JPH07263512A - Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method - Google Patents

Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method

Info

Publication number
JPH07263512A
JPH07263512A JP5574094A JP5574094A JPH07263512A JP H07263512 A JPH07263512 A JP H07263512A JP 5574094 A JP5574094 A JP 5574094A JP 5574094 A JP5574094 A JP 5574094A JP H07263512 A JPH07263512 A JP H07263512A
Authority
JP
Japan
Prior art keywords
dimer
semiconductor
density
semiconductor substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5574094A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kobayashi
康之 小林
Naoki Kobayashi
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5574094A priority Critical patent/JPH07263512A/en
Publication of JPH07263512A publication Critical patent/JPH07263512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a measuring method for the dimer density of the outer surface of a semiconductor for measuring the dimer density of the outer growing surface of a compound semiconductor during crystal growth and an organic metal vapor phase growing method using said measuring method. CONSTITUTION:P-polarized incident light 12 is radiated near the angle of polarization to the surface of a semiconductor substrate 11 being crystal-growing on the surface, reflected light 13 obtained by reflection from the surface of the semiconductor substrate 11 is detected, and the situation of the surface of the semiconductor substrate is observed from the difference in reflectance of the reflected light 13. At this time, while crystal-growing on a plurality of sloped substrates having difference angles of slope, the relation between the decrease in dimer density of the surface of a sloped substrate in response to the increase of the sloped angle and the change in the difference of reflectance is measured in advance and, in this way, the information of the change in reflectance difference signal due to the surface dimer density obtained is compared to the reflectance difference signal obtained from the reflected light detected, and the dimer density of the top surface layer of the semiconductor substrate is measured at that place.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はIII −V族化合物半導体
の結晶成長における成長最表面の原子あるいは分子の結
合状態の測定およびそれを用いた結晶成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of the bonding state of atoms or molecules on the outermost growth surface in the crystal growth of III-V group compound semiconductors and a crystal growth method using the same.

【0002】[0002]

【従来の技術】光機能素子あるいは電子機能素子を実現
するためには、高品質なIII −V族化合物半導体の結晶
成長技術の向上が不可欠である。最近では、半導体量子
井戸構造による高度な光・電子機能素子の実現をめざし
て、III −V族化合物半導体基板上に原子オーダーで制
御しつつ成長させた半導体薄膜を、複数積層する原子オ
ーダー結晶成長技術が進展しつつある。半導体基板上へ
の原子オーダーでの結晶成長技術を確立するためには、
結晶成長メカニズムの理解と結晶成長最表面の観測・分
析技術の向上が不可欠である。
2. Description of the Related Art In order to realize an optical functional device or an electronic functional device, it is indispensable to improve the crystal growth technique for a high quality III-V compound semiconductor. Recently, in order to realize an advanced optical / electronic functional device having a semiconductor quantum well structure, a plurality of semiconductor thin films grown under control in atomic order on a III-V compound semiconductor substrate are stacked to form atomic order crystal growth. Technology is evolving. In order to establish atomic-order crystal growth technology on semiconductor substrates,
It is essential to understand the crystal growth mechanism and improve the observation and analysis technology for the outermost surface of crystal growth.

【0003】III −V族化合物半導体の結晶成長の最表
面を原子オーダーで観測・分析する技術として走査型ト
ンネル顕微鏡(STM)が良く知られている。STMに
よる最表面観察では、半導体最表面には半導体構成材料
の原子、分子が多様な結合状態で表面構造を形成してい
ることが知られている。代表例としては、M.D.Pa
shley,K.W.Hab erern,W.Fri
day,J.M.Woodall and P.D.K
irchnerによる論文“Structure o
f GaAs(001)(2×4)−c(2×8)De
termined by Scanning Tu n
neling Microscopy”,Phys.R
ev.Lett.60,(1988),2176に開示
されている、GaAsの(001)基板の最表面の観察
を挙げることができる。M.D.Pashleyたち
は、GaAs(2×4)表面の観察より、(2×4)構
造の(4×)周期性がAsダイマー列欠損構造によるこ
と、すなわち規則的なAsダイマー列の消失により生じ
ていることを明らかにした。ここで、ダイマーとは二量
体のことで、2個の分子が重合して生じる物質で、Ga
Asの表面ではAs同士が結合してダイマーが形成され
る。
A scanning tunneling microscope (STM) is well known as a technique for observing and analyzing the outermost surface of crystal growth of a III-V group compound semiconductor in atomic order. It is known by STM observation of the outermost surface that the atoms and molecules of the semiconductor constituent material form a surface structure in various bonding states on the outermost surface of the semiconductor. As a typical example, M. D. Pa
shley, K .; W. Hab erern, W.M. Fri
day, J.M. M. Woodall and P.W. D. K
irchner's paper "Structure o
f GaAs (001) (2 × 4) -c (2 × 8) De
terminated by Scanning Tun
nelling Microscopy ”, Phys.R
ev. Lett. No. 60, (1988), 2176, and observation of the outermost surface of a (001) substrate of GaAs can be mentioned. M. D. Pashley et al. Observed from observation of the GaAs (2 × 4) surface that the (4 ×) periodicity of the (2 × 4) structure is due to the As dimer row defect structure, that is, the regular disappearance of the As dimer row. It revealed that. Here, the dimer is a dimer, which is a substance formed by the polymerization of two molecules, and Ga
On the surface of As, As binds to each other to form a dimer.

