JPH07265695A - Oxygen enriching adsorbent - Google Patents

Oxygen enriching adsorbent

Info

Publication number
JPH07265695A
JPH07265695A JP6058642A JP5864294A JPH07265695A JP H07265695 A JPH07265695 A JP H07265695A JP 6058642 A JP6058642 A JP 6058642A JP 5864294 A JP5864294 A JP 5864294A JP H07265695 A JPH07265695 A JP H07265695A
Authority
JP
Japan
Prior art keywords
type zeolite
oxygen
adsorbent
zeolite
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6058642A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakuma
博 佐久間
Wataru Inaoka
亘 稲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP6058642A priority Critical patent/JPH07265695A/en
Publication of JPH07265695A publication Critical patent/JPH07265695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain an oxygen enriching adsorbent with which stable operation is executed against a fluctuation in temp. by consisting this adsorbent of a mixture composed of A type zeolite of a specific Ca ion exchange rate and X type zeolite of a specific Ca ion exchange rate and mixing both in such a manner heat the ratio of the A type zeolite to he total of the A type zeolite and the X type zeolite is a specific ratio. CONSTITUTION:This oxygen enriching adsorbent consists of the mixture composed of the A type zeolite having the Ca ion exchange rate of >=40% and the X type zeolite having Ca ion exchange rate of >=50% and both are so mixed that the ratio of the A type zeolite to the total of the A type zeolite and the X type zeolite is 30 to 70wt.%. The adsorbent otherwise consists of the mixture composed of the A type zeolite and the X type zeolite and the Ca ion exchange rate to the total zeolite components thereof is >=50%, and further both are so mixed that the ratio of the A type zeolite to the total of the A type zeolite and the X type zeolite is 30 to 70wt.%. Consequently, oxygen is separated from a gaseous mixture contg. oxygen and nitrogen at 0 to 50 deg.C and at an approximately specified yield and treating capacity even if there is the temp. fluctuation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素と窒素とを含む混
合ガスから窒素を吸着して酸素に富むガスをえ、吸着し
た窒素を減圧により脱着して吸着剤を再生する圧力変動
吸着法(PSA法)などに使用するものであって、原料
ガス温度や外気温度による性能への影響を受けにくい酸
素富化吸着剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure fluctuation adsorption method in which nitrogen is adsorbed from a mixed gas containing oxygen and nitrogen to obtain a gas rich in oxygen, and the adsorbed nitrogen is desorbed by desorption to regenerate the adsorbent. The present invention relates to an oxygen-enriched adsorbent which is used in (PSA method) and the like and is hardly affected by the raw material gas temperature and the outside air temperature.

【0002】[0002]

【従来の技術】従来、原料ガス温度や外気温度による性
能への影響を受けにくいPSA法として、CaA型ゼオ
ライトを吸着塔の入口側に、CaX型ゼオライトを吸着
塔の出口側に充填した吸着塔を使用する方法が知られて
いる(特開平4−293513号公報)。
2. Description of the Related Art Conventionally, as a PSA method which is not easily affected by the temperature of the raw material gas and the temperature of the outside air, an adsorption tower in which CaA type zeolite is packed in the inlet side of the adsorption tower and CaX type zeolite is packed in the outlet side of the adsorption tower. Is known (Japanese Patent Laid-Open No. 4-293513).

【0003】[0003]

【発明が解決しようとする課題】本発明は、0〜50℃
で、上記の特開平4−293513号公報に提案された
方法によるよりもさらに温度の変動に対して安定した操
作を行うことを可能とする、酸素富化吸着剤の提供を目
的とするものである。
DISCLOSURE OF THE INVENTION The present invention is 0 to 50 ° C.
Therefore, it is an object of the present invention to provide an oxygen-enriched adsorbent capable of performing a more stable operation with respect to temperature fluctuations than by the method proposed in JP-A-4-293513. is there.

