JPH07265299A - Measuring method of thyroid gland iodine quantity - Google Patents

Measuring method of thyroid gland iodine quantity

Info

Publication number
JPH07265299A
JPH07265299A JP6082298A JP8229894A JPH07265299A JP H07265299 A JPH07265299 A JP H07265299A JP 6082298 A JP6082298 A JP 6082298A JP 8229894 A JP8229894 A JP 8229894A JP H07265299 A JPH07265299 A JP H07265299A
Authority
JP
Japan
Prior art keywords
iodine
value
iodine concentration
thyroid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6082298A
Other languages
Japanese (ja)
Other versions
JP2630911B2 (en
Inventor
Yoshimasa Imanishi
好正 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6082298A priority Critical patent/JP2630911B2/en
Publication of JPH07265299A publication Critical patent/JPH07265299A/en
Application granted granted Critical
Publication of JP2630911B2 publication Critical patent/JP2630911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the iodine concentration and the volume of a measured site and prevent the individual difference of a patient from becoming an error. CONSTITUTION:When a thyroid gland is calcified, the separation point from the flat distribution on the high CT value side is specified on a histogram and excluded from the next iodine concentration calculation, and the iodine concentration is obtained with the prescribed calculating equation for the CT value of each pixel element having the minimum unit area of the X-ray CT for only the thyroid gland tissues except for calcified sites when the CT value is the prescribed value or above. This iodine concentration is multiplied by the volume obtained by multiplying the area of the pixel element and slice thickness to obtain the total iodine quantity in the voxel, the total iodine quantities in all voxels are added, and it is divided by the volume of all voxels except for calcified sites to obtain the iodine concentration of the tissues.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体での甲状腺内ヨウ素
量を測定し、診断に役立てるための甲状腺ヨウ素量の測
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of iodine in the thyroid in a living body, which is useful for diagnosis.

【0002】[0002]

【従来の技術】ヒト甲状腺にはヨウ素が特異的に濃縮し
ている。そしてヨウ素含有量と甲状腺の機能及び疾患と
の関連が意味をもつことがわかって以来、各種のヨウ素
測定方法が提案されている。一般に、生体での甲状腺内
ヨウ素量の測定方法としては、蛍光X線法が使用されて
いる。この原理は、頚部にX線を照射すると甲状腺内に
含まれるヨウ素がこのX線を吸収すると同時に、よりエ
ネルギーの低い特定の波長を持った蛍光X線を放出す
る。
2. Description of the Related Art Iodine is specifically concentrated in human thyroid gland. Various methods for measuring iodine have been proposed since it became clear that the relationship between iodine content and thyroid function and diseases was significant. Generally, a fluorescent X-ray method is used as a method for measuring the amount of iodine in the thyroid in a living body. According to this principle, when the cervix is irradiated with X-rays, iodine contained in the thyroid gland absorbs the X-rays and, at the same time, emits fluorescent X-rays having a specific wavelength with lower energy.

【0003】そして、この蛍光X線量がヨウ素含有量と
比例することを利用して甲状腺ヨウ素含有量を測定する
ものである(これを蛍光X線分析法と称す)。実際には
X線を正面から頚部に照射し、側方又は斜め前方から放
出される蛍光X線を測定しヨウ素量に換算する方式をと
っている。
The thyroid iodine content is measured by utilizing the fact that this fluorescent X-ray dose is proportional to the iodine content (this is called a fluorescent X-ray analysis method). In practice, X-rays are applied to the neck from the front, and fluorescent X-rays emitted from the side or diagonally forward are measured and converted into iodine amount.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の蛍光X
線分析法は、空間分解能が非常に悪く、周囲の甲状腺組
織を分離できないため、甲状腺全体に含まれるヨウ素量
を測定することはできるが、甲状腺の一部分だけを限っ
てヨウ素量を測定することはできない。ましてや甲状腺
腫瘤のヨウ素量を正確に測定することは不可能である。
又、測定方式から言って、患者の頚の形態の違いによっ
ても測定値に大きな誤差があった。
DISCLOSURE OF THE INVENTION The conventional fluorescent X described above
Since the line analysis method has a very poor spatial resolution and cannot separate the surrounding thyroid tissue, it is possible to measure the amount of iodine contained in the entire thyroid, but it is not possible to measure the amount of iodine in only a part of the thyroid. Can not. Furthermore, it is impossible to accurately measure the amount of iodine in a thyroid mass.
Further, in terms of the measurement method, there were large errors in the measured values due to the difference in the morphology of the patient's neck.