【0004】GaAs,InP等の化合物半導体の高品
質化やInGaAs/InP等のヘテロ界面の高品質化
を行うためには、前記ダイマーの密度を定量的にその場
観測する必要がある。その理由は、化合物半導体の結晶
最表面には構成原料の結晶成長条件により、過剰なダイ
マーが存在することとなり、その上に化合物半導体の分
子層を形成すると、過剰なダイマーにより原子オーダー
で急峻なヘテロ界面が形成できなかったり、逆に過剰な
ダイマーが新たな化合物半導体の分子層の最表面に移動
したりするため、化合物半導体成長薄膜層のストイキオ
メトリィーがずれ、結晶成長層の品質の低下を招くこと
になる。従って、半導体最表面のダイマー密度の観測は
III −V族化合物半導体の結晶成長にはきわめて重要な
課題であり、分析感度の高い観測方法の確立が要求され
ている。
In order to improve the quality of compound semiconductors such as GaAs and InP and the quality of hetero interfaces such as InGaAs / InP, it is necessary to quantitatively observe the dimer density in-situ. The reason is that an excessive dimer exists on the outermost surface of the crystal of the compound semiconductor depending on the crystal growth conditions of the constituent raw materials, and when a molecular layer of the compound semiconductor is formed thereon, the excessive dimer causes a sharp dip in atomic order. The hetero interface cannot be formed, or excessive dimer moves to the outermost surface of the molecular layer of the new compound semiconductor, so that the stoichiometry of the compound semiconductor growth thin film layer is deviated and the quality of the crystal growth layer is deteriorated. Will lead to a decline. Therefore, the observation of the dimer density on the outermost surface of the semiconductor is
This is an extremely important issue for crystal growth of III-V group compound semiconductors, and establishment of an observation method with high analytical sensitivity is required.

【0005】従来のSTMによるダイマー密度の観測方
法は、結晶成長基板の表面を深針により直接走査しトン
ネル電流を測定するため、化合物半導体結晶成長室と成
長表面の分析・観測室を分離する必要があり、半導体基
板の移動の必要性、半導体多層膜の成長時間の長時間化
および結晶への不純物の混入の可能性などの問題点があ
る。また、トンネル電流を測定するために、観測試料に
よってはSi元素などのドーピングが必要な場合もあ
る。
In the conventional method of observing the dimer density by STM, the surface of the crystal growth substrate is directly scanned with a deep needle to measure the tunnel current, so that it is necessary to separate the compound semiconductor crystal growth chamber and the analysis / observation chamber of the growth surface. However, there are problems such as the necessity of moving the semiconductor substrate, the long growth time of the semiconductor multilayer film, and the possibility of impurities being mixed into the crystal. Further, in order to measure the tunnel current, doping with Si element or the like may be necessary depending on the observation sample.

【0006】一方、有機金属気相成長方法(MOCVD
法)での結晶成長中での成長表面の観察方法としては、
光の反射を利用するものとして表面光吸収法(Surf
ace Photo Absorption:略称SP
A法)がある。これは可視光、紫外光をp偏光し、半導
体基板表面にブリュースター角で入射し、その反射光を
測定することにより、成長表面の吸着原子あるいは分子
に含まれる化学結合の電子遷移に対応した反射率変化を
観測するものである。
On the other hand, the metal organic chemical vapor deposition method (MOCVD
Method for observing the growth surface during crystal growth,
The surface light absorption method (Surf) is used to utilize the reflection of light.
ace Photo Absorption: Abbreviation SP
A method). This corresponds to the electronic transition of the chemical bond contained in the adsorbed atom or molecule on the growth surface by p-polarizing visible light and ultraviolet light, entering the semiconductor substrate surface at Brewster's angle, and measuring the reflected light. The change in reflectance is observed.

【0007】図7はこのSPA法を説明するための概略
図である。MOCVDの反応管4のサセプタ5には半導
体基板6が装着される。反応管4の周囲の一方側には、
光源1、チョッパ2および偏光子3が、他方側には光検
出部7がそれぞれ配置されており、光源1から出射され
て偏光子3でp偏光にされた光が半導体基板6に出射さ
れ、その反射光が光検出部7で検出される。具体的に
は、光源1を出た光は偏光子3によってp偏光に変えら
れて、半導体基板6表面にブリュースター角で入射され
る。入射光のうち、結晶表面の吸着分子あるいは原子に
含まれる化学結合の電子遷移に対応した光が吸収される
ので、光検出部7で検出された反射光は、その遷移に対
応した反射率の変化を示す。この反射率の変化から原料
ガスの分解、脱離、表面構造等の情報が、成長表面内の
異方性の有無によらず、高い感度で検出可能となる。
FIG. 7 is a schematic diagram for explaining this SPA method. A semiconductor substrate 6 is mounted on the susceptor 5 of the MOCVD reaction tube 4. On one side around the reaction tube 4,
The light source 1, the chopper 2, and the polarizer 3 are arranged on the other side, and the photodetector 7 is arranged on the other side, and the light emitted from the light source 1 and p-polarized by the polarizer 3 is emitted to the semiconductor substrate 6, The reflected light is detected by the light detector 7. Specifically, the light emitted from the light source 1 is converted into p-polarized light by the polarizer 3 and is incident on the surface of the semiconductor substrate 6 at Brewster's angle. Of the incident light, the light corresponding to the electronic transition of the chemical bond contained in the adsorbed molecule or atom on the crystal surface is absorbed, so that the reflected light detected by the photodetection unit 7 has the reflectance corresponding to the transition. Show changes. Based on this change in reflectance, information such as decomposition and desorption of the raw material gas and surface structure can be detected with high sensitivity regardless of the presence or absence of anisotropy in the growth surface.

【0008】以上述べたように、SPA法は半導体成長
表面の吸着原子あるいは分子に含まれる化学結合の電子
遷移が反射率変化として検出されるので、成長表面の異
方性の有無にかかわらず、結晶成長表面を原子オーダー
で、しかもリアルタイムで分析できる(特開平3−17
4739号公報参照)。実際、SPA法によりGaAs
の結晶成長の様子を観測すると、一分子層の成長ごとに
観測信号が周期的な信号を検出し、反射高エネルギー電
子解析(RHEED)信号と同様に、成長最表面を原子
オーダーで検出していることがわかっている。
As described above, in the SPA method, the electronic transition of the chemical bond contained in the adsorbed atom or molecule on the semiconductor growth surface is detected as the change in reflectance, so that regardless of whether the growth surface is anisotropic or not. The crystal growth surface can be analyzed in atomic order and in real time (JP-A-3-17).
4739 publication). In fact, according to the SPA method, GaAs
When observing the state of crystal growth, the observation signal detects a periodic signal for each growth of one molecular layer, and the uppermost surface of the growth is detected in atomic order like the reflected high energy electron analysis (RHEED) signal. I know that

【0009】しかしながら、このSPA方法において
も、表面のダイマー密度を測定することはできない。そ
の理由は、反射信号と表面のダイマー密度との関係が明
らかとなっていないためである。
However, even with this SPA method, the dimer density on the surface cannot be measured. The reason is that the relationship between the reflected signal and the surface dimer density is not clear.

