加量は、ア
ルキレンオキシド誘導体に対して0.1〜10重量%、
好ましくは0.5〜8重量%、特に好ましくは1〜5重
量%である。添加量が10重量%を超えると、導電性の
向上には好ましいが、樹脂との相溶性の点で物性劣化及
び表面ブリードが生じるので、大きな利点はなく、また
0.1重量%未満の場合、導電性の効果が認められな
い。
The amount of the electrolyte salt added in the complex formation is 0.1 to 10% by weight based on the alkylene oxide derivative.
It is preferably 0.5 to 8% by weight, particularly preferably 1 to 5% by weight. If the addition amount exceeds 10% by weight, it is preferable for improving the conductivity, but physical properties are deteriorated and surface bleeding occurs in terms of compatibility with the resin, so there is no great advantage, and if less than 0.1% by weight. , The effect of conductivity is not recognized.

【0017】錯体の調製は、予め、水、メタノール、メ
チルエチエチルケトン、テトラヒドロフラン、アセト
ン、塩化メチレン等の単独または混合溶媒に、可溶性電
解質塩を溶解させ、さらにこの溶液にアルキレンオキシ
ド誘導体を溶解させて、均一な溶液とした後、溶媒を除
去し、錯体を得る方法が好ましい。
The complex is prepared by dissolving the soluble electrolyte salt in water, methanol, methyl ethyl ethyl ketone, tetrahydrofuran, acetone, methylene chloride or the like alone or in a mixed solvent in advance, and further dissolving the alkylene oxide derivative in this solution. Then, a method is preferred in which, after forming a uniform solution, the solvent is removed to obtain a complex.

【0018】また錯体の添加量は、後述する樹脂成形体
原料に対して0.01〜10重量%、好ましくは0.0
5〜5重量%、特に好ましくは0.1〜3重量%であ
る。添加量が10重量%を超える場合、導電性の向上に
は好ましいが、樹脂との相溶性の点で物性劣化および表
面ブリードを生じるので、静電塗装後の塗膜に悪影響を
を及ぼす可能性が高く大きな利点はない。また0.01
重量%より少ない場合、導電性が悪くなる傾向があるた
め塗着効率が向上しにくい。
The amount of the complex added is 0.01 to 10% by weight, preferably 0.0
It is 5 to 5% by weight, particularly preferably 0.1 to 3% by weight. If the amount added exceeds 10% by weight, it is preferable for improving conductivity, but physical properties are deteriorated and surface bleeding occurs in terms of compatibility with the resin, which may adversely affect the coating film after electrostatic coating. High and no big advantage. Also 0.01
If the amount is less than wt%, the electroconductivity tends to deteriorate, and the coating efficiency is difficult to improve.

【0019】なお、錯体を樹脂成形体原料に練り込む際
には、本発明の効果を本質的に変えない限りに於いて、
他の種類の帯電防止剤や加工安定剤等を併用することも
できる。
When the complex is kneaded into the raw material of the resin molded body, as long as the effect of the present invention is not essentially changed,
Other types of antistatic agents, processing stabilizers and the like can also be used in combination.

【0020】本発明で使用する樹脂成形体原料として
は、ポリエチレン、ポリプロピレン、ゴム入りポリプロ
ピレン(エチレン−プロピレン系共重合ゴム含有)等の
ポリオレフィン樹脂、ABS樹脂、アクリル樹脂、ポリ
アミド樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹
脂、ポリアセタール樹脂、フェノール樹脂等の表面抵抗
値の高い樹脂が挙げられる。
The resin molding material used in the present invention includes polyolefin resins such as polyethylene, polypropylene and rubber-containing polypropylene (containing ethylene-propylene copolymer rubber), ABS resins, acrylic resins, polyamide resins, polyvinyl chloride resins. , A resin having a high surface resistance value such as a polycarbonate resin, a polyacetal resin, and a phenol resin.