【0004】[0004]

【課題を解決する手段】本発明は、 Caイオン交換率40%以上のA型ゼオライトとCa
イオン交換率50%以上のX型ゼオライトとの混合物か
らなり、かつ、A型ゼオライトとX型ゼオライトとの合
計に対するA型ゼオライトの割合が30〜70wt%で
ある、酸素富化吸着剤、および A型ゼオライトとX型ゼオライトとの混合物からな
り、その全ゼオライト成分におけるCaイオン交換率が
50%以上であり、かつ、A型ゼオライトとX型ゼオラ
イトとの合計に対するA型ゼオライトの割合が30〜7
0wt%である、酸素富化吸着剤を要旨とするものであ
る。
The present invention relates to A-type zeolite having a Ca ion exchange rate of 40% or more and Ca.
An oxygen-enriched adsorbent, which is composed of a mixture with an X-type zeolite having an ion exchange rate of 50% or more, and in which the ratio of the A-type zeolite to the total of the A-type zeolite and the X-type zeolite is 30 to 70 wt%, and A. It is composed of a mixture of type zeolite and type X zeolite, has a Ca ion exchange rate of 50% or more in all the zeolite components, and the ratio of type A zeolite to the total of type A zeolite and type X zeolite is 30 to 7.
The gist of the oxygen-rich adsorbent is 0 wt%.

【0005】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0006】本発明の酸素富化吸着剤中のゼオライト成
分のCaイオン交換率は、A型ゼオライトにおいて40
%以上、かつ、X型ゼオライトにおいて50%以上であ
るか、または、全ゼオライト成分において50%以上で
なければならない。Caイオン交換率がそれらの範囲に
達しないものは、いずれも窒素吸着容量が不十分であ
り、十分な酸素富化性能がえられないからである。とく
に、A型ゼオライトにおいて50〜90%、かつ、X型
ゼオライトにおいて60%以上、または、全ゼオライト
成分において60%以上が好ましい。
The Ca ion exchange rate of the zeolite component in the oxygen-enriched adsorbent of the present invention is 40 for A-type zeolite.
% And more than 50% in type X zeolite, or more than 50% in all zeolite components. If the Ca ion exchange rate does not reach these ranges, the nitrogen adsorption capacity is insufficient and sufficient oxygen enrichment performance cannot be obtained. In particular, it is preferable that the amount of A-type zeolite is 50 to 90%, the amount of X-type zeolite is 60% or more, or the amount of all zeolite components is 60% or more.

【0007】A型ゼオライトとX型ゼオライトとの合計
に対するA型ゼオライトの割合は、30〜70wt%
(すなわち、X型ゼオライトも30〜70wt%)でな
ければならない。A型ゼオライトおよびX型ゼオライト
の割合がこれらの範囲からはずれると、吸着性能の温度
依存性が大きくなるからである。その割合は、40〜6
0wt%がとくに望ましい。
The ratio of the A-type zeolite to the total of the A-type zeolite and the X-type zeolite is 30 to 70% by weight.
(That is, X-type zeolite is also 30 to 70 wt%). This is because if the proportions of A-type zeolite and X-type zeolite deviate from these ranges, the temperature dependence of the adsorption performance becomes large. The ratio is 40-6
0 wt% is particularly desirable.

【0008】本発明の酸素富化吸着剤は、上記のCaイ
オン交換率のCaA型ゼオライトとCaX型ゼオライト
とを上記の比率で含むものであればよく、たとえば、C
aA型ゼオライト成形体とCaX型ゼオライト成形体と
の混合物、CaA型ゼオライトとCaX型ゼオライトと
の混合粉末を成形したものなどをあげることができる。
また、ゼオライト成分が多ければ多いほど、吸着分離性
能が高くなるため、ゼオライト結晶含有率は70wt%
以上が好ましい。さらには、バインダーを結晶化してゼ
オライト結晶含有率90wt%以上にした、バインダレ
スA型ゼオライト成形体とバインダレスX型ゼオライト
成形体との混合物は、さらに優れた吸着分離性能を有
し、非常に好ましい。
The oxygen-enriched adsorbent of the present invention may be any as long as it contains CaA type zeolite and CaX type zeolite having the above-mentioned Ca ion exchange rate in the above-mentioned ratio.
Examples thereof include a mixture of an aA-type zeolite molded body and a CaX-type zeolite molded body, a molded mixture powder of CaA-type zeolite and CaX-type zeolite, and the like.
Also, the more zeolite component, the higher the adsorption separation performance, so the zeolite crystal content is 70 wt%.
The above is preferable. Furthermore, a mixture of a binderless A-type zeolite molded body and a binderless X-type zeolite molded body in which the binder is crystallized to have a zeolite crystal content of 90 wt% or more has a further excellent adsorption separation performance, preferable.