【0010】[0010]

【発明が解決しようとする課題】以上述べたように、従
来のダイマー密度の観測方法は、化合物半導体結晶成長
室と成長表面の分析・観察室を分離する必要があり、さ
らに、観測のたびに半導体結晶成長基板を移動する必要
があり、このため、半導体多層膜の成長時間の長時間化
および結晶への不純物の混入の可能性などの問題点があ
る。また、観察試料によってはSi元素などのドーピン
グが必要な場合もある。一方、SPA観察方法において
も、成長層の成長中に最表面の化学結合信号を観測でき
るが、観測信号と最表面のダイマー密度との関係が明確
に対応していないという課題があった。
As described above, in the conventional method for observing the dimer density, it is necessary to separate the compound semiconductor crystal growth chamber and the analysis / observation chamber for the growth surface, and further, each time the observation is carried out. Since it is necessary to move the semiconductor crystal growth substrate, there are problems such as a longer growth time of the semiconductor multilayer film and the possibility of impurities being mixed into the crystal. Further, depending on the observation sample, it may be necessary to dope the Si element or the like. On the other hand, even in the SPA observation method, the chemical bond signal on the outermost surface can be observed during the growth of the growth layer, but there is a problem that the relationship between the observed signal and the dimer density on the outermost surface does not correspond clearly.

【0011】本発明は、上記の課題である結晶成長中で
の化合物半導体の成長最表面のダイマー密度を測定する
半導体最表面ダイマー密度の測定方法およびそれを用い
た有機金属気相成長方法を提供することを目的とする。
The present invention provides a method for measuring the outermost surface dimer density of a semiconductor for measuring the dimer density on the outermost growth surface of a compound semiconductor during crystal growth, which is the above-mentioned problem, and a metal organic chemical vapor deposition method using the same. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】前記目的を達成する本発
明の第1の態様は、表面に結晶成長させている半導体基
板表面にp偏光した入射光をブリュースター角近傍で照
射して当該半導体表面から反射して得られる反射光を検
出し、検出した反射光から求める反射率差から前記半導
体基板表面の状況を観測する方法において、傾斜角度の
異なる複数の傾斜基板に結晶成長させつつ、傾斜角度の
増加にともなう傾斜基板表面のダイマー密度の減少と反
射率差の変化との関係をあらかじめ測定しておくことに
より求めた表面ダイマー密度による反射率差信号の変化
の情報と、前記検出した反射光から得た反射率差信号
と、を対比させて、前記半導体基板最表面層のダイマー
密度をその場測定することを特徴とする半導体最表面ダ
イマー密度の測定方法にある。
A first aspect of the present invention for achieving the above object is to irradiate a surface of a semiconductor substrate having a crystal grown on the surface thereof with p-polarized incident light in the vicinity of Brewster's angle. In the method of detecting the reflected light obtained by reflecting from the surface, and observing the situation of the semiconductor substrate surface from the reflectance difference obtained from the detected reflected light, while growing crystals on a plurality of inclined substrates with different inclination angles, Information on the change of the reflectance difference signal due to the surface dimer density obtained by measuring the relationship between the decrease of the dimer density of the inclined substrate surface with the increase of the angle and the change of the reflectance difference in advance, and the detected reflection A reflectance difference signal obtained from light, and a method for measuring the outermost surface dimer density of the semiconductor, characterized by performing in-situ measurement of the dimer density of the outermost surface layer of the semiconductor substrate. Located in.

【0013】本発明の第2の態様は、第1の態様におい
て、傾斜角度の異なる複数の傾斜基板は、III −V族化
合物半導体の(001)面から[−110]方向、また
は[110]方向に傾斜させた複数の基板であることを
特徴とする半導体最表面ダイマー密度の測定方法にあ
る。
According to a second aspect of the present invention, in the first aspect, the plurality of tilted substrates having different tilt angles are in the [-110] direction or the [110] direction from the (001) plane of the III-V group compound semiconductor. A method for measuring the outermost semiconductor surface dimer density is characterized in that a plurality of substrates are inclined in the direction.

【0014】本発明の第3の態様は、結晶成長用反応容
器内に半導体基板を装着し、有機金属原料を供給して該
半導体基板に半導体多層膜を結晶成長させる有機金属気
相成長方法において、該半導体多層膜の結晶成長中に該
半導体基板にp偏光した入射光をブリュースター角近傍
で照射し、該半導体基板の表面から反射して得られる反
射光を検出し、傾斜角度の異なる複数の傾斜基板に結晶
成長させつつ、傾斜角度の増加にともなう、傾斜基板表
面のダイマー密度の減少と反射率差の変化との関係をあ
らかじめ測定しておくことにより求めた表面ダイマー密
度による反射率差信号の変化の情報と、前記検出した反
射光から得た反射率差信号と、を対比させて、前記半導
体基板最表面層のダイマー密度をその場測定し、この測
定に基づいて前記半導体多層膜の結晶成長条件を制御す
ることを特徴とする有機金属気相成長方法にある。
A third aspect of the present invention is a metal-organic chemical vapor deposition method in which a semiconductor substrate is mounted in a reaction container for crystal growth, and an organic metal raw material is supplied to crystal-grow a semiconductor multilayer film on the semiconductor substrate. During the crystal growth of the semiconductor multilayer film, the semiconductor substrate is irradiated with p-polarized incident light in the vicinity of Brewster's angle, and reflected light obtained by being reflected from the surface of the semiconductor substrate is detected to detect a plurality of different tilt angles. The difference in reflectance due to the surface dimer density obtained by measuring the relationship between the decrease in the dimer density on the surface of the inclined substrate and the change in the difference in reflectance with the increase in the inclination angle while growing crystals on the inclined substrate Information on the change in the signal and the reflectance difference signal obtained from the detected reflected light are compared to measure the dimer density of the outermost surface layer of the semiconductor substrate in-situ, and based on this measurement, In metal-organic chemical vapor deposition method characterized by controlling the crystal growth conditions of the conductive multilayer film.