【0021】上記の錯体を樹脂成形体原料に練り込む方
法としては、二軸式押出し機式、熱ロール式等の一般的
に用いられる方法が、また成形方法としては射出成形、
カレンダー加工、圧縮成形、SMC法等の方法が、いず
れも使用できる。
As a method of kneading the above complex into a raw material for a resin molded body, a commonly used method such as a twin-screw extruder type or a hot roll type is used, and a molding method is injection molding,
Any method such as calendering, compression molding and SMC method can be used.

【0022】樹脂成形体のコロナ放電処理としては、常
圧において2つの導体間に高周波電源により高電圧を印
加すると発生する現象を利用するもので、いわゆる発生
したコロナを被処理物(成形体)の表面に接触させる方
法である。
The corona discharge treatment of the resin molded body utilizes a phenomenon that occurs when a high voltage is applied between two conductors at normal pressure by a high frequency power source. The so-called generated corona is treated as an object (molded body). It is a method of contacting the surface of.

【0023】コロナ放電処理条件は、コロナ放電が発生
する条件であればよく、例えば印加電圧が10〜50K
V、処理時間100秒以下である。なお、実質的には、
非処理物である樹脂成形体の表面抵抗がコロナ放電処理
により小さくなればよく(1014Ω未満)、そのような
条件を満たすコロナ放電処理装置であればどんな装置で
あってもかまわない。
Corona discharge treatment conditions may be such that corona discharge occurs, for example, an applied voltage of 10 to 50K.
V, processing time is 100 seconds or less. Note that, in effect,
It suffices that the surface resistance of the non-treated resin molded product is reduced by corona discharge treatment (less than 10 14 Ω), and any device may be used as long as it satisfies such a condition.

【0024】次に静電塗装方法としては、電気遠心力エ
ア、エアレス霧化式塗装機等による方法がいずれも使用
でき、印加電圧は−30KV〜−120KV程度であ
る。また、この時の塗料としては、ウレタン系、アクリ
ル系、アルキッド系、メラミン系等、通常の塗料がいず
れも使用できる。
Next, as the electrostatic coating method, a method using electric centrifugal air, an airless atomizing type coating machine or the like can be used, and the applied voltage is about -30 KV to -120 KV. Further, as the coating material at this time, any ordinary coating material such as urethane type, acrylic type, alkyd type and melamine type can be used.

【0025】[0025]

【作用】本発明の方法で得た樹脂成形体は、樹脂に練り
込まれた錯体中の可溶性電解質塩のカチオン及びアニオ
ンが、アルキレンオキシド誘導体内のエ−テル結合酸素
を介して移動可能であるため、樹脂にイオン伝導性が生
じ、その結果、表面抵抗値が低下し、さらに成形後のコ
ロナ放電処理による表面改質効果と相乗効果を発揮し、
従来にない塗着性に優れた静電塗装を可能にする。
In the resin molded product obtained by the method of the present invention, the cation and anion of the soluble electrolyte salt in the complex kneaded into the resin can move through the ether-bonded oxygen in the alkylene oxide derivative. Therefore, ionic conductivity is generated in the resin, as a result, the surface resistance value is lowered, and further exhibits a synergistic effect with the surface modification effect by the corona discharge treatment after molding,
It enables electrostatic coating with excellent coating properties that has never been seen before.

【0026】[0026]