【0009】本発明の酸素富化吸着剤は、従来慣用の方
法あるいはそれに準じた方法によって製造すればよい。
たとえば、CaA型ゼオライト成形体とCaX型ゼオラ
イト成形体との混合物からなるものは、NaA型ゼオラ
イト成形体とNaX型ゼオライト成形体とを混合してか
らCaイオン交換率が50%以上となるまでCaイオン
交換するか、NaA型ゼオライト成形体とNaX型ゼオ
ライト成形体とを前者のCaイオン交換率が40%以上
となるまで、かつ、後者のそれが50%以上となるまで
別々にCaイオン交換を行ってから混合することにより
製造することができる。この成形体と成形体との混合方
法に格別の制限はなく、たとえば、A型ゼオライト成形
体およびX型ゼオライト成形体を目的とする混合比にな
るように一定流量で混合容器に供給し、撹拌混合すれば
よい。
The oxygen-enriched adsorbent of the present invention may be produced by a conventional method or its modification.
For example, a mixture of a CaA-type zeolite molded body and a CaX-type zeolite molded body has a Ca ion exchange rate of 50% or more after mixing the NaA-type zeolite molded body and the NaX-type zeolite molded body. Ion exchange or separate CaA exchange between the NaA type zeolite molded body and the NaX type zeolite molded body until the Ca ion exchange rate of the former becomes 40% or more and that of the latter becomes 50% or more. It can be manufactured by mixing after performing. There is no particular limitation on the method of mixing the molded body with the molded body. For example, the A-type zeolite molded body and the X-type zeolite molded body are supplied to the mixing vessel at a constant flow rate so as to have a desired mixing ratio and stirred. Just mix.

【0010】Caイオン交換された吸着剤は、乾燥後、
ゼオライト細孔中の水を充分に除去できる最低温度30
0℃からゼオライト結晶が崩壊しない最高温度700℃
までの範囲内の温度で焼成して活性化するのが好まし
い。この際、乾燥および焼成雰囲気の水蒸気分圧は、な
るべく低くするのがより好ましい。
After the Ca ion-exchanged adsorbent is dried,
Minimum temperature for removing water in zeolite pores 30
Maximum temperature 700 ° C at which zeolite crystals do not collapse from 0 ° C
It is preferable to activate by firing at a temperature in the range of up to. At this time, it is more preferable that the partial pressure of water vapor in the drying and firing atmosphere is as low as possible.

【0011】[0011]

【作用】本発明の酸素富化吸着剤が温度0〜50℃の範
囲で性能の温度依存性が乏しいことの一因は、以下のよ
うな事情にあるものと推定される。
The cause of the poor temperature dependence of the performance of the oxygen-enriched adsorbent of the present invention in the temperature range of 0 to 50 ° C. is presumed to be due to the following circumstances.

【0012】すなわち、CaA型ゼオライトおよびCa
X型ゼオライトのいずれも、温度が高いほど、窒素の有
効吸着容量(吸着容量から脱着後吸着剤に残留する窒素
を差し引いた容量)はおおむね温度が高いほど低くな
り、窒素の有効吸着容量/酸素の有効吸着容量比は高く
なるが、0〜50℃の範囲内の低温領域では、CaA型
ゼオライトは窒素の有効吸着容量が高く、窒素の有効吸
着容量/酸素の有効吸着容量比がなお十分に高くかつ酸
素の有効吸着容量はCaX型ゼオライトよりかなり低
く、CaX型ゼオライトは窒素の有効吸着容量/酸素の
有効吸着容量比が低く;高温領域では、CaA型ゼオラ
イトは窒素の有効吸着容量が低すぎ、CaX型ゼオライ
トは窒素の有効吸着容量がなお十分に高くかつ窒素の有
効吸着容量/酸素の有効吸着容量比が高い。つまり、低
温領域では、CaX型ゼオライトの酸素の吸着による酸
素の回収率の低下をCaA型ゼオライトの高い窒素吸着
分離性能が補い、いっぽう、高温領域では、CaA型ゼ
オライトの有効吸着容量の低さをCaX型ゼオライトの
高い窒素吸着分離性能が補う。本発明の酸素富化吸着剤
を使用する場合は、CaA型ゼオライトとCaX型ゼオ
ライトとが互いに接触し、近接していることがなんらか
の要因となって、これらの作用を助長して、0〜50℃
の温度範囲で温度に依存しない一定した性能が発揮され
るものと思われる。
That is, CaA type zeolite and Ca
In all of the X-type zeolites, the higher the temperature is, the lower the effective adsorption capacity of nitrogen (the capacity obtained by subtracting the nitrogen remaining in the adsorbent after desorption from the adsorption capacity) is, the lower the temperature is. However, in the low temperature range of 0 to 50 ° C., the CaA-type zeolite has a high nitrogen effective adsorption capacity, and the nitrogen effective adsorption capacity / oxygen effective adsorption capacity ratio is still sufficient. High and oxygen effective adsorption capacity is much lower than CaX type zeolite, CaX type zeolite has low nitrogen effective adsorption capacity / oxygen effective adsorption capacity ratio; in high temperature range, CaA type zeolite has too low effective nitrogen adsorption capacity. , CaX-type zeolite has a sufficiently high effective adsorption capacity of nitrogen and a high effective adsorption capacity ratio of nitrogen / effective adsorption capacity of oxygen. That is, in the low temperature region, the decrease in oxygen recovery rate due to the adsorption of oxygen by CaX type zeolite is compensated by the high nitrogen adsorption separation performance of CaA type zeolite, while in the high temperature region, the effective adsorption capacity of CaA type zeolite is low. The high nitrogen adsorption separation performance of CaX type zeolite is supplemented. When the oxygen-enriched adsorbent of the present invention is used, the fact that the CaA-type zeolite and the CaX-type zeolite are in contact with each other and in proximity to each other causes some factor, and promotes these actions, so that 0-50 ℃
It seems that constant performance independent of temperature is exhibited in the temperature range of.