【0015】本発明の第4の態様は、第3の態様におい
て、傾斜角度の異なる複数の傾斜基板は、III −V族化
合物半導体の(001)面から[−110]方向、また
は[110]方向に傾斜させた複数の基板であることを
特徴とする有機金属気相成長方法にある。
According to a fourth aspect of the present invention, in the third aspect, the plurality of tilted substrates having different tilt angles are in the [-110] direction or the [110] direction from the (001) plane of the III-V group compound semiconductor. The metal-organic vapor phase epitaxy method is characterized in that a plurality of substrates are inclined in the direction.

【0016】ここで、結晶面に対する方向、例えば[−
110]方向の「−1」は、通常は「バー1」で表記す
るが、本明細書では「−1」で表記する(以下同様)。
Here, the direction with respect to the crystal plane, for example, [-
"-1" in the [110] direction is usually represented by "bar 1", but is represented by "-1" in the present specification (the same applies hereinafter).

【0017】[0017]

【作用】III −V族化合物半導体であるGaAsを例に
とって本発明の作用を図1を用いて説明する。基板温度
600℃、As照射下では、GaAs(001)面10
上には、GaAs(2×4)面が形成される。そして、
図1に示すように、GaAs(2×4)面においては、
Asダイマー11は、[−110]方向に沿った結合を
有している。この表面に対し[−110]方向から可視
または紫外域の光12をp偏光させてブリュースター角
近傍で入射し、その反射光13を、Asの供給を停止し
た表面(Ga面)と、As供給中の表面とに対し測定し
て反射率を求め、SPAスペクトルを得る。波長470
nm付近の光は[−110]方向に結合を有するAsダ
イマー11によって吸収され、Asダイマー11に電気
双極子が誘起され、同じ光を放出する。その結果Asダ
イマー密度に応じた反射率の増大が観測される。
The operation of the present invention will be described with reference to FIG. 1 using GaAs which is a III-V group compound semiconductor as an example. GaAs (001) surface 10 under As irradiation at a substrate temperature of 600 ° C.
A GaAs (2 × 4) plane is formed on the top. And
As shown in FIG. 1, in the GaAs (2 × 4) plane,
As dimer 11 has a bond along the [-110] direction. Light 12 in the visible or ultraviolet region is p-polarized and incident on the surface in the vicinity of the Brewster's angle from the [-110] direction, and the reflected light 13 is supplied to the surface (Ga surface) where the supply of As is stopped and As. The reflectance is obtained by measuring the reflectance with respect to the surface being supplied to obtain the SPA spectrum. Wavelength 470
Light near nm is absorbed by As dimer 11 having a bond in the [-110] direction, an electric dipole is induced in As dimer 11, and the same light is emitted. As a result, an increase in reflectance according to the As dimer density is observed.

【0018】(001)面から[−110]方向に傾斜
させた基板を用いると、傾斜角に依存してテラス幅が変
化する。傾斜角を大きくするほどテラス幅は小さくなり
表面のAsダイマー密度が減少する。すなわち、傾斜基
板を用いることにより、表面のダイマー密度を変化させ
ることができる。その基板に対しSPAスペクトルを測
定すると、Asダイマーの光吸収による反射率の増加分
(波長470nm付近における反射率の増加)が、(0
01)面に比較して減少する。この反射率の減少は表面
Asダイマー密度に比例するため、特定のAsダイマー
密度とSPAスペクトルを関係づけることが可能になる
とともに、波長470nmにおけるAsダイマー密度と
反射率の変化から、Asダイマーの光吸収係数を求める
ことが可能となる。
When a substrate tilted from the (001) plane in the [-110] direction is used, the terrace width changes depending on the tilt angle. As the tilt angle increases, the terrace width decreases and the As dimer density on the surface decreases. That is, the dimer density on the surface can be changed by using the inclined substrate. When the SPA spectrum is measured for the substrate, the increase in reflectance due to the light absorption of As dimer (the increase in reflectance near the wavelength of 470 nm) is (0
01) surface is reduced. Since this decrease in reflectance is proportional to the surface As-dimer density, it is possible to relate a specific As-dimer density to the SPA spectrum, and the change in As-dimer density and reflectance at the wavelength of 470 nm indicates that the As-dimer light It is possible to obtain the absorption coefficient.

【0019】この傾斜基板に対して求めたSPAスペク
トルとAsダイマー密度の関係およびAsダイマーの光
吸収係数より、成長条件により変化するAsダイマー密
度を成長中にその場観測することが可能になる。例えば
GaAs(001)基板について、基板温度600℃に
おいてAs照射下のAs圧を減少させると表面のAsダ
イマー密度が減少する。その成長条件でSPAスペクト
ルを測定し、傾斜基板に対して測定したAsダイマー密
度とSPAスペクトルの関係、Asダイマーの光吸収係
数を参照することにより、Asダイマー密度を成長中に
その場で測定できる。
From the relationship between the SPA spectrum and As dimer density obtained for this tilted substrate and the optical absorption coefficient of As dimer, the As dimer density which varies depending on the growth conditions can be observed in situ during growth. For example, for a GaAs (001) substrate, if the As pressure under As irradiation at a substrate temperature of 600 ° C. is reduced, the As dimer density on the surface decreases. By measuring the SPA spectrum under the growth conditions and referring to the relationship between the As dimer density and the SPA spectrum measured for the tilted substrate and the optical absorption coefficient of As dimer, the As dimer density can be measured in situ during growth. .

【0020】[0020]

【実施例】以下本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0021】(実施例1)GaAsを例にとって説明す
る。まず、(001)面から、[−110]方向に傾斜
させた基板について説明する。
(Embodiment 1) Description will be made taking GaAs as an example. First, a substrate tilted in the [-110] direction from the (001) plane will be described.

【0022】図2は、基板傾斜方位と表面構造の関係を
説明するための図であって、それぞれ(a)は傾斜のな
いGaAs(001)面20、(b)は(010)面か
ら[−110]方向に11.4度傾斜させた(117)
B面21、(c)は(010)面から[−110]方向
に25.2度傾斜させた(113)B面22について、
基板温度600℃においてAsの照射状態におけるAs
表面構造を示す。As面の構造としては、(2×4)構
造、ステップ(原子オーダーの段差)としては、シング
ルステップである。
2A and 2B are views for explaining the relationship between the substrate tilt direction and the surface structure. In FIG. 2, (a) is a non-tilted GaAs (001) plane 20, and (b) is from the (010) plane to [010] plane. Tilted 11.4 degrees in the -110] direction (117)
Regarding the B surface 21 and (c), the (113) B surface 22 inclined by 25.2 degrees from the (010) surface in the [-110] direction is
As in the As irradiation state at a substrate temperature of 600 ° C.
The surface structure is shown. The structure of the As plane is a (2 × 4) structure, and the step (step of atomic order) is a single step.