【実施例】【Example】

製造例1.ドデシルアルコール186gを出発物質と
し、触媒に水酸化カリウムを用いて、常法によりエチレ
オキシド90gを逐次導入した後、脱塩精製を行ない、
数平均分子量270(水酸基値より算出)のアルキレン
オキシド誘導体260gを得た。このアルキレンオキシ
ド誘導体100g中に、過塩素酸リチウム3gをメタノ
ール20gに溶解した溶液を加え、撹拌して均一な溶液
とした後、該溶液中のメタノールを減圧トッピングして
錯体を得た。
Production Example 1. Using 186 g of dodecyl alcohol as a starting material, potassium hydroxide as a catalyst, and successively introducing 90 g of ethylene oxide by a conventional method, desalting and refining were carried out.
260 g of an alkylene oxide derivative having a number average molecular weight of 270 (calculated from a hydroxyl value) was obtained. A solution prepared by dissolving 3 g of lithium perchlorate in 20 g of methanol was added to 100 g of this alkylene oxide derivative and stirred to obtain a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0027】製造例2.ドデシルアルコール186gを
出発物質とし、触媒に水酸化カリウムを用いて、常法に
よりエチレオキシド520gを逐次導入した後、脱塩精
製を行ない、数平均分子量700(水酸基値より算出)
のアルキレンオキシド誘導体690gを得た。このアル
キレンオキシド誘導体100g中に、過塩素酸リチウム
3gをメタノール20gに溶解した溶液を加え、撹拌し
て均一な溶液とした後、該溶液中のメタノールを減圧ト
ッピングして錯体を得た。
Production Example 2. Starting from 186 g of dodecyl alcohol and using potassium hydroxide as a catalyst, 520 g of ethylene oxide was successively introduced by a conventional method, followed by desalting and refining to obtain a number average molecular weight of 700 (calculated from a hydroxyl value).
690 g of the alkylene oxide derivative of A solution prepared by dissolving 3 g of lithium perchlorate in 20 g of methanol was added to 100 g of this alkylene oxide derivative and stirred to obtain a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0028】製造例3.ドデシルアルコール186gを
出発物質とし、触媒に水酸化カリウムを用いて、常法に
よりエチレオキシド500g、プロピレンオキシド65
0gを逐次導入した後、脱塩精製を行ない、数平均分子
量1200(水酸基値より算出)のアルキレンオキシド
誘導体1180gを得た。このアルキレンオキシド誘導
体100g中に、過塩素酸リチウム3gをメタノール2
0gに溶解した溶液を加え、撹拌して均一な溶液とした
後、該溶液中のメタノールを減圧トッピングして錯体を
得た。
Production Example 3. Using 186 g of dodecyl alcohol as a starting material and potassium hydroxide as a catalyst, 500 g of ethylene oxide and 65 g of propylene oxide were prepared by a conventional method.
After successively introducing 0 g, desalting and purification were carried out to obtain 1180 g of an alkylene oxide derivative having a number average molecular weight of 1200 (calculated from a hydroxyl value). To 100 g of this alkylene oxide derivative, 3 g of lithium perchlorate was added to 2 parts of methanol.
After adding a solution dissolved in 0 g and stirring to make a uniform solution, methanol in the solution was topped under reduced pressure to obtain a complex.

【0029】製造例4.ドデシルアルコール186gを
出発物質とし、触媒に水酸化カリウムを用いて、常法に
より1,2−ブチレンオキシド1400g、エチレオキ
シド700gを逐次導入した後、脱塩精製を行ない、数
平均分子量2000(水酸基値より算出)のアルキレン
オキシド誘導体1940gを得た。このアルキレンオキ
シド誘導体100g中に、チオシアン酸ナトリウム3g
をメタノール20gに溶解した溶液を加え、撹拌して均
一な溶液とした後、該溶液中のメタノールを減圧トッピ
ングして錯体を得た。
Production Example 4. Starting from 186 g of dodecyl alcohol and using potassium hydroxide as a catalyst, 1,400 g of 1,2-butylene oxide and 700 g of ethylene oxide were successively introduced by a conventional method, followed by desalting and refining to obtain a number average molecular weight of 2000 (hydroxyl value. 1940 g of alkylene oxide derivative (calculated from the above) was obtained. 3 g of sodium thiocyanate in 100 g of this alkylene oxide derivative
Was added to 20 g of methanol, and the mixture was stirred to form a uniform solution. Then, methanol in the solution was topped under reduced pressure to obtain a complex.