【0013】[0013]

【発明の効果】本発明の酸素富化吸着剤によれば、酸素
と窒素とを含む混合ガスから酸素を、0〜50℃という
広い温度範囲において、温度の変動があっても、ほぼ一
定の収率および処理容量で分離することができる。
EFFECTS OF THE INVENTION According to the oxygen-enriched adsorbent of the present invention, oxygen is mixed from a mixed gas containing oxygen and nitrogen in a wide temperature range of 0 to 50 ° C. even if there is a temperature fluctuation, it is substantially constant. It can be separated by yield and throughput.

【0014】[0014]

【実施例】以下、実施例および比較例により本発明を更
に具体的に説明するが、本発明はこれに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited thereto.

【0015】例中、「部」は、重量による。また、酸素
富化性能の試験は、次のようにして行った。
In the examples, "parts" are by weight. The test of oxygen enrichment performance was performed as follows.

【0016】すなわち、容量2リットルの吸着塔に酸素
富化用吸着剤を充填し、原料ガスとして大気を使用し、
吸着工程、再生工程、復圧工程の順に操作し、吸着圧
0.2kgf/cm2,再生圧185torr,復帰圧
785torrでPSA操作を行い、製品酸素が濃度9
3%になるように製品酸素流量を制御した。酸素取出量
(単位時間当たりの製品酸素量)および酸素回収率(原
料ガス中の酸素量に対する製品酸素中の酸素量の割合)
によって各酸素富化用吸着剤の性能を評価した。吸着工
程における一回の吸着時間は1分間とし、吸着塔から流
出するガスをバッファタンクに貯えた。吸着剤の再生
は、吸着塔の原料ガス入口側から真空引きし、一回の再
生時間は1分間とした。復圧工程では、バッファタンク
中の一部の酸素ガスを吸着塔の製品酸素ガス出口から逆
流させて吸着塔内を785torrに、1分間かけて戻
した。酸素富化装置は、吸着塔を3つ並べ、吸着工程、
再生工程、復圧工程を1分間隔で切換える3塔式PSA
装置を用いた。
That is, an adsorption tower having a capacity of 2 liters is filled with an adsorbent for enriching oxygen, and the atmosphere is used as a raw material gas.
The adsorption process, the regeneration process, and the recompression process are performed in this order, and PSA operation is performed at an adsorption pressure of 0.2 kgf / cm 2 , a regeneration pressure of 185 torr, and a return pressure of 785 torr.
The product oxygen flow rate was controlled to be 3%. Oxygen extraction amount (product oxygen amount per unit time) and oxygen recovery rate (ratio of oxygen amount in product oxygen to oxygen amount in raw material gas)
The performance of each oxygen enriched adsorbent was evaluated by. A single adsorption time in the adsorption step was set to 1 minute, and the gas flowing out from the adsorption tower was stored in the buffer tank. Regeneration of the adsorbent was performed by evacuating from the raw material gas inlet side of the adsorption tower, and one regeneration time was 1 minute. In the recompression step, a part of the oxygen gas in the buffer tank was made to flow backward from the product oxygen gas outlet of the adsorption tower, and the inside of the adsorption tower was returned to 785 torr for 1 minute. The oxygen enrichment device has three adsorption towers arranged,
Three-tower PSA that switches the regeneration process and re-pressurization process at 1-minute intervals
The device was used.