【0023】(a)の(001)面20においては、
[−110]方向に沿ったダイマー結合を有するAsダ
イマーが形成される。(b)の(117)B面21にお
いては、[−110]方向に11.4度傾斜させている
ため、テラス幅が小さくなり、1つのテラス上にAsダ
イマーが1個しか存在できなくなり、その結果(00
1)面20に比較して、[−110]方向に結合を有す
るAsダイマー密度が約半分に減少する。(c)の(1
13)B面22においては、[−110]に25.2度
傾斜させているため、テラス幅が(001)面、(11
7)B面21に比較してさらに小さくなり、1つのテラ
ス上にAsダイマーが1つも存在できなくなり、[11
0]方向に結合を有するAsダイマー密度が0となる。
On the (001) plane 20 of (a),
As dimers with dimer bonds along the [-110] direction are formed. In the (117) B plane 21 of (b), since it is tilted by 11.4 degrees in the [-110] direction, the terrace width becomes small, and only one As dimer can exist on one terrace. As a result (00
1) Compared to the surface 20, the As-dimer density having bonds in the [-110] direction is reduced to about half. (1) of (c)
13) Since the B plane 22 is inclined at [-110] by 25.2 degrees, the terrace width is (001) plane and (11) plane.
7) It becomes smaller than the B side 21, and no As dimer can exist on one terrace, and [11
The As dimer density having bonds in the [0] direction becomes 0.

【0024】GaAs(001)面20から[−11
0]方向に傾斜させた場合の傾斜角と対応する(11
n)面(nは正整数を示す)と、Asダイマー密度の対
応する関係を図3に示す。GaAs表面は、(2×4)
ダイマー列欠損(missingdimer)構造と
し、モノレイヤー(単分子層)およびバイレイヤー(2
分子層)ステップの2つの場合について示すものであ
る。図2においては、図1の模式図を用いて説明したよ
うに、傾斜角度を増加させていくと、Asダイマー密度
が減少していき、(117)面でAsダイマー密度が大
きく減少し、(113)面ではダイマーが形成されない
ことがわかる。また、バイレイヤー構造では、(11
4)面でAsダイマー密度が大きく減少し、(113)
面以上の大きな傾斜角度では、Asダイマーが形成され
ない。このように、(001)面から[−110]方向
に傾斜させた基板を用いることにより、表面のダイマー
密度を変化させることができる。そして、以下に示すよ
うに、この傾斜基板を用いたSPAスペクトル観察よ
り、SPAスペクトルとAsダイマー密度の関係、As
ダイマーの光吸収係数を求め、その情報を基に、成長条
件により変化するAsダイマー密度を、SPAスペクト
ルを用いてその場測定することが可能となる。
From the GaAs (001) plane 20 [-11
This corresponds to the tilt angle when tilted in the [0] direction (11
The corresponding relationship between the (n) plane (n is a positive integer) and the As dimer density is shown in FIG. GaAs surface is (2 x 4)
A dimer array missing (missing dimer) structure is used, and a monolayer (monolayer) and a bilayer (2
It shows about two cases of the (molecular layer) step. In FIG. 2, as described with reference to the schematic diagram of FIG. 1, as the tilt angle is increased, the As dimer density is reduced, and the As dimer density is significantly reduced on the (117) plane. It can be seen that no dimer is formed on the (113) plane. In the bilayer structure, (11
The As dimer density on the 4) plane is greatly reduced, and (113)
At a large inclination angle above the plane, As dimer is not formed. As described above, by using the substrate tilted from the (001) plane in the [-110] direction, the dimer density on the surface can be changed. Then, as shown below, from the observation of the SPA spectrum using this tilted substrate, the relationship between the SPA spectrum and the As dimer density, As,
It is possible to obtain the light absorption coefficient of the dimer, and based on this information, measure the As dimer density, which changes depending on the growth conditions, in-situ using the SPA spectrum.

【0025】図4に本発明を用いた結晶成長方法の実施
例を示す。同図に示すように、反応炉31は、V族水素
化物(AsH3 )ガス32および水素ガス33を供給す
るための供給管34を具備し、AsH3 ガス32の供給
を開始および停止するためのバルブ35が設けられてい
る。反応炉31内のサセプタ36には、半導体基板37
が載置されている。また、反応炉31の周囲には傾斜基
板37を加熱するための高周波(RF)コイル38が設
けられている。さらに、反応炉31の一方側には、半導
体基板37に対して可視または紫外光をブリュースター
角近傍で照射する光源39が偏光子40を介して配置さ
れ、他方側には、半導体基板37表面からの反射光を観
察するオプティカルマルチチャンネルアナライザ42が
配置されている。なお、オプティカルマルチチャンネル
アナライザ42は半導体表面からの反射光を300〜8
00nm付近の波長帯域にわたりスペクトルを測定する
ものである。
FIG. 4 shows an embodiment of a crystal growth method using the present invention. As shown in the figure, the reaction furnace 31 is equipped with a supply pipe 34 for supplying the group V hydride (AsH 3 ) gas 32 and the hydrogen gas 33, and for starting and stopping the supply of the AsH 3 gas 32. Valve 35 is provided. A semiconductor substrate 37 is provided on the susceptor 36 in the reaction furnace 31.
Is placed. A radio frequency (RF) coil 38 for heating the inclined substrate 37 is provided around the reaction furnace 31. Further, a light source 39 for irradiating the semiconductor substrate 37 with visible light or ultraviolet light in the vicinity of Brewster's angle is arranged on one side of the reaction furnace 31, and a surface of the semiconductor substrate 37 is arranged on the other side. An optical multi-channel analyzer 42 for observing the reflected light from is arranged. The optical multi-channel analyzer 42 measures the reflected light from the semiconductor surface by 300-8.
The spectrum is measured over a wavelength band near 00 nm.