【0030】製造例5.n−ブチルアルコール65gを
出発物質とし、触媒に水酸化カリウムを用いて、常法に
より1,2−ブチレンオキシド60gとエチレオキシド
60gを混合してから、逐次導入後、脱塩精製を行な
い、数平均分子量170(水酸基値より算出)のアルキ
レンオキシド誘導体160gを得た。このアルキレンオ
キシド誘導体100g中に、過塩素酸リチウム5gをメ
タノール20gに溶解した溶液を加え、撹拌して均一な
溶液とした後、該溶液中のメタノールを減圧トッピング
して錯体を得た。
Production Example 5. Using 65 g of n-butyl alcohol as a starting material and potassium hydroxide as a catalyst, 60 g of 1,2-butylene oxide and 60 g of ethylene oxide were mixed by a conventional method, and after the successive introduction, desalting and purification were carried out. 160 g of an alkylene oxide derivative having an average molecular weight of 170 (calculated from the hydroxyl value) was obtained. A solution prepared by dissolving 5 g of lithium perchlorate in 20 g of methanol was added to 100 g of this alkylene oxide derivative and stirred to form a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0031】製造例6.オクタデシルアルコール270
gを出発物質とし、触媒に水酸化カリウムを用いて、常
法によりエチレンオキシド3000g、プロピレンオキ
シド1000g、1,2−ヘキセンオキシド500gを
逐次導入した後、脱塩精製を行ない、数平均分子量45
00(水酸基値より算出)のアルキレンオキシド誘導体
4450gを得た。このアルキレンオキシド誘導体10
0g中に、過塩素酸リチウム7gをメタノール20gに
溶解した溶液を加え、撹拌して均一な溶液とした後、該
溶液中のメタノールを減圧トッピングして錯体を得た。
Production Example 6. Octadecyl alcohol 270
g was used as a starting material, potassium hydroxide was used as a catalyst, and 3000 g of ethylene oxide, 1000 g of propylene oxide and 500 g of 1,2-hexene oxide were successively introduced by a conventional method, followed by desalting and refining to give a number average molecular weight of 45.
4450 g of an alkylene oxide derivative of 00 (calculated from the hydroxyl value) was obtained. This alkylene oxide derivative 10
A solution obtained by dissolving 7 g of lithium perchlorate in 20 g of methanol was added to 0 g, and the mixture was stirred to make a uniform solution. Then, methanol in the solution was topped under reduced pressure to obtain a complex.

【0032】製造例7.オクタデシルアルコール27g
を出発物質とし、触媒に水酸化カリウムを用いて、常法
により1,2−ヘキセンオキシド100g、1,2−ブ
チレンオキシド200g、エチレンオキシド650gを
逐次導入した後、脱塩精製を行ない、数平均分子量90
00(水酸基値より算出)のアルキレンオキシド誘導体
925gを得た。このアルキレンオキシド誘導体100
g中に、過塩素酸リチウム3gをメタノール20gに溶
解した溶液を加え、撹拌して均一な溶液とした後、該溶
液中のメタノールを減圧トッピングして錯体を得た。
Production Example 7. Octadecyl alcohol 27g
Starting material is used as a starting material, potassium hydroxide is used as a catalyst, and 1,2-hexene oxide 100 g, 1,2-butylene oxide 200 g and ethylene oxide 650 g are sequentially introduced by a conventional method, followed by desalting and purification to obtain a number average molecular weight. 90
925 g of an alkylene oxide derivative of 00 (calculated from the hydroxyl value) was obtained. This alkylene oxide derivative 100
A solution obtained by dissolving 3 g of lithium perchlorate in 20 g of methanol was added to g and stirred to obtain a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0033】製造例8.ノニルフェノール220gを出
発物質とし、触媒に水酸化カリウムを用いて、常法によ
りプロピレンオキシド640gを逐次導入した後、脱塩
精製を行ない、数平均分子量600(水酸基値より算
出)のアルキレンオキシド誘導体630gを得た。この
アルキレンオキシド誘導体100g中に、ホウフッカリ
チウム3gをメタノール20gに溶解した溶液を加え、
撹拌して均一な溶液とした後、該溶液中のメタノールを
減圧トッピングして錯体を得た。
Production Example 8. Using 220 g of nonylphenol as a starting material and 640 g of propylene oxide successively introduced by a conventional method using potassium hydroxide as a catalyst, desalting and refining were performed to obtain 630 g of an alkylene oxide derivative having a number average molecular weight of 600 (calculated from a hydroxyl value). Obtained. To 100 g of this alkylene oxide derivative, a solution prepared by dissolving 3 g of halofucca lithium in 20 g of methanol was added,
After stirring to form a uniform solution, methanol in the solution was topped under reduced pressure to obtain a complex.