【0005】更に又、従来方法にあっては甲状腺あるい
は被測定部分を限定して特定することができないため、
甲状腺患者の診断の決め手となるヨウ素濃度をも求める
ことはできなかった。更には専用機であるため他に転用
ができないこと等のため、価格的にも問題があった。
Furthermore, in the conventional method, the thyroid gland or the part to be measured cannot be limited and specified.
It was not possible to determine the iodine concentration, which is the decisive factor in the diagnosis of thyroid patients. Furthermore, since it is a dedicated machine, it cannot be diverted for other purposes, so there was a problem in terms of price.

【0006】本発明は上記課題を解決するためになされ
たものであり、甲状腺組織のヨウ素濃度は勿論のこと、
測定部分の体積も併せて測定ができ、かつ患者の頚の形
態によっても殆んど誤差の生じない甲状腺ヨウ素量の測
定方法を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and not only the iodine concentration in thyroid tissue,
It is an object of the present invention to provide a method for measuring the amount of iodine in thyroid, which can measure the volume of a measurement portion together and causes almost no error depending on the morphology of the neck of a patient.

【0007】[0007]

【課題を解決するための手段】基本的な考え方を説明す
る。本発明者らは、石灰化を伴なわない甲状腺組織にお
いて、そのヨウ素濃度が0.02mg/g以上でそのC
T値とヨウ素濃度との間には直線的な相関があり、ヨウ
素濃度は(1)式で表わされることを既に報告している
(Journalof Computer Assis
ted Tomography,15:287−29
0,1991.)。
[Means for Solving the Problem] The basic idea will be described. In the thyroid tissue without calcification, the present inventors have found that when the iodine concentration is 0.02 mg / g or more, the C
It has already been reported that there is a linear correlation between the T value and the iodine concentration, and the iodine concentration is represented by the equation (1) (Journalof Computer Assistis).
Ted Tomography, 15: 287-29
0, 1991. ).

【数1】 ヨウ素濃度=(CT値−65)/104 ………(1)## EQU00001 ## Iodine concentration = (CT value-65) / 104 ... (1)

【0008】しかし、甲状腺腫瘍はしばしば石灰化を持
ち、この石灰化がCT値に大きな影響を与えることがわ
かっている。したがって石灰化に影響されることなく、
甲状腺CT値からヨウ素濃度を算出しようとしている。
However, it is known that thyroid tumor often has calcification, and this calcification has a great influence on the CT value. Therefore, without being affected by calcification,
I am trying to calculate the iodine concentration from the thyroid CT value.

【0009】患者を仰臥位でCT(computed
tomography)装置の台に寝かせ、一定のスラ
イス厚(通常は5mm)、連続ピッチ(通常は5m
m)、一定の撮影条件(管電圧120KV,管電流15
0mA,撮影時間2秒)で全甲状腺を撮影する。撮影さ
れた全てのスライスに対して、ヨウ素濃度・体積・総ヨ
ウ素量を測定しようとする部位に関心領域(ROI)を
設定する。各々のスライスに対して関心領域内のCT値
のヒストグラムを作成する。
CT (computed) of a patient in a supine position
lay on a table of tomography device, constant slice thickness (usually 5 mm), continuous pitch (usually 5 m)
m), constant shooting conditions (tube voltage 120KV, tube current 15)
The whole thyroid gland is photographed at 0 mA and a photographing time of 2 seconds. A region of interest (ROI) is set in a region where the iodine concentration, volume, and total iodine amount are to be measured for all the taken slices. Create a histogram of CT values in the region of interest for each slice.

【0010】このヒストグラムでは石灰化を伴なわない
甲状腺組織では図1に示すように、CT値が正規分布に
近い分布(一峰性又は二峰性)を示すが、石灰化を伴な
う甲状腺組織では図2に示すように、CT値が正規分布
に近い分布に加えてCT値の高い側に平坦な分布を持
つ。
In this histogram, the thyroid tissue without calcification shows a CT value distribution close to a normal distribution (unimodal or bimodal) as shown in FIG. 1, but thyroid tissue with calcification Then, as shown in FIG. 2, in addition to the distribution in which the CT value is close to the normal distribution, the CT value has a flat distribution on the higher CT value side.