【0026】このような装置を用い、まず、反応炉1内
のサセプタ36上に、GaAs(001)基板を基板3
7として載置し、水素ガス33とともに、バルブ35を
開けながらAsH3 ガス32を導入し、RFコイル38
により、基板37を600℃に加熱する。この状態で、
光源39から偏光子40を通したp偏光を基板37に
[−110]方位から照射し、オプティカルマルチチャ
ンネルアナライザ42により反射スペクトルを測定す
る。次に、バルブ32を閉じてAsH3 ガス32の供給
を停止した状態(この状態では基板表面からAsが蒸発
してGaのみの表面になる)で、再び光源39から偏光
子40を通したp偏光を基板37に照射し、オプティカ
ルマルチチャンネルアナライザ42により反射スペクト
ルを測定する。そして、両者の反射スペクトルの差から
SPAスペクトルを求める。
Using such a device, first, a GaAs (001) substrate is placed on the susceptor 36 in the reaction furnace 1 as a substrate 3.
7, the AsH 3 gas 32 is introduced together with the hydrogen gas 33 while opening the valve 35, and the RF coil 38
The substrate 37 is heated to 600 ° C. In this state,
The substrate 37 is irradiated with p-polarized light from the light source 39 through the polarizer 40 in the [-110] direction, and the reflection spectrum is measured by the optical multichannel analyzer 42. Next, with the valve 32 closed and the supply of the AsH 3 gas 32 stopped (in this state, As vaporizes from the substrate surface to become a Ga-only surface), the polarizer 40 is passed from the light source 39 again. The polarized light is irradiated on the substrate 37, and the reflection spectrum is measured by the optical multi-channel analyzer 42. Then, the SPA spectrum is obtained from the difference between the two reflection spectra.

【0027】次いで、基板37を、図3で説明した(0
01)面から[−110]方向の傾斜させた傾斜基板で
ある、(119)B、(118)B、(117)B面、
(116)B、(115)B、(114)B、(11
3)B面に変えて、(001)面同様に、原料を供給し
た状態および原料の供給を停止した状態のそれぞれの反
射スペクトルを測定し、両者の差からSPAスペクトル
を求める。
Then, the substrate 37 is described with reference to FIG.
(119) B, (118) B, (117) B planes, which are inclined substrates inclined in the [-110] direction from the (01) plane.
(116) B, (115) B, (114) B, (11
3) Similar to the (001) plane, instead of the B plane, the reflection spectra of the state in which the raw material is supplied and the state in which the raw material is stopped are measured, and the SPA spectrum is obtained from the difference between the two.

【0028】図5にGa面を基準として規格化したAs
面のSPAスペクトルを示す。入射方位は[−110]
方向である。GaAs(2×4)表面では、図1に示し
たように[−110]方向にAsダイマーが結合してお
り、Asダイマー結合により光吸収が生じ、(001)
面では、波長470nm付近においてAs面のレベルが
増加している。一方、(117)B面においては、図
2,図3を用いて説明したように、(001)面に比較
して、[−110]に傾斜しているため、テラス幅が小
さくなり、[−110]方向のAsダイマー密度が減少
するため、(001)面に比較して、図5に示すよう
に、波長470nm付近のAs面のレベルが低下する。
さらに、(113)B面においては、図2,図3を用い
て説明したように、(001)面、(117)B面に比
較して、テラス幅が小さくなり、[−110]方向にA
sダイマーが形成されないため、図5に示すように、
(001)面、(117)Bに比較して、波長470n
m付近のAs面のレベルが低下する。この(113)B
面のAs面のレベルがAsダイマー密度0に対応する。
FIG. 5 shows As standardized on the basis of the Ga plane.
The SPA spectrum of the surface is shown. Incident azimuth is [-110]
Direction. On the GaAs (2 × 4) surface, As dimers are bound in the [−110] direction as shown in FIG. 1, and light absorption occurs due to As dimer binding, resulting in (001)
In the plane, the level of the As plane increases near the wavelength of 470 nm. On the other hand, in the (117) B plane, as described with reference to FIGS. 2 and 3, as compared with the (001) plane, since it is inclined to [−110], the terrace width becomes smaller, and Since the As dimer density in the −110] direction decreases, the level of the As plane near the wavelength of 470 nm decreases as shown in FIG. 5, as compared with the (001) plane.
Further, in the (113) B plane, as described with reference to FIGS. 2 and 3, the terrace width is smaller than that in the (001) plane and the (117) B plane, and the [-110] direction is obtained. A
Since s-dimer is not formed, as shown in FIG.
Compared to the (001) plane and (117) B, the wavelength is 470n.
The level of As plane near m decreases. This (113) B
The level of the As plane of the plane corresponds to the As dimer density of 0.

【0029】図6に、図5で求めたSPAスペクトルか
ら、Asダイマーに光吸収を有する470nmの波長に
おけるGa面とAs面のSPA反射強度差のAsダイマ
ー密度依存性を示す。Asダイマー密度は、(001)
基板から[−110]に傾斜させた基板の傾斜角度より
求めている。得られたSPA反射強度差とAsダイマー
密度はほぼ比例関係にあり、このグラフを用いることに
より、単位面積のAsダイマー当たりの光吸収係数を求
めることができる。
FIG. 6 shows the As-dimer density dependence of the SPA reflection intensity difference between the Ga plane and the As-plane at the wavelength of 470 nm where the As-dimer has optical absorption from the SPA spectrum obtained in FIG. The As dimer density is (001)
It is calculated from the tilt angle of the substrate tilted from the substrate to [-110]. The obtained SPA reflection intensity difference and the As dimer density are in a substantially proportional relationship, and by using this graph, the light absorption coefficient per As dimer per unit area can be obtained.

【0030】求められたSPAスペクトルとAsダイマ
ー密度、およびAsダイマーの光吸収係数を基に、Ga
As(001)基板において異なる基板温度、異なるA
s圧下でSPAスペクトルを測定することにより、成長
中にその場でAsダイマー密度を測定することができ
る。
Based on the obtained SPA spectrum, As dimer density, and optical absorption coefficient of As dimer, Ga
Different substrate temperature, different A in As (001) substrate
By measuring the SPA spectrum under s pressure, the As dimer density can be measured in situ during growth.