【0034】製造例9.ジノニルフェノール34gを出
発物質とし、触媒に水酸化カリウムを用いて、常法によ
りプロピレンオキシド100g、1,2−ブチレンオキ
シド200g、エチレンオキシド2500gを逐次導入
した後、脱塩精製を行ない、数平均分子量25000
(水酸基値より算出)のアルキレンオキシド誘導体24
50gを得た。このアルキレンオキシド誘導体100g
中に、過塩素酸リチウム9gをメタノール20gに溶解
した溶液を加え、撹拌して均一な溶液とした後、該溶液
中のメタノールを減圧トッピングして錯体を得た。
Production Example 9. Using 34 g of dinonylphenol as a starting material and potassium hydroxide as a catalyst, 100 g of propylene oxide, 200 g of 1,2-butylene oxide and 2500 g of ethylene oxide were sequentially introduced by a conventional method, followed by desalting and refining to give a number average molecular weight of 25,000.
Alkylene oxide derivative 24 (calculated from hydroxyl value)
50 g was obtained. 100 g of this alkylene oxide derivative
A solution prepared by dissolving 9 g of lithium perchlorate in 20 g of methanol was added and stirred to obtain a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0035】製造例10.ベンジルアルコール108g
を出発物質とし、触媒に水酸化カリウムを用いて、常法
によりシクロヘキセンオキシド100g、エチレンオキ
シド1600gを逐次導入した後、脱塩精製を行ない、
数平均分子量1600(水酸基値より算出)のアルキレ
ンオキシド誘導体1540gを得た。このアルキレンオ
キシド誘導体100g中に、過塩素酸リチウム1gをメ
タノール20gに溶解した溶液を加え、撹拌して均一な
溶液とした後、該溶液中のメタノールを減圧トッピング
して錯体を得た。
Production Example 10. Benzyl alcohol 108g
Is used as a starting material, potassium hydroxide is used as a catalyst, and 100 g of cyclohexene oxide and 1600 g of ethylene oxide are sequentially introduced by a conventional method, and then desalting and purification are performed.
1540 g of an alkylene oxide derivative having a number average molecular weight of 1600 (calculated from a hydroxyl value) was obtained. A solution prepared by dissolving 1 g of lithium perchlorate in 20 g of methanol was added to 100 g of the alkylene oxide derivative and stirred to obtain a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0036】製造例11.ドデシルアミン185gを出
発物質とし、触媒に水酸化カリウムを用いて、常法によ
り1,2−ブチレンオキシド400g、エチレンオキシ
ド2400gを逐次導入した後、脱塩精製を行ない、数
平均分子量2700(水酸基値より算出)のアルキレン
オキシド誘導体2650gを得た。このアルキレンオキ
シド誘導体100g中に、過塩素酸リチウム0.5gを
メタノール20gに溶解した溶液を加え、撹拌して均一
な溶液とした後、該溶液中のメタノールを減圧トッピン
グして錯体を得た。
Production Example 11. After using 185 g of dodecylamine as a starting material and potassium hydroxide as a catalyst, 1,2-butylene oxide (400 g) and ethylene oxide (2400 g) were sequentially introduced by a conventional method, and then desalted and purified to obtain a number average molecular weight of 2700 (from the hydroxyl value. 2650 g of calculated alkylene oxide derivative was obtained. A solution prepared by dissolving 0.5 g of lithium perchlorate in 20 g of methanol was added to 100 g of the alkylene oxide derivative and stirred to obtain a uniform solution, and then methanol in the solution was topped under reduced pressure to obtain a complex.