【0017】実施例1〜4、比較例1〜4 NaA型ゼオライト粉末(東ソー株式会社製ゼオラムA
−4粉末)およびバインダー(カオリン粘土)をそれぞ
れ80wt%および20wt%含む成形体ならびにNa
X型ゼオライト(東ソー株式会社製ゼオラムF−9粉
末)およびバインダーをそれぞれ80wt%および20
wt%含む成形体を600℃で焼成した後、それぞれを
塩化カルシウム水溶液で所定条件でイオン交換を行なっ
た後、混合し、A型ゼオライトとX型ゼオライトとバイ
ンダーとを所定割合で含む成形体を製造した。活性化は
600℃で3時間行い、最終的に該酸素富化用吸着剤を
乾燥重量で約2kg製造した。えられた該吸着剤のCa
イオン交換率の測定および上記の方法による酸素富化性
能の試験を行った。
Examples 1 to 4, Comparative Examples 1 to 4 NaA type zeolite powder (Zeoram A manufactured by Tosoh Corporation)
-4 powder) and a binder (kaolin clay) of 80 wt% and 20 wt% respectively, and Na
80 wt% and 20% of X type zeolite (Zeorum F-9 powder manufactured by Tosoh Corporation) and binder, respectively.
After firing a compact containing wt% at 600 ° C., each is subjected to ion exchange with an aqueous solution of calcium chloride under predetermined conditions, and then mixed to form a compact containing A-type zeolite, X-type zeolite and a binder in a predetermined ratio. Manufactured. Activation was carried out at 600 ° C. for 3 hours, and finally about 2 kg of the oxygen-enriched adsorbent was produced by dry weight. Ca of the obtained adsorbent
The ion exchange rate was measured and the oxygen enrichment performance was tested by the above method.

【0018】以上に示していない条件および結果を表1
に示す。ただし、実施例1では、ゼオライト成分100
g当り、NaA型ゼオライト成形体の場合はCaイオン
量0.94モル、NaX型ゼオライト成形体の場合はC
aイオン量2.64モル含む塩化カルシウム水溶液10
00mlと回分式で60℃で3時間接触させてCaイオ
ン交換を行ない、他の例ではこの塩化カルシウムの濃度
を調整してそれぞれ所定のCaイオン交換率の吸着剤を
えたが、その濃度の掲示は省略する。
The conditions and results not shown above are shown in Table 1.
Shown in. However, in Example 1, the zeolite component 100
Per g, in the case of NaA type zeolite molded body, the amount of Ca ions is 0.94 mol, and in the case of NaX type zeolite molded body, C
Calcium chloride aqueous solution containing a ion amount of 2.64 mol 10
Ca ion exchange was carried out by contacting with 00 ml batchwise at 60 ° C. for 3 hours. In other examples, the concentration of calcium chloride was adjusted to obtain an adsorbent having a predetermined Ca ion exchange rate. Is omitted.

【0019】実施例5〜8、比較例5〜8 結晶含有率97%のバインダレスNaA型ゼオライト成
形体と結晶含有率97%のバインダレスNaX型ゼオラ
イト成形体とを混合した後、塩化カルシウム水溶液で所
定条件でイオン交換を行い、A型ゼオライトとX型ゼオ
ライトとを所定割合で含む成形体を製造した。活性化は
600℃で3時間行い、最終的に該酸素富化用吸着剤を
乾燥重量で約2kg製造した。えられた該吸着剤のCa
イオン交換率の測定および上記の方法による酸素富化性
能の試験を行った。
Examples 5 to 8 and Comparative Examples 5 to 8 A binderless NaA type zeolite molded body having a crystal content of 97% and a binderless NaX type zeolite molded body having a crystal content of 97% were mixed and then an aqueous calcium chloride solution was used. Was subjected to ion exchange under predetermined conditions to produce a molded product containing A-type zeolite and X-type zeolite in a predetermined ratio. Activation was carried out at 600 ° C. for 3 hours, and finally about 2 kg of the oxygen-enriched adsorbent was produced by dry weight. Ca of the obtained adsorbent
The ion exchange rate was measured and the oxygen enrichment performance was tested by the above method.