【0011】ここで測定しようとする甲状腺組織に石灰
化がある場合にのみ、正規分布に近い分布とCT値の高
い側の平坦な分布との分離点をヒストグラム上で指定
し、この分離点より高いCT値は次のヨウ素濃度計算か
ら除外し、以下に示す(3)式にてヨウ素濃度を算出す
る。
Only when the thyroid tissue to be measured has calcification, the separation point between the distribution close to the normal distribution and the flat distribution on the high CT value side is designated on the histogram. The high CT value is excluded from the next iodine concentration calculation, and the iodine concentration is calculated by the following equation (3).

【0012】これは、石灰化部分を除く甲状腺組織につ
いてのみ、X線CTの最小単位面積である各々のピクセ
ルのCT値に対して、そのCT値がtc HU以上の時に
はそのCT値を以下に示す一般式(2) に代入してヨウ素
濃度を求める。なお、(2)式は(1)式の一般式であ
る。
This is because only for the thyroid tissue excluding the calcified part, when the CT value is t c HU or more with respect to the CT value of each pixel which is the minimum unit area of X-ray CT, the CT value is The iodine concentration is obtained by substituting it into the general formula (2) shown in. The expression (2) is a general expression of the expression (1).

【数2】 ヨウ素濃度(mg/g)=(CT値−tc )/td ……(2) 但し、tc は切片定数,td は傾き定数であって、CT
装置、特にX線管のターゲットに含まれる金属の組成に
よって決まり、発明者らの使用しているCT装置の場合
では、実測値からtc =65,td =104が最適と考
えられた。この数値を入れた式が(1)式である。
## EQU2 ## Iodine concentration (mg / g) = (CT value−t c ) / t d (2) where t c is an intercept constant and t d is a slope constant, and CT
It is determined by the composition of the apparatus, particularly the metal contained in the target of the X-ray tube, and in the case of the CT apparatus used by the inventors, t c = 65 and t d = 104 were considered optimal from the measured values. The equation containing this numerical value is the equation (1).

【0013】このヨウ素濃度にピクセルの面積とスライ
ス厚を乗じて求めた体積を乗じてボクセル内の総ヨウ素
量を求める。又、そのCT値がtc HU未満の時にはそ
のピクセル内のヨウ素濃度及びボクセル内の総ヨウ素量
を各々0mg/g及び0mgとする。これら全てのボク
セル内の総ヨウ素量を合計し、これを石灰化部分を除く
全てのボクセル内の体積の合計で除したものをその組織
のヨウ素濃度として算出したことに相当する。
The iodine concentration is multiplied by the volume obtained by multiplying the pixel area and the slice thickness to obtain the total amount of iodine in the voxel. When the CT value is less than t c HU, the iodine concentration in the pixel and the total iodine amount in the voxels are 0 mg / g and 0 mg, respectively. This is equivalent to calculating the iodine concentration of the tissue by summing the total amount of iodine in all these voxels and dividing this by the total of the volumes in all voxels excluding the calcified portion.

【0014】[0014]

【数3】 [Equation 3]

【0015】x:ヒストグラム上のあるCT値。 ax :あるCT値(x)を持つピクセル全体の面積。 aix:あるスライス(i)におけるあるCT値(x)を
持つピクセル全体の面積。 b:ヒストグラム上での石灰化成分の分離点のCT値。 l:ヒストグラム上での算出のCT値。 tc :切片の定数。 td :傾きの定数。 i:関心領域(ROI)を描いた全てのスライス(但
し、アーティファクトの多いスライス及び両上下端のス
ライスを除く。)。
X: A certain CT value on the histogram. a x : Area of the whole pixel having a certain CT value (x). a ix : Area of the whole pixel having a certain CT value (x) in a certain slice (i). b: CT value of the separation point of the calcification component on the histogram. l: CT value calculated on the histogram. t c : intercept constant. t d : slope constant. i: All slices that depict the region of interest (ROI) (excluding slices having many artifacts and slices at both upper and lower ends).