【0037】製造例12.オクタデシルアルコール27
0gを出発物質とし、触媒に水酸化カリウムを用いて、
常法により1,2−ブチレンオキシド500g、エチレ
ンオキシド800gを逐次導入した後、脱塩精製を行な
い、数平均分子量1400(水酸基値より算出)のアル
キレンオキシド誘導体1350gを得た。このアルキレ
ンオキシド誘導体100g中に、過塩素酸リチウム3g
をメタノール20gに溶解した溶液を加え、撹拌して均
一な溶液とした後、該溶液中のメタノールを減圧トッピ
ングして錯体を得た。
Production Example 12. Octadecyl alcohol 27
Using 0 g as a starting material and potassium hydroxide as a catalyst,
After successively introducing 1,2-butylene oxide (500 g) and ethylene oxide (800 g) by a conventional method, desalting and purification were carried out to obtain 1350 g of an alkylene oxide derivative having a number average molecular weight of 1400 (calculated from a hydroxyl value). 3 g of lithium perchlorate in 100 g of this alkylene oxide derivative
Was added to 20 g of methanol, and the mixture was stirred to form a uniform solution. Then, methanol in the solution was topped under reduced pressure to obtain a complex.

【0038】実施例1〜18.各種錯体の所定量を樹脂
成形体原料1Kgに添加して二軸押出し機を用いて18
0℃で10分間混練してペレットを得た。このペレット
を射出成形機(新潟鉄工所製.ハイパーショット)を用
いて成形し230mm×230mm×3mmの成形体を
得た。この成形体の表面を印加電圧30KVで、20秒
間コロナ放電処理(高周波電源;春日電機社製.高周波
電源装置HFS−203)して、テストピースを作成
し、直ちに、そのテストピースの表面抵抗、および引張
強さを測定した。
Examples 1-18. A predetermined amount of each complex was added to 1 kg of the raw material for the resin molded body, and the mixture was mixed with a twin-screw extruder.
The mixture was kneaded at 0 ° C for 10 minutes to obtain pellets. The pellets were molded using an injection molding machine (manufactured by Niigata Iron Works Co., Ltd., Hyper Shot) to obtain a molded body of 230 mm × 230 mm × 3 mm. The surface of this molded body was subjected to corona discharge treatment (high frequency power supply; manufactured by Kasuga Electric Co., Ltd., high frequency power supply HFS-203) at an applied voltage of 30 KV for 20 seconds to prepare a test piece, and immediately, the surface resistance of the test piece, And the tensile strength was measured.

【0039】なお、表面抵抗は、YHP(横河ヒューレ
ットパッカード)社製の超絶縁抵抗計4329A型を用
いて、印加電圧500Vで、電圧をかけてから30秒後
に測定した(湿度65%,気温20℃)。引張強さは、
JIS K 7113に従って測定した。
The surface resistance was measured with a super insulation resistance meter 4329A type manufactured by YHP (Yokogawa Hewlett-Packard) at an applied voltage of 500 V and 30 seconds after the voltage was applied (humidity 65%, temperature. 20 ° C). Tensile strength is
It was measured according to JIS K 7113.