【0031】すなわち、上述した反応炉31のサセプタ
36上に基板37((001)基板でも傾斜基板でもよ
い)を載置し、上述した例と同様に、基板37を加熱し
ながらAsH3 ガス32および水素ガス33を供給し
て、基板37上にGaAsを気相成長する。ここで、こ
の気相成長を行いながら同様に反射スペクトルを測定
し、ダイマー密度を測定する時点で一時的に原料供給を
停止して反射スペクトルを測定する。そして、これらの
反射スペクトルの差からSPAスペクトルを求め、この
SPAスペクトルと、上記ダイマー密度とSPAスペク
トルとの関係との比較から、成長途中のダイマー密度を
その場測定することができ、このデータに基づいて、随
時、成長条件(基板温度あるいは原料の供給量など)を
制御する。
That is, a substrate 37 (which may be a (001) substrate or a tilted substrate) is placed on the susceptor 36 of the reaction furnace 31 described above, and the AsH 3 gas 32 is heated while heating the substrate 37 as in the above-described example. Then, hydrogen gas 33 is supplied to vapor-deposit GaAs on the substrate 37. Here, the reflection spectrum is similarly measured while performing the vapor phase growth, and at the time of measuring the dimer density, the raw material supply is temporarily stopped and the reflection spectrum is measured. Then, the SPA spectrum is obtained from the difference between these reflection spectra, and by comparing this SPA spectrum with the relationship between the above-mentioned dimer density and the SPA spectrum, the dimer density during growth can be measured in-situ. Based on this, the growth conditions (substrate temperature, supply amount of raw material, etc.) are controlled at any time.

【0032】以上は、GaAsを例として本発明を詳細
に説明したが、InPや他のIII −V族化合物半導体や
混晶においても本発明は有効である。
Although the present invention has been described in detail above using GaAs as an example, the present invention is also effective for InP and other III-V group compound semiconductors and mixed crystals.

【0033】[0033]

【発明の効果】以上説明したように、本発明によると、
III −V族化合物半導体の結晶成長中での最表面ダイマ
ー密度がその場測定できるため、高品質でかつ急峻なヘ
テロ接合が実現でき、半導体量子井戸構造の多様な素子
はじめ、光機能、電子機能のデバイスを実現できる。
As described above, according to the present invention,
In-situ measurement of the outermost surface dimer density during crystal growth of III-V group compound semiconductors enables realization of high-quality and steep heterojunctions, and various devices including semiconductor quantum well structures, optical functions, and electronic functions. The device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動作原理を説明する図である。FIG. 1 is a diagram illustrating an operating principle of the present invention.

【図2】基板面方位と表面構造を説明する図である。FIG. 2 is a diagram illustrating a substrate plane orientation and a surface structure.

【図3】基板傾斜角度とAsダイマー密度の関係を示す
図である。
FIG. 3 is a diagram showing a relationship between a substrate tilt angle and an As dimer density.

【図4】本発明の実施例の概要を説明するための模式図
である。
FIG. 4 is a schematic diagram for explaining an outline of an embodiment of the present invention.

【図5】GaAs(2×4)As面のSPAスペクトル
を示す図である。
FIG. 5 is a diagram showing a SPA spectrum of a GaAs (2 × 4) As plane.

【図6】波長470nmにおける反射強度差とAsダイ
マー密度の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a reflection intensity difference at a wavelength of 470 nm and an As dimer density.

【図7】表面光吸収法を説明するための図である。FIG. 7 is a diagram for explaining a surface light absorption method.

【符号の説明】[Explanation of symbols]

10 半導体基板 11 Asダイマー 12 入射光 13 反射光 31 反応管 32 V族水素化物 33 水素ガス 34 供給管 35 バルブ 36 サセプタ 37 半導体基板 38 RFコイル 39 光源 40 偏光子 42 オプティカルマルチチャンネルアナライザー 10 Semiconductor Substrate 11 As Dimer 12 Incident Light 13 Reflected Light 31 Reaction Tube 32 V Group Hydride 33 Hydrogen Gas 34 Supply Tube 35 Valve 36 Susceptor 37 Semiconductor Substrate 38 RF Coil 39 Light Source 40 Polarizer 42 Optical Multichannel Analyzer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に結晶成長させている半導体基板表
面にp偏光した入射光をブリュースター角近傍で照射し
て当該半導体表面から反射して得られる反射光を検出
し、当該反射光から求める反射率差から前記半導体基板
表面の状況を観測する方法において、 傾斜角度の異なる複数の傾斜基板に結晶成長させつつ、
傾斜角度の増加にともなう傾斜基板表面のダイマー密度
の減少と反射率差の変化との関係をあらかじめ測定して
おくことにより求めた表面ダイマー密度による反射率差
信号の変化の情報と、前記検出した反射光から得た反射
率差信号と、を対比させて、前記半導体基板最表面層の
ダイマー密度をその場測定することを特徴とする半導体
最表面ダイマー密度の測定方法。
1. Reflected light obtained by irradiating p-polarized incident light on the surface of a semiconductor substrate having crystals grown on the surface in the vicinity of Brewster's angle, and detecting reflected light obtained from the semiconductor surface, and determining from the reflected light. In the method of observing the condition of the surface of the semiconductor substrate from the difference in reflectance, while growing crystals on a plurality of tilted substrates having different tilt angles,
Information on the change of the reflectance difference signal due to the surface dimer density obtained by measuring the relationship between the decrease of the dimer density of the inclined substrate surface and the change of the reflectance difference with the increase of the inclination angle, and the detected. A method for measuring the outermost surface dimer density of a semiconductor, which comprises in-situ measuring the dimer density of the outermost surface layer of the semiconductor substrate by comparing with a reflectance difference signal obtained from reflected light.
【請求項2】 請求項1において、傾斜角度の異なる複
数の傾斜基板は、III −V族化合物半導体の(001)
面から[−110]方向、または[110]方向に傾斜
させた複数の基板であることを特徴とする半導体最表面
ダイマー密度の測定方法。
2. The plurality of tilted substrates having different tilt angles according to claim 1, wherein the tilted substrates are made of III-V group compound semiconductor (001).
A method for measuring a semiconductor outermost surface dimer density, which comprises a plurality of substrates tilted in a [-110] direction or a [110] direction from a plane.
【請求項3】 結晶成長用反応容器内に半導体基板を装
着し、有機金属原料を供給して該半導体基板に半導体多
層膜を結晶成長させる有機金属気相成長方法において、 該半導体多層膜の結晶成長中に該半導体基板にp偏光し
た入射光をブリュースター角近傍で照射し、該半導体基
板の表面から反射して得られる反射光を検出し、 傾斜角度の異なる複数の傾斜基板に結晶成長させつつ、
傾斜角度の増加にともなう、傾斜基板表面のダイマー密
度の減少と反射率差の変化との関係をあらかじめ測定し
ておくことにより求めた表面ダイマー密度による反射率
差信号の変化の情報と、前記検出した反射光から得た反
射率差信号と、を対比させて、前記半導体基板最表面層
のダイマー密度をその場測定し、この測定に基づいて前
記半導体多層膜の結晶成長条件を制御することを特徴と
する有機金属気相成長方法。
3. A metal-organic chemical vapor deposition method in which a semiconductor substrate is mounted in a reaction container for crystal growth, and an organic metal raw material is supplied to crystal-grow a semiconductor multilayer film on the semiconductor substrate. During growth, the semiconductor substrate is irradiated with p-polarized incident light in the vicinity of Brewster's angle, reflected light obtained by reflecting from the surface of the semiconductor substrate is detected, and crystals are grown on a plurality of tilted substrates with different tilt angles. While
Information on the change in the reflectance difference signal due to the surface dimer density obtained by measuring the relationship between the decrease in the dimer density on the surface of the inclined substrate and the change in the reflectance difference with the increase in the tilt angle, and the detection By contrasting the reflectance difference signal obtained from the reflected light, in-situ measurement of the dimer density of the outermost surface layer of the semiconductor substrate, based on this measurement to control the crystal growth conditions of the semiconductor multilayer film. Characteristic metal-organic vapor phase growth method.
【請求項4】 請求項3において、傾斜角度の異なる複
数の傾斜基板は、III −V族化合物半導体の(001)
面から[−110]方向、または[110]方向に傾斜
させた複数の基板であることを特徴とする有機金属気相
成長方法。
4. The plurality of tilted substrates having different tilt angles according to claim 3, wherein the tilted substrates are (001) III-V compound semiconductors.
2. A metal-organic vapor phase epitaxy method comprising a plurality of substrates tilted in the [-110] direction or the [110] direction from the surface.
JP5574094A 1994-03-25 1994-03-25 Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method Pending JPH07263512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5574094A JPH07263512A (en) 1994-03-25 1994-03-25 Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5574094A JPH07263512A (en) 1994-03-25 1994-03-25 Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method