【0016】更に、石灰化部分を含めた関心領域の面積
とスライス厚の積の全てのスライスにおける和((4)
式)から測定しようとする甲状腺組織の体積を算出す
る。この体積と先程求めたヨウ素濃度の積を測定しよう
とする甲状腺組織の総ヨウ素量とする。
Further, the sum of the product of the area of the region of interest including the calcified portion and the slice thickness in all slices ((4)
The volume of the thyroid tissue to be measured is calculated from the formula). The product of this volume and the iodine concentration obtained above is the total amount of iodine in the thyroid tissue to be measured.

【0017】[0017]

【数4】 x:ヒストグラム上のあるCT値。 aix:あるスライス(i)におけるあるCT値(x)を
持つピクセル全体の面積。 s:スライス厚さ(cm)。 i:関心領域(ROI)を描いた全てのスライス(但
し、アーティファクトの多いスライス及び両上下端のス
ライスを含む。)。
[Equation 4] x: A certain CT value on the histogram. a ix : Area of the whole pixel having a certain CT value (x) in a certain slice (i). s: slice thickness (cm). i: All slices depicting the region of interest (ROI), including the slices with many artifacts and the slices at the upper and lower ends.

【0018】なお、CT値からヨウ素濃度への換算をC
T画素の最小単位であるピクセル及びボクセルで行なっ
たことにより、微量でしかも不均一な分布を示すヨウ素
濃度もより正確に測定できる。例えばtc 及びtd が夫
々65及び104で、甲状腺右葉及び左葉が同じ体積
で、CT値が夫々60HUと70HUだったとする。甲
状腺全体の平均CT値は65HUでヨウ素濃度は0mg
/gとなってしまうが、ヨウ素濃度を右葉と左葉で別々
に計算すると各々0mg/g及び0.048mg/gと
なり、実際には甲状腺全体のヨウ素濃度の平均は0.0
24mg/gである。このようにCT値からヨウ素濃度
への換算単位が小さければ小さいほど微量でしかも不均
一な分布を示すヨウ素濃度をより正確に測定できる。
The conversion from CT value to iodine concentration is C
By carrying out with pixels and voxels, which are the minimum units of T pixels, it is possible to more accurately measure the iodine concentration, which is a trace amount and has a non-uniform distribution. For example, suppose that t c and t d are 65 and 104, respectively, the right and left lobes of the thyroid have the same volume, and the CT values are 60 HU and 70 HU, respectively. Average CT value of the entire thyroid is 65 HU and iodine concentration is 0 mg
However, when the iodine concentration in the right lobe and that in the left lobe are calculated separately, they are 0 mg / g and 0.048 mg / g, respectively. Actually, the average iodine concentration in the entire thyroid is 0.0
It is 24 mg / g. Thus, the smaller the conversion unit from the CT value to the iodine concentration is, the more accurately the iodine concentration exhibiting a non-uniform distribution can be measured more accurately.

【0019】[0019]

【実施例】以下実施例を説明する。使用器具はCT装置
として東芝製TCT−900Sを使用し、撮影条件はス
ライス厚5mm,連続ピッチ5mm,管電圧120K
V,管電流150mA,撮影時間2秒,画像matri
x 512×512とし、ヨウ素濃度換算係数はtc
65,td =104とした。対象は手術前に上記の条件
で甲状腺CT検査が行なわれ、手術によって摘出標本が
得られた51病変(CT上石灰化のない29病変,CT
上石灰化のある22病変)について行なった。
EXAMPLES Examples will be described below. The equipment used is a TCT-900S manufactured by Toshiba as a CT device, and the imaging conditions are: slice thickness 5mm, continuous pitch 5mm, tube voltage 120K.
V, tube current 150mA, shooting time 2 seconds, image matri
x 512 x 512, and the iodine concentration conversion coefficient is t c =
65, and a t d = 104. Thyroid CT examination was performed on the subject under the above conditions before surgery, and 51 lesions (29 lesions without calcification on CT, CT
(22 lesions with upper calcification).