【0040】次に、上記で得たテストピ−スをア−ス
し、静電圧−40KV、レシプロストロ−ク400m
m、吹き付け距離300mm、コンベア速度2.2m/
分の塗装機(ランズバ−グ・ゲマ社製.μμBEL30
φ)で、ウレタン系塗料(日本ビ−ケミカル社製.R−
315)を静電塗装し、120℃で30分間乾燥後、膜
厚及び塗着効率を測定した。
Next, the test piece obtained above was grounded, static voltage -40 KV, reciprocal stroke 400 m.
m, spraying distance 300 mm, conveyor speed 2.2 m /
Minute coating machine (manufactured by Landsberg Gema Ltd. μμBEL30
φ), urethane-based paint (Nippon Bee Chemical Co., Ltd. R-
315) was electrostatically coated and dried at 120 ° C. for 30 minutes, and then the film thickness and coating efficiency were measured.

【0041】比較例1.錯体を添加せず、その他は実施
例2と全く同様に行った。
Comparative Example 1. The same procedure as in Example 2 was carried out except that the complex was not added.

【0042】比較例2.実施例2と全く同様に行った。
ただし、コロナ放電処理は行わなかった。
Comparative Example 2. Completely the same as in Example 2.
However, no corona discharge treatment was performed.

【0043】比較例3.比較例1において、『ポリプロ
ピレン樹脂;ユニオンポリマ−社製.ME230 』を『ポリ
プロピレン樹脂;出光石油化学社製.出光ポリプロJ−
465H』に代えて、その他は比較例1と全く同様に行
った。
Comparative Example 3. In Comparative Example 1, “Polypropylene resin; manufactured by Union Polymer Co. "ME230" is a "polypropylene resin; Idemitsu Petrochemical Co., Ltd. Idemitsu Polypro J-
Instead of 465H ”, the same operation as in Comparative Example 1 was performed.

【0044】比較例4.実施例2と全く同様に行った。
ただし、コロナ放電処理は行わなかった。
Comparative Example 4. Completely the same as in Example 2.
However, no corona discharge treatment was performed.

【0045】比較例5.錯体を添加せず、その他は実施
例17と全く同様に行った。
Comparative Example 5. The same procedure as in Example 17 was performed except that the complex was not added.

【0046】比較例6.実施例17と全く同様に行っ
た。ただし、コロナ放電処理は行わなかった。
Comparative Example 6. Completely the same as in Example 17. However, no corona discharge treatment was performed.

【0047】比較例7.錯体を添加せず、その他は実施
例18と全く同様に行った。
Comparative Example 7. The same procedure as in Example 18 was performed except that the complex was not added.

【0048】比較例8.実施例18と全く同様に行っ
た。ただし、コロナ放電処理は行わなかった。
Comparative Example 8. Completely the same as in Example 18. However, no corona discharge treatment was performed.