Publications (1)

Publication Number Publication Date
JPH07263512A true JPH07263512A (en) 1995-10-13

Family

ID=13007263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5574094A Pending JPH07263512A (en) 1994-03-25 1994-03-25 Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method

Country Status (1)

Country Link
JP (1) JPH07263512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085330A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Method of evaluating quantum structure, method of manufacturing quantum structure, and quantum structure
KR20150097022A (en) * 2014-02-17 2015-08-26 삼성전자주식회사 Evaluating apparatus for quality of crystal, and Apparatus and method for manufacturing semiconductor light emitting device which include the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085330A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Method of evaluating quantum structure, method of manufacturing quantum structure, and quantum structure
KR20150097022A (en) * 2014-02-17 2015-08-26 삼성전자주식회사 Evaluating apparatus for quality of crystal, and Apparatus and method for manufacturing semiconductor light emitting device which include the same

Similar Documents

Publication Publication Date Title
EP0545238B1 (en) Method of epitaxially growing a semiconductor crystal
US4931132A (en) Optical control of deposition of crystal monolayers
Zettler Characterization of epitaxial semiconductor growth by reflectance anisotropy spectroscopy and ellipsometry
US5756375A (en) Semiconductor growth method with thickness control
Zettler et al. Real-time monitoring of MOVPE device growth by reflectance anisotropy spectroscopy and related optical techniques
Zhu et al. Epitaxial growth of SrTiO 3 on SrTiO 3 (001) using an oblique-incidence reflectance-difference technique
Jmerik et al. Kinetics of metal-rich PA molecular beam epitaxy of AlGaN heterostructures for mid-UV photonics
US6521042B1 (en) Semiconductor growth method
Zettler et al. Growth oscillations with monolayer periodicity monitored by ellipsometry during metalorganic vapor phase epitaxy of GaAs (001)
Maracas et al. In situ spectroscopic ellipsometry in molecular beam epitaxy
Richter et al. Low density MOVPE grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths
JPH07263512A (en) Measuring method for dimer density of outer surface of semiconductor and its organic metal vapor phase growth method
Reichow et al. Molecular beam epitaxial growth and characterization of ZnSe on GaAs
JPH07153692A (en) Method and equipment for making thin film grow on semiconductor substrate
US5159410A (en) Method for in-situ determination of the fermi level in GaAs and similar materials by photoreflectance
Sudo et al. In-situ As-P exchange monitoring in metal-organic vapor phase epitaxy of InGaAs/InP heterostructure by spectroscopic and kinetic ellipsometry
Rossow et al. Thin epitaxial films of wide gap II–VI compounds studied by spectroscopic ellipsometry
Celii et al. Real‐time monitoring of resonant‐tunneling diode growth using spectroscopic ellipsometry
Ploska et al. Metalorganic vapour phase epitaxial growth on vicinal GaAs (001) surfaces studied by reflectance anisotropy spectroscopy
Zorn et al. Anisotropic reflectance from semiconductor surfaces for in‐situ monitoring in epitaxial growth systems
Van Hove et al. Molecular beam epitaxy grown InGaN multiple quantum well structures optimized using in situ cathodoluminescence
JP3064693B2 (en) In-situ observation method of crystal growth of multilayer film
Imaizumi et al. Infrared reflection absorption spectra of trimethylaluminum and dimethylaluminum hydride condensed layers on an SiO2 surface with a buried metal layer substrate
Postigo et al. In situ optical spectroscopy of Ga dimers on GaP, GaAs, and GaSb by surface chemical modulation
Raisanen et al. Deep levels near ‘‘buried’’ZnSe/GaAs (100) heterointerfaces