【0020】以上に示していない条件および結果を表2
に示す。ただし、実施例4では、ゼオライト成分100
g当りCaイオン1.61モル含む塩化カルシウム水溶
液1000mlと回分式で60℃で3時間接触させてC
aイオン交換を行ない、他の例ではこの塩化カルシウム
の濃度を調整してそれぞれ所定のCaイオン交換率の吸
着剤をえたが、その濃度の掲示は省略する。
Table 2 shows conditions and results not shown above.
Shown in. However, in Example 4, the zeolite component 100
C. by contacting with 1000 ml of calcium chloride aqueous solution containing 1.61 mol of Ca ion per g for 3 hours at 60.degree.
a. Ion exchange was performed, and in other examples, the concentration of calcium chloride was adjusted to obtain an adsorbent having a predetermined Ca ion exchange rate, but the posting of the concentration is omitted.

【0021】実施例9〜12、比較例9〜12 結晶含有率97%のバインダレスNaA型ゼオライト成
形体および結晶含有率97%のバインダレスNaX型ゼ
オライト成形体を所定条件でCaイオン交換を行なった
後、混合し、A型ゼオライトとX型ゼオライトを所定割
合で含む成形体を製造した。活性化は600℃で3時間
行い、最終的に該酸素富化用吸着剤を乾燥重量で約2k
g製造した。えられた該吸着剤のCaイオン交換率の測
定および上記の方法による酸素富化性能の試験を行っ
た。
Examples 9 to 12, Comparative Examples 9 to 12 Binderless NaA-type zeolite compacts having a crystal content of 97% and binderless NaX-type zeolite compacts having a crystal content of 97% were subjected to Ca ion exchange under predetermined conditions. After that, they were mixed to produce a molded product containing A-type zeolite and X-type zeolite in a predetermined ratio. The activation is carried out at 600 ° C. for 3 hours, and finally the oxygen-enriched adsorbent is dried at about 2 k
g produced. The Ca ion exchange rate of the obtained adsorbent was measured and the oxygen enrichment performance was tested by the above method.

【0022】以上に示していない条件および結果を表3
に示す。ただし、実施例9では、ゼオライト成分100
gに当り、NaA型ゼオライト成形体の場合はCaイオ
ン量0.94モル、NaX型ゼオライト成形体の場合は
Caイオン量2.64モル含む塩化カルシウム水溶液1
000mlと回分式で60℃で3時間接触させてCaイ
オン交換を行ない、他の例ではこの塩化カルシウムの濃
度を調整してそれぞれ所定のCaイオン交換率の吸着剤
をえたが、その濃度の掲示は省略する。
The conditions and results not shown above are shown in Table 3.
Shown in. However, in Example 9, the zeolite component 100
Calcium chloride aqueous solution containing 0.94 mol of Ca ion in the case of NaA type zeolite molded product and 2.64 mol of Ca ion in the case of NaX type zeolite molded product per g
Ca ion exchange was carried out by contacting with 000 ml batchwise at 60 ° C. for 3 hours. In other examples, the concentration of calcium chloride was adjusted to obtain an adsorbent having a predetermined Ca ion exchange rate. Is omitted.

【0023】比較例13、14 実施例10と同一条件でバインダレスCaA型ゼオライ
ト成形体およびバインダレスCaX型ゼオライト成形体
をえ、両者を混合することなく、1kgずつを比較例1
3では前者を吸着塔の入口側に後者を出口側に充填し、
比較例14では後者を吸着塔の入口側に前者を出口側に
充填して、実施例10と同一条件で酸素富化性能の試験
を行った。結果を表3に示す。
Comparative Examples 13 and 14 Under the same conditions as in Example 10, a binderless CaA-type zeolite molded body and a binderless CaX-type zeolite molded body were prepared, and 1 kg each was mixed without mixing them.
In 3, the former is packed in the inlet side of the adsorption tower and the latter is packed in the outlet side,
In Comparative Example 14, the latter was packed in the inlet side of the adsorption tower and the former was packed in the outlet side, and the oxygen enrichment performance test was conducted under the same conditions as in Example 10. The results are shown in Table 3.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および2における酸素富化性能の試験
の結果を示すグラフである。
FIG. 1 is a graph showing the results of tests of oxygen enrichment performance in Examples 1 and 2.