【0049】次に、実施例1〜18及び比較例1〜8の
結果を、表1及び表2にそれぞれ示す。この表から明ら
かなごとく、本発明の塗装物の樹脂物性、塗着効率等の
優れた効果が確認された。
Next, the results of Examples 1-18 and Comparative Examples 1-8 are shown in Tables 1 and 2, respectively. As is clear from this table, excellent effects such as resin physical properties and coating efficiency of the coated product of the present invention were confirmed.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】本発明によれば、表面抵抗値の高い樹脂
に対して、樹脂物性を実質的に害することなく、塗着効
率、表面外観、生産性等に優れた静電塗装が可能であ
る。
According to the present invention, a resin having a high surface resistance value can be electrostatically coated with excellent coating efficiency, surface appearance, productivity, etc. without substantially impairing the physical properties of the resin. is there.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (イ)数平均分子量が150〜3000
0で分子末端の少なくとも一端に炭素数4〜30のアル
キル基、アルケニル基、アリール基又はアルキルアリー
ル基を有する炭素数2〜6のアルキレンオキシド誘導体
とこれらに可溶性の電解質塩との錯体を、(ロ)樹脂成
形体原料に練り込み、その混練物を成形し、得られた成
形体表面をコロナ放電処理した後、該成形体に荷電を有
する塗料を噴霧、付着させることを特徴とする樹脂成形
体の静電塗装方法。
1. A number-average molecular weight of 150-3000.
A complex of an alkylene oxide derivative having 2 to 6 carbon atoms, which is 0 and has an alkyl group, alkenyl group, aryl group or alkylaryl group having 4 to 30 carbon atoms on at least one end of the molecule, and an electrolyte salt soluble in these ( (B) Resin molding characterized by kneading into a raw material of a resin molded product, molding the kneaded product, subjecting the surface of the resulting molded product to corona discharge treatment, and then spraying and attaching a charged paint to the molded product. How to electrostatically coat your body.
【請求項2】 可溶性の電解質塩の添加量が、炭素数2
〜6のアルキレンオキシド誘導体に対して0.1〜10
重量%であることを特徴とする請求項1記載の樹脂成形
体の静電塗装方法。
2. The amount of soluble electrolyte salt added is 2 carbon atoms.
0.1 to 10 with respect to the alkylene oxide derivative of
The method for electrostatic coating of a resin molded article according to claim 1, wherein the method is the weight percent.
【請求項3】 錯体の添加量が、樹脂成形体原料に対し
て0.01〜10重量%であることを特徴とする請求項
1記載の樹脂成形体の静電塗装方法。
3. The electrostatic coating method for a resin molded body according to claim 1, wherein the amount of the complex added is 0.01 to 10% by weight based on the raw material of the resin molded body.
JP5710994A 1994-03-28 1994-03-28 Static coating method for resin molding Pending JPH07265787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5710994A JPH07265787A (en) 1994-03-28 1994-03-28 Static coating method for resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5710994A JPH07265787A (en) 1994-03-28 1994-03-28 Static coating method for resin molding

Publications (1)

Publication Number Publication Date
JPH07265787A true JPH07265787A (en) 1995-10-17

Family

ID=13046359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5710994A Pending JPH07265787A (en) 1994-03-28 1994-03-28 Static coating method for resin molding

Country Status (1)

Country Link
JP (1) JPH07265787A (en)

Similar Documents

Publication Publication Date Title
GB1577509A (en) Polybutylene terephthalate moulding resin
JPH03101875A (en) Electrostatic coating method for resin molded body
CN113667218A (en) Spraying-free polypropylene material and preparation method thereof
CN111087791A (en) Composite antistatic agent and preparation method thereof, antistatic polyformaldehyde and preparation method thereof
JPH07265787A (en) Static coating method for resin molding
KR0155455B1 (en) Method of improving the electrical conductivity of shaped resin article and an electrostatic coating process
JPH02242844A (en) Resin composition
JPH07246363A (en) Electrostatic coating method of resin molding
EP0335185A2 (en) Metallized fibres composites and their application for the manufacture of electromagnetic protective shaped articles
KR0165011B1 (en) Method of improving the electrical conductivity of a shaped resin article and an electrostatic coating process
JPH08311210A (en) Method for improving conductivity of resin molding and method for electrostatically coating resin molding
JPH0412297B2 (en)
JPH07258553A (en) Improving method for conductivity of resin molding
JPH08283438A (en) Improvement in conductivity of resin molded product and electrostatic coating
JP3180143B2 (en) Method for improving conductivity of resin molded body
JPH08311223A (en) Method for improving conductivity of resin molding and method for electrostatically coating resin molding
JPS6058465A (en) Combined resin composition
JPH07265788A (en) Static coating method for resin molding
JPS58176224A (en) Electrostatic coating of molding of thermoplastic resin composition
JP3062639B2 (en) Method for improving conductivity of resin molded product
JP3393272B2 (en) Electrostatic coating method for resin moldings
JPH0625538A (en) Highly antistatic resin composition
JPH07247376A (en) Method for improving conductivity of resin molding
JPH08325386A (en) Inprovement in electroconductivity of resin molding and electrostatic coating
JPH0753778A (en) Flame-retardant resin composition for electro-static coating