【0020】放射化分析(Neutorn Activ
ation Analysis)について。手術で摘出
した標本は分析を行なうときまでホルマリン溶液内に保
存された。この標本から5〜200mgの大きさのサン
プルを1〜4個切り出し、正確に重さを測定してからポ
リエチエンシートで密封し、一定量の標準物質(NH4
I)と共に原子炉(TRIGA Mark II)にて一
定時間中性子を照射した後、サンプル及び標準物質から
放出されるγ線を測定し、これによって各々のサンプル
のヨウ素濃度を算出した。複数個のサンプルを切り出し
た場合はそれらの平均ヨウ素濃度を標本のヨウ素濃度と
した。CT上石灰化のある標本ではできる限り石灰化の
ない部分をサンプルとした。
Activation analysis (Neutorn Activ)
ation Analysis). The surgically excised specimens were stored in formalin solution until the time of analysis. From this specimen, 1 to 4 samples of 5 to 200 mg in size were cut out, the weight was accurately measured, and the sample was sealed with a polyethylene sheet, and a fixed amount of standard substance (NH 4
After irradiating neutrons together with I) in a nuclear reactor (TRIGA Mark II) for a certain period of time, the γ-rays emitted from the sample and the standard substance were measured, and thereby the iodine concentration of each sample was calculated. When a plurality of samples were cut out, the average iodine concentration thereof was used as the iodine concentration of the sample. In a specimen with calcification on CT, a portion without calcification was used as a sample.

【0021】結果は図3に示される。なお、図3は放射
化分析によるヨウ素濃度とCTで測定されたヨウ素濃度
との関係を、石灰化を伴なわない甲状腺組織と石灰化を
伴なう甲状腺組織とに分け、夫々を対比して示したもの
である。又、図4はCTにより算出されたヨウ素濃度と
放射化分析により測定されたヨウ素濃度との相関図であ
り、白丸が石灰化を伴なわないもの、黒丸が石灰化を伴
なうものを夫々示す。
The results are shown in FIG. Note that FIG. 3 shows the relationship between the iodine concentration by activation analysis and the iodine concentration measured by CT, divided into thyroid tissue without calcification and thyroid tissue with calcification, and comparing them. It is shown. FIG. 4 is a correlation diagram between the iodine concentration calculated by CT and the iodine concentration measured by activation analysis. White circles are not accompanied by calcification and black circles are accompanied by calcification. Show.

【0022】図からわかるように、放射化分析によって
測定されたヨウ素濃度と、CTによって測定されたヨウ
素濃度との間には非常に良い相関(y=0.00648
+0.999x,n=51,r=0.96)が認められ
た。しかも石灰化のない甲状腺組織と石灰化のある甲状
腺組織との間で、その相関に有意差は認められなかった
(共分散分析でp>0.1)。したがって、甲状腺組織
内のヨウ素濃度は石灰化の有無に拘らず非常に正確に測
定されているものと考えられた。
As can be seen from the figure, there is a very good correlation (y = 0.00648) between the iodine concentration measured by activation analysis and the iodine concentration measured by CT.
+ 0.999x, n = 51, r = 0.96) was recognized. Moreover, there was no significant difference in the correlation between non-calcified thyroid tissue and calcified thyroid tissue (covariance analysis p> 0.1). Therefore, it was considered that the iodine concentration in thyroid tissue was measured very accurately regardless of the presence or absence of calcification.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば検
出されたCT値からヨウ素濃度への換算をCT画素の算
出単位であるピクセル及びボクセルで行ない、かつ、C
T値のヒストグラムで石灰化のCT値を除外するように
したので、以下列挙する効果を奏する。 CT装置は全国的に汲まなく普及しているため、生
体内の甲状腺組織のヨウ素濃度が簡単に、かつ短時間で
測定できる。 CTは空間分解能が非常に優れているので、周囲の
甲状腺組織に影響されることなく特定の部分のヨウ素濃
度などが簡単に測定できる。 CTはX線吸収率を測定しているため、原子番号が
非常に大きいヨウ素原子に対して非常に感度が良く、し
かも頚の形態に殆んど影響されない。 石灰化の影響を受けることなくヨウ素濃度などを正
確に測定できる。 CTを用いることによって、ヨウ素濃度のみならず
同時に体積をも測定できるので、甲状腺全体,甲状腺腫
瘍など関心領域(ROI)で自由に選択した部分の体
積,ヨウ素濃度,総ヨウ素量を一度に求めることができ
る。 特に病変部のヨウ素濃度は、びまん性甲状腺疾患に
おける診断・手術適応の判定・治療効果の判定などに非
常に役立ち、又、甲状腺腫瘤における診断及び良悪性の
判定・経過観察及び手術適応の判定などに非常に役立
つ。 特定のCT値を持つ部分の面積・体積を簡単に測定
できることから、肥満評価のための内臓脂肪・皮下脂肪
などの面積・体積の測定などにも応用できる。
As described above, according to the present invention, the detected CT value is converted into the iodine concentration by the pixel and voxel which are the calculation units of the CT pixel, and C
Since the CT value of calcification is excluded from the T value histogram, the following effects are achieved. Since CT devices are widely used nationwide, it is possible to easily measure the iodine concentration of thyroid tissue in a living body in a short time. Since CT has a very good spatial resolution, it is possible to easily measure the iodine concentration at a specific portion without being affected by the surrounding thyroid tissue. Since CT measures X-ray absorptance, it is very sensitive to iodine atoms, which have a very large atomic number, and is almost unaffected by the morphology of the neck. The iodine concentration can be measured accurately without being affected by calcification. By using CT, not only the iodine concentration but also the volume can be measured at the same time. Therefore, the volume, iodine concentration, and total iodine amount of the entire thyroid gland, thyroid tumor, etc. selected freely in the region of interest (ROI) can be obtained at once. You can In particular, the iodine concentration in the lesion area is very useful for diagnosing diffuse thyroid disease, determining the indication for surgery, determining the therapeutic effect, etc., and diagnosing thyroid tumors, determining whether benign or malignant, observing and determining the indication for surgery. Very helpful to. Since the area / volume of a portion having a specific CT value can be easily measured, it can be applied to the measurement of the area / volume of visceral fat / subcutaneous fat for evaluating obesity.