【図2】比較例1および2における酸素富化性能の試験
の結果を示すグラフである。
FIG. 2 is a graph showing the results of tests of oxygen enrichment performance in Comparative Examples 1 and 2.

【図3】実施例10ならびに比較例13および14にお
ける酸素富化性能の試験の結果を示すグラフである。
FIG. 3 is a graph showing the results of tests of oxygen enrichment performance in Example 10 and Comparative Examples 13 and 14.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Caイオン交換率40%以上のA型ゼオラ
イトとCaイオン交換率50%以上のX型ゼオライトと
の混合物からなり、かつ、A型ゼオライトとX型ゼオラ
イトとの合計に対するA型ゼオライトの割合が30〜7
0wt%である、酸素富化吸着剤。
1. A type zeolite comprising a mixture of an A-type zeolite having a Ca ion exchange rate of 40% or more and an X-type zeolite having a Ca ion exchange rate of 50% or more, and the total amount of the A-type zeolite and the X-type zeolite is A-type zeolite. Is 30 to 7
Oxygen enriched adsorbent, which is 0 wt%.
【請求項2】A型ゼオライトとX型ゼオライトとの混合
物からなり、その全ゼオライト成分におけるCaイオン
交換率が50%以上であり、かつ、A型ゼオライトとX
型ゼオライトとの合計に対するA型ゼオライトの割合が
30〜70wt%である、酸素富化吸着剤。
2. A mixture of A-type zeolite and X-type zeolite having a Ca ion exchange rate of 50% or more in all the zeolite components, and A-type zeolite and X-type zeolite.
An oxygen-enriched adsorbent in which the proportion of the A-type zeolite relative to the total of the type-zeolite is 30 to 70 wt%.
JP6058642A 1994-03-29 1994-03-29 Oxygen enriching adsorbent Pending JPH07265695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6058642A JPH07265695A (en) 1994-03-29 1994-03-29 Oxygen enriching adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6058642A JPH07265695A (en) 1994-03-29 1994-03-29 Oxygen enriching adsorbent

Publications (1)

Publication Number Publication Date
JPH07265695A true JPH07265695A (en) 1995-10-17

Family

ID=13090241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6058642A Pending JPH07265695A (en) 1994-03-29 1994-03-29 Oxygen enriching adsorbent

Country Status (1)

Country Link
JP (1) JPH07265695A (en)

Similar Documents

Publication Publication Date Title
JP3776813B2 (en) Argon / oxygen selective X zeolite
KR100196626B1 (en) Single bed pressure swing absorption system and process
JP2785870B2 (en) Pressure swing adsorption method
JP3701998B2 (en) X-type zeolite and method for separating nitrogen from a gas mixture by adsorption using the zeolite
US6284021B1 (en) Composite adsorbent beads for adsorption process
JP2967871B2 (en) Carbon dioxide and water adsorption method and adsorbent
US4557736A (en) Binary ion exchanged type X zeolite adsorbent
JP5036925B2 (en) Agglomerated zeolite adsorbent, its production method and use in non-cryogenic separation of industrial gases
JP2627708B2 (en) Adsorbent beds for improved pressure swing adsorption operations
TWI279249B (en) Method of purifying a gas stream contaminated by C02 and one or more hydrocarbons and/or nitrogen oxide(s) by adsorption on an aggregated zeolitic adsorbent
US6572838B1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
JPH0757300B2 (en) Nitrogen selective adsorption method from gas mixture
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
JPH09169506A (en) Method for adsorbing and separating nitrogen from gas mixture
CA1313627C (en) Adsorptive purification process
KR20010074512A (en) Exchanged zeolites x, in particular exchanged with lithium, their process of preparation and their use as adsorbents of nitrogen in the separtation of the gases of the air
JPH01104342A (en) Absorbent for refining of gas and refining method
EP1485200B1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
JPH10152305A (en) Oxygen gas production apparatus and production of oxygen gas
US7319082B2 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JPH07265695A (en) Oxygen enriching adsorbent
JP2001054733A (en) Adsorption medium having selectivity improved in gas separation
JPH1150069A (en) Purification of natural gas
JP2001347123A (en) Adsorptive separation method for carbon dioxide
JP2000140549A (en) Removal of carbon dioxide