【図面の簡単な説明】[Brief description of drawings]

【図1】石灰化を伴なわない甲状腺組織のCT値のヒス
トグラムを整理して示す図。
FIG. 1 is a diagram showing an organized histogram of CT values of thyroid tissue without calcification.

【図2】石灰化を伴なった甲状腺組織のCT値のヒスト
グラムを整理して示す図。
FIG. 2 is a diagram showing an organized histogram of CT values of thyroid tissue with calcification.

【図3】実際に使用した甲状腺資料について、放射化分
析とCTにて測定されたヨウ素濃度の対比図。
FIG. 3 is a comparison diagram of iodine concentration measured by activation analysis and CT for thyroid data actually used.

【図4】図3の測定結果からヨウ素濃度について作成し
た相関図。
FIG. 4 is a correlation diagram created for iodine concentration from the measurement results of FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 頚部のX線CTを撮影してヨウ素量を測
定する甲状腺ヨウ素量の測定方法において、全甲状腺を
一定のスライス厚,連続ピッチ及び一定の撮影条件にて
X線CTを撮影し、病変のある全てのスライスに対して
関心領域を設定すると共に、各スライスに対し、関心領
域内のCT値のヒストグラムを作成し、甲状腺に石灰化
がある場合はCT値の高い側の平坦な分布との分離点を
ヒストグラム上で指定して次のヨウ素濃度計算から除外
するようにし、石灰化を除く甲状腺組織についてのみX
線CTの最小単位面積である各々のピクセルのCT値に
対して、そのCT値が所定値以上である時には所定の計
算式を用いてヨウ素濃度を求め、このヨウ素濃度にピク
セルの面積とスライス厚を乗じて求めた体積を乗じてボ
クセル内の総ヨウ素量を求め、全てのボクセル内の総ヨ
ウ素量を合計し、かつ石灰化部分を除く全てのボクセル
内の体積の合計で除して当該組織のヨウ素濃度とするこ
とを特徴とする甲状腺ヨウ素量の測定方法。
1. A method for measuring the amount of iodine in a thyroid gland, which measures the amount of iodine by imaging an X-ray CT of a cervix, by imaging the whole thyroid gland with a constant slice thickness, continuous pitch and constant imaging conditions. Set a region of interest for all slices with lesions, create a histogram of CT values in the region of interest for each slice, and if there is calcification in the thyroid gland, flatten the side with higher CT values. The separation point from the distribution is specified on the histogram so that it is excluded from the next iodine concentration calculation, and only the thyroid tissue excluding calcification is X
For the CT value of each pixel, which is the minimum unit area of the line CT, when the CT value is greater than or equal to a predetermined value, the iodine concentration is calculated using a predetermined calculation formula, and the iodine concentration is used to determine the pixel area and the slice thickness. The total amount of iodine in the voxel is multiplied by the volume obtained by multiplying the total iodine amount in all voxels, and divided by the total volume in all voxels excluding the calcified part A method for measuring the amount of iodine in thyroid, which is characterized in that
JP6082298A 1994-03-29 1994-03-29 Measurement device for iodine in thyroid gland Expired - Lifetime JP2630911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6082298A JP2630911B2 (en) 1994-03-29 1994-03-29 Measurement device for iodine in thyroid gland

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6082298A JP2630911B2 (en) 1994-03-29 1994-03-29 Measurement device for iodine in thyroid gland

Publications (2)

Publication Number Publication Date
JPH07265299A true JPH07265299A (en) 1995-10-17
JP2630911B2 JP2630911B2 (en) 1997-07-16

Family

ID=13770650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6082298A Expired - Lifetime JP2630911B2 (en) 1994-03-29 1994-03-29 Measurement device for iodine in thyroid gland

Country Status (1)

Country Link
JP (1) JP2630911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524754A (en) * 2008-02-13 2011-09-08 キットウェア インク Method and system for measuring cell damage and disease risk
KR20200090288A (en) * 2019-01-18 2020-07-29 고려대학교 산학협력단 System and Method for Classifying Thyroid Lesions Using Dual-Energy CT Iodine Quantification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544511A4 (en) * 2016-11-23 2020-08-19 Mayo Foundation for Medical Education and Research System and method for quantifying luminal stenosis using multi-energy computed tomography imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524754A (en) * 2008-02-13 2011-09-08 キットウェア インク Method and system for measuring cell damage and disease risk
KR20200090288A (en) * 2019-01-18 2020-07-29 고려대학교 산학협력단 System and Method for Classifying Thyroid Lesions Using Dual-Energy CT Iodine Quantification

Also Published As

Publication number Publication date
JP2630911B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP3468770B2 (en) Apparatus and method for quantifying calcium density
Yoon et al. Coronary artery calcium: alternate methods for accurate and reproducible quantitation
Chang et al. Computed tomographic evaluation of the breast
US6654445B2 (en) Device and method for determining proportions of body materials
US8186880B1 (en) Extended and fixed INTable simultaneously imaged calibration and correction methods and references for 3-D imaging devices
Cann Low-dose CT scanning for quantitative spinal mineral analysis.
Louis et al. Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens
US7319739B2 (en) Imaging method based on two different x-ray spectra
Shepherd et al. Novel use of single X-ray absorptiometry for measuring breast density
Celenk et al. Bone density measurement using computed tomography
US8517608B1 (en) System and method for calibration of CT scanners and display of images in density units without the use of water phantoms
US20230248327A1 (en) A system and method for the quantification of contrast agent
US7822253B2 (en) Methods and apparatus for BMD measuring
Mayo Radiation dose issues in longitudinal studies involving computed tomography
US20190021682A1 (en) System and Method for Low X-Ray Dose Breast Density Evaluation
Tobis et al. Measurement of left ventricular ejection fraction by videodensitometric analysis of digital subtraction angiograms
Tongkum et al. Determination of radiation dose and low-dose protocol for digital chest tomosynthesis using radiophotoluminescent (RPL) glass dosimeters
Skiöldebrand et al. Determination of left ventricular mass by computed tomography
JP2630911B2 (en) Measurement device for iodine in thyroid gland
Geleijns et al. AMBER and conventional chest radiography: comparison of radiation dose and image quality.
Arnold et al. Peak SNR in automated coronary calcium scoring: Selecting CT scan parameters and statistically defined scoring thresholds a
Dinten et al. X-ray scatter correction for dual-energy x-ray absorptiometry: compensation of patient’s lean/fat composition
Partain et al. Iodine contrast cone-beam CT imaging of breast cancer
EDUFUL Determination of Liver Volume Model of an Adult Ghanaian From Some Selected Health Centers for Clinical Applications and Dose Optimization
Tang et al. Effects of particle size, slice thickness, and reconstruction algorithm on coronary calcium quantitation using ultrafast computed tomography

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees