JPH07263020A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH07263020A
JPH07263020A JP6047195A JP4719594A JPH07263020A JP H07263020 A JPH07263020 A JP H07263020A JP 6047195 A JP6047195 A JP 6047195A JP 4719594 A JP4719594 A JP 4719594A JP H07263020 A JPH07263020 A JP H07263020A
Authority
JP
Japan
Prior art keywords
zinc
electrode
substrate
active material
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6047195A
Other languages
Japanese (ja)
Inventor
Ippei Ogata
逸平 緒方
Hisayoshi Ota
久喜 太田
Tasuke Makino
太輔 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP6047195A priority Critical patent/JPH07263020A/en
Publication of JPH07263020A publication Critical patent/JPH07263020A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce specific resistance of an electrode board, improve current collecting performance, and prolong the cycle life by using an electrode which is composed of a conductive porous material having pares and in which an electrode active material is carried on the electrode board having specific resistance of a prescribed value. CONSTITUTION:A conductive porous material which has pores and has specific resistance not more than 0.01OMEGA.cm is used as one electrode board, and an electrode active material is carried on this electrode board. Particularly when a conductive porous carbon material is used as the conductive porous material, various pore structures, porosity, pore diameters and bulk density can be selected by a manufacturing method. Since the specific resistance of the electrode board is set not more than 0.01OMEGA.cm, electric conductivity is improved, and current collecting performance of the electrode board is improved. Thereby, charging and discharging efficiency can be maintained high, and battery capacity can be sufficiently utilized. Since conditions where an undischarged active material remaining in an electrode without discharging runs out can be restrained, the battery capacity can be maintained high, and the cycle life can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ二次電池に係
る。
The present invention relates to an alkaline secondary battery.

【0002】[0002]

【従来の技術】亜鉛電極、鉄電極は高エネルギー密度で
あり、安価であるので、電気自動車などの電源としてニ
ッケル−亜鉛電池、ニッケル−鉄電池などのアルカリ二
次電池が検討されている。これらの亜鉛電極、鉄電極の
電極基材としては代表的には金属製パンチングメタル、
エキスパンドメタル又は金属繊維布などが用いられてい
る。
2. Description of the Related Art Since zinc electrodes and iron electrodes have high energy density and are inexpensive, alkaline secondary batteries such as nickel-zinc batteries and nickel-iron batteries have been studied as power sources for electric vehicles. As the electrode base material of these zinc electrodes and iron electrodes, metal punching metal is typically used.
Expanded metal or metal fiber cloth is used.

【0003】[0003]

【発明が解決しようとする課題】上記のような二次電池
の電極基板を用いた場合、充放電効率が低く、電池の容
量を充分に利用できない、また特にサイクル寿命が短い
という問題がある。そこで、本発明の目的は、電極基板
の比抵抗が低く、集電性に優れ、サイクル寿命が良好な
二次電池の電極基板を提供して上記問題点を解決するこ
とにある。
When the electrode substrate of the secondary battery as described above is used, there are problems that the charge and discharge efficiency is low, the battery capacity cannot be fully utilized, and the cycle life is particularly short. Therefore, it is an object of the present invention to provide an electrode substrate for a secondary battery, which has a low specific resistance of the electrode substrate, an excellent current collecting property, and a good cycle life, and solves the above-mentioned problems.

【0004】[0004]

【課題を解決するための手段】上記目的は、本発明によ
れば、空孔を有する導電性多孔質材料よりなり、比抵抗
が0.01Ω・cm以下である電極基板に、電極活物質を
担持させてなる電極を用いたことを特徴とするアルカリ
二次電池により達成される。アルカリ二次電池とは電解
質としてアルカリ性水溶液(代表的には水酸化カリウム
水溶液)を用いた二次電池を指称し、酸性水溶液を用い
る鉛蓄電池に対して分類されるものである。代表的なア
ルカリ二次電池としては、ニッケル−カドミウム蓄電
池、ニッケル−鉄蓄電池、ニッケル−亜鉛蓄電池、酸化
銀−亜鉛蓄電池、酸化銀−カドミウム蓄電池などがあ
る。
According to the present invention, the above object is to provide an electrode active material on an electrode substrate made of a conductive porous material having pores and having a specific resistance of 0.01 Ω · cm or less. This is achieved by an alkaline secondary battery characterized by using an electrode which is supported. The alkaline secondary battery refers to a secondary battery using an alkaline aqueous solution (typically an aqueous solution of potassium hydroxide) as an electrolyte, and is classified as a lead storage battery using an acidic aqueous solution. Typical alkaline secondary batteries include nickel-cadmium storage batteries, nickel-iron storage batteries, nickel-zinc storage batteries, silver oxide-zinc storage batteries, and silver oxide-cadmium storage batteries.

【0005】本発明はこのアルカリ二次電池の少なくと
も一方の電極基板として、空孔を有しかつ0.01Ω・
cm以下、より好ましくは0.003Ω・cm以下の比抵抗
を有する導電性有孔材料を用い、この電極基板に電極活
物質を担持させたものである。比抵抗が0.01Ω・cm
以下であることにより、二次電池のサイクル寿命が延長
される。特に導電性有孔材料として、導電性多孔質炭素
材料を用いる場合には、多様な気孔構造、気孔率、気孔
径、かさ密度が製造方法により選択できる。また、炭素
炭素複合材、いわゆるC/Cコンポジットで構成するこ
とも可能である。また、導電性多孔質炭素材料の構成材
料の表面に、熱分解炭素を形成したものでもよい。より
具体的には、例えば、有機物からなる基体成分(ポリア
クリロニトリル、レーヨン、ピッチなどの炭素前駆体)
とマトリックスを混合した原料組成物を成形後、非酸化
雰囲気で炭素化(通常500〜1500℃)、黒鉛化
(通常1500〜3000℃)処理を行うことにより、
比抵抗を0.01Ω・cm以下にすることができる。
According to the present invention, at least one of the electrode substrates of this alkaline secondary battery has pores and has a resistance of 0.01 Ω.
A conductive perforated material having a specific resistance of not more than cm, more preferably not more than 0.003 Ω · cm is used, and an electrode active material is supported on this electrode substrate. Resistivity is 0.01Ω ・ cm
By the following, the cycle life of the secondary battery is extended. In particular, when a conductive porous carbon material is used as the conductive porous material, various pore structures, porosities, pore diameters, and bulk densities can be selected according to the manufacturing method. It is also possible to use a carbon-carbon composite material, so-called C / C composite. In addition, pyrolytic carbon may be formed on the surface of the constituent material of the conductive porous carbon material. More specifically, for example, a substrate component made of an organic material (carbon precursor such as polyacrylonitrile, rayon, pitch)
After molding the raw material composition in which the matrix and the matrix are mixed, carbonization (usually 500 to 1500 ° C.) and graphitization (usually 1500 to 3000 ° C.) are performed in a non-oxidizing atmosphere,
The specific resistance can be 0.01 Ω · cm or less.

【0006】基体成分の原料としては、α−セルロース
を主成分とする有機物を用いることができ、この有機物
は抄紙してシート材を得るためのフィラー成分であり、
通常のパルプの他、α−セルロースが主成分のレーヨン
パルプも使用できる。尚、これらのパルプの形態として
は、気孔構造の電極基板を得るために、繊維状を有する
ものが望ましい。マトリックスとしては、調製後の電極
基板の強度から、残炭率40%以上の熱硬化性樹脂が良
く、残炭率40%以上の熱硬化性樹脂としては、フェノ
ール樹脂、フラン樹脂、ポリイミド樹脂等を使用するこ
とができる。
As a raw material of the base component, an organic substance containing α-cellulose as a main component can be used, and this organic substance is a filler component for making a sheet material by making paper.
In addition to normal pulp, rayon pulp containing α-cellulose as a main component can also be used. The form of these pulps is preferably fibrous in order to obtain an electrode substrate having a pore structure. As the matrix, a thermosetting resin having a charcoal ratio of 40% or more is preferable from the strength of the electrode substrate after preparation, and as a thermosetting resin having a charcoal ratio of 40% or more, phenol resin, furan resin, polyimide resin, etc. Can be used.

【0007】また、電極活物質の脱落防止、活物質粒子
の凝集防止、導電性向上の観点から、電極基板の表面積
を増加させるために、ミクロフィブリル化パルプ、又は
黒鉛粒子を抄紙工程で混合し、非酸化雰囲気で炭素化、
黒鉛化処理を行い、比抵抗が0.01Ω・cm以下の電極
基板を得ることも可能である。また、炭素炭素複合材、
いわゆるC/Cコンポジットで構成する電極基板の場合
には、基体成分として、黒鉛化可能な有機物質からな
る繊維又は炭素繊維、黒鉛化可能な有機物質からなる
粉粒体または炭素粉粒体、黒鉛化した炭素繊維、黒
鉛化した炭素粉粒体、のからの少なくとも一つから
選択された組成物を用い、マトリックスとの成形体を、
非酸化雰囲気で黒鉛化処理を行い、比抵抗を0.01Ω
・cm以下とした電極基板を得ることもできる。
From the viewpoints of preventing the electrode active material from falling off, preventing the aggregation of active material particles, and improving the electrical conductivity, microfibrillated pulp or graphite particles are mixed in the papermaking process in order to increase the surface area of the electrode substrate. Carbonization in a non-oxidizing atmosphere,
It is also possible to obtain an electrode substrate having a specific resistance of 0.01 Ω · cm or less by performing graphitization treatment. Also, carbon-carbon composite material,
In the case of an electrode substrate composed of a so-called C / C composite, as the base component, fibers or carbon fibers made of a graphitizable organic substance, powders or carbon powders made of a graphitizable organic substance, graphite Using a composition selected from at least one of carbonized carbon fiber, graphitized carbon powder, and a molded body with a matrix,
Graphitized in a non-oxidizing atmosphere to give a resistivity of 0.01Ω
-It is also possible to obtain an electrode substrate having a size of cm or less.

【0008】なお炭素炭素複合材とは、炭素前駆体、炭
素繊維、炭素粉粒体を構成材とし、マトリックスと呼ば
れる炭素化又は黒鉛化可能なバインダーを用いて成形、
焼成、炭素化により得られる複合材である。マトリック
スとしては、フェノール樹脂等の熱硬化性樹脂、ポリア
クリルニトリル、ピッチ等の熱可塑性樹脂、カーボンブ
ラック、天然黒鉛等の補強材、または、CVD法でえら
れる熱分解炭素が使われる。また、活性炭素繊維を主成
分とする活炭素繊維集合成形体を黒鉛化処理し、比抵抗
を0.01Ω・cm以下とした電極基板を得ることもでき
る。さらに比抵抗を下げ、導電性を向上するために、活
性炭素繊維としては、繊維同志が絡みやすいカールした
形状であることが望ましい。また、活性炭素繊維として
は易黒鉛質炭素系のピッチ系からなる活性炭素繊維を用
いた方が、2000℃程度の黒鉛化処理により、比抵抗
を0.01Ω・cm以下の電極基板が得られる。
The carbon-carbon composite material is composed of a carbon precursor, carbon fibers, and carbon powder particles as a constituent material, and is molded by using a carbonizable or graphitizable binder called a matrix,
It is a composite material obtained by firing and carbonization. As the matrix, a thermosetting resin such as a phenol resin, a thermoplastic resin such as polyacrylonitrile or pitch, a reinforcing material such as carbon black or natural graphite, or a pyrolytic carbon obtained by a CVD method is used. It is also possible to obtain an electrode substrate having a specific resistance of 0.01 Ω · cm or less by graphitizing an activated carbon fiber aggregated body containing activated carbon fibers as a main component. In order to further reduce the specific resistance and improve the conductivity, the activated carbon fiber preferably has a curled shape in which the fibers are easily entangled with each other. Further, when the activated carbon fiber composed of a graphitic carbon-based pitch system is used as the activated carbon fiber, an electrode substrate having a specific resistance of 0.01 Ω · cm or less can be obtained by the graphitization treatment at about 2000 ° C. .

【0009】また、炭素炭素複合材の基体成分として、
中空繊維を用いた場合で比抵抗を0.01Ω・cm以下と
した電極基板を得てもよい。繊維内部にも、電極活物質
を担持させることが可能となり、電池の軽量化に効果が
ある。また、CVD法により熱分解炭素を導電性多孔質
炭素材料表面に形成し、比抵抗を0.01Ω・cm以下と
した電極基板を得てもよい。
Further, as the base component of the carbon-carbon composite material,
If hollow fibers are used, an electrode substrate having a specific resistance of 0.01 Ω · cm or less may be obtained. It becomes possible to support the electrode active material inside the fiber, which is effective in reducing the weight of the battery. Alternatively, an electrode substrate having a specific resistance of 0.01 Ω · cm or less may be obtained by forming pyrolytic carbon on the surface of the conductive porous carbon material by the CVD method.

【0010】電極基板は内部に担持する活物質の脱落防
止、凝集防止等のために、孔径を制御・選択して使用す
ることが望ましく、孔径は活物質の粒径に応じ選択し、
一般には粒径以上100μm以下、より好ましくは1μ
m以上50μmの孔径を有するものが用いられる。多孔
度は、その増加により活物質をより多く担持できるの
で、電池のエネルギー密度が増加する。しかし、多孔度
も孔径と同様に、活物質の脱落、凝集防止から選択さ
れ、好ましくは、40%以上95%以下を有するものを
用いることができる。
It is desirable to control and select the pore size of the electrode substrate in order to prevent the active material carried inside from falling off, preventing aggregation, etc. The pore size is selected according to the particle size of the active material,
Generally, the particle size is 100 μm or more, and more preferably 1 μm
Those having a pore size of m or more and 50 μm or more are used. The increased porosity allows more active material to be supported, which increases the energy density of the battery. However, like the pore size, the porosity is selected from the dropout and aggregation prevention of the active material, and preferably, the porosity is 40% or more and 95% or less.

【0011】電極活物質は、特に限定されないが、代表
的には、水酸化ニッケル、水酸化カドミウム、水酸化亜
鉛、水酸化鉄、酸化亜鉛、酸化銀などを用いることがで
きる。電極活物質を電極基板に担持させることは、電極
活物質をペースト状にし、電極基板へ塗布することや、
電極活物質の原料溶液電極基板へ含侵し、電解、熱分解
処理などにより行なうことができる。
The electrode active material is not particularly limited, but typically nickel hydroxide, cadmium hydroxide, zinc hydroxide, iron hydroxide, zinc oxide, silver oxide or the like can be used. To support the electrode active material on the electrode substrate, the electrode active material is made into a paste and applied to the electrode substrate,
The raw material solution of the electrode active material can be impregnated into the electrode substrate and subjected to electrolysis, thermal decomposition treatment or the like.

【0012】活物質は、反応面積を増加し、容量を上げ
る上で、なるべく微粒化することが望ましく、基板の孔
径、製造方法等において選択される。本発明は、1つの
好ましい態様において、亜鉛電極を用いる。この亜鉛電
極としては、前記比抵抗が0.01Ω・cm以下の電極基
板を用い、電極基板の空孔内へ電極活物質を直接担持さ
せる。この構成により、集電性を得るために電極活物質
へ金属粒子等の導電材を添加することが不要となる。
The active material is preferably atomized as much as possible in order to increase the reaction area and capacity, and is selected in the pore size of the substrate, the manufacturing method and the like. The present invention, in one preferred embodiment, uses a zinc electrode. As this zinc electrode, an electrode substrate having the specific resistance of 0.01 Ω · cm or less is used, and an electrode active material is directly carried in the pores of the electrode substrate. With this configuration, it is not necessary to add a conductive material such as metal particles to the electrode active material in order to obtain current collecting properties.

【0013】また、亜鉛電極は、電極活物質の酸化亜鉛
を、亜鉛より水素過電圧が大きく且つ、酸化還元電位が
貴である元素で置換した亜鉛複合酸化物で構成してもよ
い。酸化亜鉛の亜鉛を置換する亜鉛より水素過電圧が大
きく且つ、酸化還元電位が貴である元素としては、イン
ジウム、タリウム、すず、鉛、ビスマスの少なくとも1
種を含む元素が最適である。
Further, the zinc electrode may be composed of a zinc composite oxide in which zinc oxide, which is an electrode active material, is replaced with an element having a hydrogen overvoltage larger than zinc and a redox potential higher than that of zinc. At least one of indium, thallium, tin, lead, and bismuth is an element having a hydrogen overvoltage larger than that of zinc substituting zinc of zinc oxide and having a noble oxidation-reduction potential.
Elements containing seeds are optimal.

【0014】亜鉛電極の製造は、亜鉛化合物を該空孔内
へ担持し、熱分解により酸化亜鉛を空孔内へ担持して行
なうことができる。また、亜鉛化合物を亜鉛よりも水素
過電圧が大きく且つ、酸化還元電位が貴である元素の化
合物との混合組成物を、該空孔内へ担持し、熱分解によ
り酸化亜鉛を主成分とする活物質を空孔内へ担持して行
なう。
The zinc electrode can be manufactured by supporting a zinc compound in the pores and then by supporting zinc oxide in the pores by thermal decomposition. In addition, a mixed composition of a zinc compound and a compound of an element having a hydrogen overvoltage larger than that of zinc and a redox potential higher than that of zinc is supported in the pores, and an active material containing zinc oxide as a main component is pyrolyzed. The substance is carried in the pores.

【0015】こうして、本発明によれば、好ましい態様
として、酸化亜鉛の亜鉛を、亜鉛より水素過電圧が大き
く且つ、酸化還元電位が貴である元素で置換した亜鉛複
合酸化物からなる亜鉛電極を用いたニッケル−亜鉛二次
電池、及び亜鉛電極として、亜鉛化合物と、亜鉛よりも
水素過電圧が大きく且つ、酸化還元電位が貴である元素
の化合物との混合組成物を、電極基板空孔内へ担持し、
熱分解により酸化亜鉛を主成分とする活物質を該空孔内
へ担持したアルカリ二次電池が提供される。
Thus, according to the present invention, as a preferred embodiment, a zinc electrode made of a zinc composite oxide in which zinc of zinc oxide is replaced by an element having a hydrogen overvoltage larger than that of zinc and a redox potential of noble is used. As a nickel-zinc secondary battery and a zinc electrode, a mixed composition of a zinc compound and a compound of an element having a hydrogen overvoltage larger than that of zinc and a redox potential higher than that of zinc is carried in an electrode substrate hole. Then
An alkaline secondary battery in which an active material containing zinc oxide as a main component is carried in the pores by thermal decomposition is provided.

【0016】本発明によれば、1つの好ましい態様とし
て、この亜鉛電極と、対極としてニッケル電極を用い、
かつ電解質として水酸化カリウム水溶液(例えば、30
重量%溶液)を用いたニッケル−亜鉛電池が提供され
る。ニッケル電極は、例えば、スポンジ状ニッケル金属
を基板とし、基板内にペースト状の水酸化ニッケルを充
てん、担持し、圧延して作製したものを用いることがで
きる。
According to the present invention, in one preferred embodiment, this zinc electrode and a nickel electrode as a counter electrode are used,
And an aqueous solution of potassium hydroxide (eg, 30 as an electrolyte)
A nickel-zinc battery using a (wt% solution) is provided. As the nickel electrode, for example, a substrate made of sponge-like nickel metal, paste-like nickel hydroxide filled in the substrate, supported, and rolled can be used.

【0017】[0017]

【作用】本発明によれば、電極基板の比抵抗を0.01
Ω・cm以下にすることにより、導電性が向上し、電極基
板の集電性が改善される。これにより、充放電効率を高
く維持でき、電池の容量を充分に利用できる。また、充
放電効率を高く維持できるので、放電しないまま電極中
に残留する未放電活物質がなくなることや、充放電過
程、特に充電時に未放電活物質に電流が集中し、凝集や
粒成長が生じることによる活物質表面積の減少、即ち電
池反応面積の減少も抑制されるので、電池容量を高く維
持でき、サイクル寿命が向上する。
According to the present invention, the specific resistance of the electrode substrate is 0.01
When it is Ω · cm or less, the conductivity is improved and the current collecting property of the electrode substrate is improved. Thereby, the charge / discharge efficiency can be maintained high and the capacity of the battery can be fully utilized. Further, since the charge / discharge efficiency can be maintained at a high level, the undischarged active material remaining in the electrode without being discharged is eliminated, and the current is concentrated on the undischarged active material during the charge / discharge process, especially during charging, resulting in aggregation or grain growth. Since the reduction of the active material surface area due to the generation, that is, the reduction of the battery reaction area, is also suppressed, the battery capacity can be kept high and the cycle life is improved.

【0018】[0018]

【実施例】【Example】

実施例1 有機物からなる基体成分として、α−セルロースが90
%以上のレーヨンパルプを80重量%と、マトリックス
として、抄紙バインダー19重量%とビニロンバインダ
ー1重量%とを混合した原料組成物を水中で均一分散
後、抄紙装置を用いて湿潤シート材を得た。
Example 1 As a base component composed of an organic substance, α-cellulose was 90%.
% Or more of rayon pulp at 80% by weight, a raw material composition obtained by mixing 19% by weight of a papermaking binder as a matrix and 1% by weight of vinylon binder was uniformly dispersed in water, and a wet sheet material was obtained using a papermaking machine. .

【0019】この湿潤シート材を乾燥後、乾燥シート材
を樹脂含浸装置で残炭率45%のフェノール樹脂を含浸
し、半硬化する。続いて、フェノール樹脂含浸シート材
を所定の寸法に裁断した後、10〜20枚積層して、加
圧機により圧縮成形し硬化する。この圧縮成形体を、黒
鉛板に挟み、電気炉で1800℃の焼成炭素化処理を行
う。次いで、この炭素材を黒鉛化炉で、3000℃の黒
鉛化処理を行い、導電性多孔質炭素材料からなる電極基
板(以下基板と呼ぶ。)を得た。
After the wet sheet material is dried, the dried sheet material is impregnated with a phenol resin having a residual carbon rate of 45% by a resin impregnating device and semi-cured. Subsequently, the phenol resin-impregnated sheet material is cut into a predetermined size, 10 to 20 sheets are laminated, compression-molded by a pressure machine and cured. This compression molded body is sandwiched between graphite plates and subjected to calcination carbonization treatment at 1800 ° C. in an electric furnace. Next, this carbon material was graphitized at 3000 ° C. in a graphitizing furnace to obtain an electrode substrate (hereinafter referred to as a substrate) made of a conductive porous carbon material.

【0020】前記の製法において、基体成分の繊維径、
組成を変えて、気孔率、気孔径、かさ密度を制御した基
板(サンプルNo.A〜H)を調製した。表1は、18
00℃で炭素化処理後の基板の特性値を、表2は、30
00℃で黒鉛化処理後の基板の特性値を示した。尚、比
抵抗は、電位降下法(JIS R7202)、かさ密
度、気孔率、平均気孔径は、水銀圧入法によるポロシメ
ータで測定した。
In the above production method, the fiber diameter of the base component,
Substrates (Sample Nos. AH) in which the porosity, the pore diameter, and the bulk density were controlled by changing the composition were prepared. Table 1 shows 18
Table 2 shows the characteristic values of the substrate after carbonization at 00 ° C.
The characteristic values of the substrate after graphitization at 00 ° C. are shown. The specific resistance was measured by a potential drop method (JIS R7202), and the bulk density, the porosity, and the average pore diameter were measured by a porosimeter by a mercury injection method.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】サンプルNo.E〜Hの基板を60×70
×2t のサイズに整え、以下の製法にて亜鉛電極を調製
した。基板を、予めアセトン中で超音波洗浄を10分以
上行い、洗浄後110℃で乾燥した。電極活物質の原料
の亜鉛化合物は、硝酸亜鉛溶液(50wt%)を用いた。
硝酸亜鉛溶液中に、基板を入れ、真空容器を用いて脱気
(1000Paで30分以上)を行い、基板空孔内へ硝
酸亜鉛を担持する。次いで、硝酸亜鉛を担持した基板
を、130℃で30分以上乾燥し、水分及び硝酸亜鉛の
結晶水を除去後、空気中250−600℃で熱分解を行
い、基板空孔内へ酸化亜鉛を担持することにより亜鉛電
極(サンプルNo.1〜4)を得た。尚、酸化亜鉛の担
持量は、各亜鉛電極とも3gとした。
Sample No. 60 ~ 70 substrates E to H
A zinc electrode was prepared by adjusting the size to × 2 t and using the following manufacturing method. The substrate was previously subjected to ultrasonic cleaning in acetone for 10 minutes or more, and after cleaning, dried at 110 ° C. A zinc nitrate solution (50 wt%) was used as a zinc compound as a raw material of the electrode active material.
The substrate is placed in a zinc nitrate solution, and deaeration (at 1000 Pa for 30 minutes or more) is performed using a vacuum container to support zinc nitrate in the substrate pores. Next, the substrate supporting zinc nitrate is dried at 130 ° C. for 30 minutes or more to remove water and water of crystallization of zinc nitrate, and then thermally decomposed in air at 250 to 600 ° C. to remove zinc oxide into the pores of the substrate. Zinc electrodes (Sample Nos. 1 to 4) were obtained by carrying. The amount of zinc oxide supported was 3 g for each zinc electrode.

【0024】この亜鉛負極と、ニッケル電極と、酸化亜
鉛を飽和させた水酸化カリウム溶液(30wt%)を電解
質としてニッケル・亜鉛二次電池を構成した。このニッ
ケル・亜鉛二次電池の構造を図1に示す。図中、1は亜
鉛負極、2はニッケル正極、3はセパレータ、4は電解
液、5は保液紙、6はケースである。図2に電極基板に
担持した活物質を示す。7は電極基板、8は活物質であ
る。
A nickel-zinc secondary battery was constructed by using this zinc negative electrode, a nickel electrode, and a potassium hydroxide solution (30 wt%) saturated with zinc oxide as an electrolyte. The structure of this nickel-zinc secondary battery is shown in FIG. In the figure, 1 is a zinc negative electrode, 2 is a nickel positive electrode, 3 is a separator, 4 is an electrolytic solution, 5 is a liquid retaining paper, and 6 is a case. FIG. 2 shows the active material carried on the electrode substrate. Reference numeral 7 is an electrode substrate, and 8 is an active material.

【0025】この電池の充電放電サイクル寿命評価は、
充電を10mA/cm2 の定電流密度で行い、5時間また
は、電池電圧が、2.1Vに達した時の、いずれか先の
時点を終了とし、放電は10mA/cm2 の定電流密度で、
電池電圧が、1.0V達するまで行う。尚、サイクル寿
命は、初期の放電容量の60%に到達した時点をもって
電池の寿命と規定した。表3に、各電極基板によるサイ
クル寿命を示した。これにより、サイクル寿命を420
〜500回に向上させることが可能になった。
The charge / discharge cycle life evaluation of this battery is as follows.
Charge at a constant current density of 10 mA / cm 2 for 5 hours or when the battery voltage reaches 2.1 V, whichever comes first, and discharge at a constant current density of 10 mA / cm 2. ,
The process is repeated until the battery voltage reaches 1.0V. The cycle life was defined as the life of the battery when it reached 60% of the initial discharge capacity. Table 3 shows the cycle life of each electrode substrate. This gives a cycle life of 420
It became possible to improve to ~ 500 times.

【0026】[0026]

【表3】 [Table 3]

【0027】実施例2 実施例1の基体成分を、α−セルロースが90%以上の
レーヨンパルプを75重量%と、黒鉛質粒子5重量%と
して、実施例1と同様の方法で基板5を得た。この基板
を、実施例1に記した測定法で特性を評価した結果、比
抵抗0.003Ω・cm、かさ密度0.74g/cc、気孔
率62%、気孔径3μm、であった。
Example 2 Substrate 5 was obtained in the same manner as in Example 1 except that the base component of Example 1 was 75% by weight of rayon pulp containing 90% or more of α-cellulose and 5% by weight of graphite particles. It was As a result of evaluating the characteristics of this substrate by the measuring method described in Example 1, the specific resistance was 0.003 Ω · cm, the bulk density was 0.74 g / cc, the porosity was 62%, and the pore diameter was 3 μm.

【0028】この基板を用いて、亜鉛電極を調製した。
亜鉛電極調製法、電池構成、サイクル寿命は実施例1と
同様に行った。この結果、サイクル寿命は460回であ
った。
A zinc electrode was prepared using this substrate.
The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 460 times.

【0029】実施例3 基体成分である石炭ピッチ系炭素繊維の長繊維に、マト
リックスのレゾール系フェノール樹脂を常圧又は負圧で
前記炭素繊維に含浸し、プリプレグを得る。このプリプ
レグを二次元配向し、積層後、モールド成形し、150
℃で硬化した成形体を得る。この成形体を、非酸化雰囲
気で炭化した後、最終的に2000℃で黒鉛化処理を行
い、炭素炭素複合材からなる基板6を得た。この基板
を、実施例1に記した測定法で特性を評価した結果、比
抵抗0.003Ω・cm、かさ密度1.29g/cc、気孔
率30%、気孔径10μm、であった。
Example 3 A long fiber of coal pitch carbon fiber which is a base component is impregnated with a matrix resol phenol resin at atmospheric pressure or negative pressure to obtain a prepreg. This prepreg is two-dimensionally oriented, laminated, and molded to obtain 150
A molded product cured at ℃ is obtained. This molded body was carbonized in a non-oxidizing atmosphere, and finally graphitized at 2000 ° C. to obtain a substrate 6 made of a carbon-carbon composite material. As a result of evaluating the characteristics of this substrate by the measuring method described in Example 1, the specific resistance was 0.003 Ω · cm, the bulk density was 1.29 g / cc, the porosity was 30%, and the pore diameter was 10 μm.

【0030】この基板を用いて、亜鉛電極を調製した。
亜鉛電極調製法、電池構成、サイクル寿命は実施例1と
同様に行った。この結果、サイクル寿命は470回であ
った。
A zinc electrode was prepared using this substrate.
The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 470 times.

【0031】実施例4 黒鉛化処理した炭素炭素複合材、CP−20(日本カー
ボン製)を基板7として用いて亜鉛電極を調製した。こ
の基板を、実施例1に記した測定法で特性を評価した結
果、比抵抗0.005Ω・cm、かさ密度0.65g/c
c、気孔率65%、気孔径45μm、であった。この基
板を用いて、亜鉛電極を調製した。亜鉛電極調製法、電
池構成、サイクル寿命は実施例1と同様に行った。この
結果、サイクル寿命は410回であった。
Example 4 A zinc electrode was prepared using a graphitized carbon-carbon composite material, CP-20 (manufactured by Nippon Carbon Co., Ltd.) as a substrate 7. As a result of evaluating the characteristics of this substrate by the measuring method described in Example 1, a specific resistance of 0.005 Ω · cm and a bulk density of 0.65 g / c
c, the porosity was 65%, and the pore diameter was 45 μm. A zinc electrode was prepared using this substrate. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 410 times.

【0032】実施例5 実施例4と同様に、黒鉛化処理した炭素炭素複合材、C
CM−F(日本カーボン製)を基板8として用いて亜鉛
電極を調製した。この基板を、実施例1に記した測定法
で特性を評価した結果、比抵抗0.007Ω・cm、かさ
密度0.88g/cc、気孔率48%、気孔径11μm、
であった。この基板を用いて、亜鉛電極を調製した。亜
鉛電極調製法、電池構成、サイクル寿命は実施例1と同
様に行った。この結果、サイクル寿命は400回であっ
た。
Example 5 Graphitized carbon-carbon composite material, C, as in Example 4
A zinc electrode was prepared using CM-F (manufactured by Nippon Carbon) as the substrate 8. As a result of evaluating the characteristics of this substrate by the measuring method described in Example 1, a specific resistance of 0.007 Ω · cm, a bulk density of 0.88 g / cc, a porosity of 48%, a pore diameter of 11 μm,
Met. A zinc electrode was prepared using this substrate. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 400 times.

【0033】実施例6 実施例4と同様に、黒鉛化処理した炭素炭素複合材、F
GK−200(日本カーボン製)を基板9として用いて
亜鉛電極を調製した。この基板を、実施例1に記した測
定法で特性を評価した結果、比抵抗0.008Ω・cm、
かさ密度1.01g/cc、気孔率48%、気孔径52μ
m、であった。この基板を用いて、亜鉛電極を調製し
た。亜鉛電極調製法、電池構成、サイクル寿命は実施例
1と同様に行った。この結果、サイクル寿命は400回
であった。
Example 6 Graphitized carbon-carbon composite material, F, as in Example 4
A zinc electrode was prepared using GK-200 (manufactured by Nippon Carbon) as the substrate 9. As a result of evaluating the characteristics of this substrate by the measuring method described in Example 1, a specific resistance of 0.008 Ω · cm,
Bulk density 1.01 g / cc, porosity 48%, pore diameter 52μ
It was m. A zinc electrode was prepared using this substrate. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 400 times.

【0034】実施例7 石炭ピッチを原料とした、カールした形状の炭素繊維
(ドナカーボS ドナック製)を賦活処理を行い、活性
炭素繊維を得た。賦活処理は、成形性、基板強度を考慮
し、比表面積500m2 /g以下にした。活性炭素繊維
のフェルトとマトリックスとの成形体を、2000℃で
黒鉛化処理を行うことにより基板10が得られた。この
基板を、実施例1に記した測定法で特性を評価した結
果、比抵抗0.007Ω・cm、かさ密度0.43g/c
c、気孔率65%、気孔径47μm、であった。この基
板を用いて、亜鉛電極を調製した。亜鉛電極調製法、電
池構成、サイクル寿命は実施例1と同様に行った。この
結果、サイクル寿命は400回であった。
Example 7 Activated carbon fiber was obtained by subjecting a carbon fiber having a curled shape (made by Dona Carbo S Donac) made of coal pitch as a raw material to activation treatment. The activation treatment was performed with a specific surface area of 500 m 2 / g or less in consideration of moldability and substrate strength. The substrate 10 was obtained by subjecting a molded body of the activated carbon fiber felt and the matrix to graphitization at 2000 ° C. As a result of evaluating the characteristics of this substrate by the measuring method described in Example 1, a specific resistance of 0.007 Ω · cm and a bulk density of 0.43 g / c
c, porosity 65%, pore diameter 47 μm. A zinc electrode was prepared using this substrate. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 400 times.

【0035】実施例8 実施例3における基体成分の炭素繊維として、石炭系ピ
ッチを紡糸した炭素繊維の長繊維を処理温度500〜7
00℃、空気・塩素混合ガス雰囲気で不融化処理し、繊
維中央部に空孔を形成した中空状炭素繊維を用いた。中
空状炭素繊維の外径は13μm、内径は7μmであっ
た。次いで、この中空状炭素繊維を用いて、実施例3と
同様の製造方法で黒鉛化処理を行い、炭素炭素複合材か
らなる基板11を得た。
Example 8 As the carbon fiber of the substrate component in Example 3, long fibers of carbon fiber spun from coal pitch were treated at a treatment temperature of 500 to 7
A hollow carbon fiber was used, which was infusibilized at 00 ° C. in an air / chlorine mixed gas atmosphere and had pores formed in the center of the fiber. The hollow carbon fiber had an outer diameter of 13 μm and an inner diameter of 7 μm. Then, using this hollow carbon fiber, a graphitization treatment was carried out by the same manufacturing method as in Example 3 to obtain a substrate 11 made of a carbon-carbon composite material.

【0036】この基板を、実施例1に記した測定法で特
性を評価した結果、比抵抗0.006Ω・cm、かさ密度
0.83g/cc、気孔率48%、平均気孔径8μm、で
あった。この基板を用いて、亜鉛電極を調製した。亜鉛
電極調製法、電池構成、サイクル寿命は実施例1と同様
に行った。この結果、サイクル寿命は410回であっ
た。
The characteristics of this substrate were evaluated by the measuring method described in Example 1. As a result, the specific resistance was 0.006 Ω · cm, the bulk density was 0.83 g / cc, the porosity was 48%, and the average pore diameter was 8 μm. It was A zinc electrode was prepared using this substrate. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 410 times.

【0037】実施例9 石炭ピッチを原料とした、カールした形状の炭素繊維
(ドナカーボS ドナック製)のフェルトとフェノール
樹脂をマトリックスとする成形体を、2000℃で黒鉛
化処理を行い、基板を得た。さらにこの基板を、メタン
を原料にCVD法で、基板表面に熱分解炭素をマトリッ
クスとして付与し、比抵抗を低減した、基板12が得ら
れた。
Example 9 A molded product having a matrix of a curl-shaped carbon fiber felt (manufactured by DonaCarbo S Donac) and a phenolic resin, which is made from coal pitch as a raw material, is graphitized at 2000 ° C. to obtain a substrate. It was Further, a substrate 12 was obtained in which specific resistance was reduced by applying pyrolytic carbon as a matrix to the surface of the substrate by a CVD method using methane as a raw material.

【0038】基板12を、実施例1に記した測定法で特
性を評価した結果、比抵抗0.003Ω・cm、かさ密度
0.56g/cc、気孔率62%、気孔径45μm、であ
った。基板12を用いて、亜鉛電極を調製した。亜鉛電
極調製法、電池構成、サイクル寿命は実施例1と同様に
行った。この結果、サイクル寿命は460回であった。
As a result of evaluating the characteristics of the substrate 12 by the measuring method described in Example 1, the specific resistance was 0.003 Ω · cm, the bulk density was 0.56 g / cc, the porosity was 62%, and the pore diameter was 45 μm. . A zinc electrode was prepared using the substrate 12. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 460 times.

【0039】実施例10 実施例5の黒鉛化処理した炭素炭素複合材、CCM−F
(日本カーボン製)を用いて、実施例9と同様のCVD
法で基板表面に熱分解炭素をマトリックスとして付与
し、比抵抗を低減した基板13が得られた。基板13
を、実施例1に記した測定法で特性を評価した結果、比
抵抗0.003Ω・cm、かさ密度0.97g/cc、気孔
率42%、気孔径10μm、であった。
Example 10 Graphitized carbon-carbon composite material of Example 5, CCM-F
(Manufactured by Nippon Carbon Co., Ltd.) and using the same CVD as in Example 9.
By the method, pyrolytic carbon was applied to the surface of the substrate as a matrix to obtain a substrate 13 having a reduced specific resistance. Board 13
As a result of evaluating the characteristics by the measuring method described in Example 1, the specific resistance was 0.003 Ω · cm, the bulk density was 0.97 g / cc, the porosity was 42%, and the pore diameter was 10 μm.

【0040】基板13を用いて、亜鉛電極を調製した。
亜鉛電極調製法、電池構成、サイクル寿命は実施例1と
同様に行った。この結果、サイクル寿命は460回であ
った。
A zinc electrode was prepared using the substrate 13.
The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 460 times.

【0041】実施例11 実施例1の基板3を用いて、電極活物質原料に、硝酸亜
鉛と硝酸インジウムの混合溶液を用い、その組成を、亜
鉛96atm%、インジウム4atm%として、実施例
1と同様の方法で基板へ亜鉛複合酸化物を担持した亜鉛
電極を得た。以下、電池構成、サイクル寿命は実施例1
と同様に行った。この結果、サイクル寿命は700回
と、従来例と比較し大幅に向上した。
Example 11 Using the substrate 3 of Example 1, a mixed solution of zinc nitrate and indium nitrate was used as a raw material for an electrode active material, and the composition was 96 atm% zinc and 4 atm% indium. A zinc electrode supporting a zinc composite oxide on a substrate was obtained by the same method. Hereinafter, the battery configuration and cycle life are shown in Example 1.
I went the same way. As a result, the cycle life was 700 times, which is a significant improvement over the conventional example.

【0042】実施例12 実施例11で、電極活物質原料に、硝酸亜鉛と硝酸イン
ジウムと硝酸タリウム(I)の混合溶液を用い、その組
成を、亜鉛96atm%、インジウム2atm%、タリ
ウム2atm%として、実施例1と同様の方法で基板へ
亜鉛複合酸化物を担持した亜鉛電極を得た。
Example 12 In Example 11, a mixed solution of zinc nitrate, indium nitrate, and thallium (I) nitrate was used as a raw material for the electrode active material, and the composition was 96 atm% zinc, 2 atm% indium, and 2 atm% thallium. A zinc electrode having a zinc composite oxide supported on a substrate was obtained in the same manner as in Example 1.

【0043】以下、電池構成、サイクル寿命は実施例1
と同様に行った。この結果、サイクル寿命は900回
と、従来例と比較し大幅に向上した。
Hereinafter, the battery configuration and cycle life are shown in Example 1.
I went the same way. As a result, the cycle life was 900 times, which is a significant improvement over the conventional example.

【0044】実施例13 実施例3の基板6を用いて、電極活物質原料に、硝酸亜
鉛と硝酸インジウム混合溶液を用い、その組成を、亜鉛
96atm%、インジウム4atm%として、実施例1
と同様の方法で基板へ亜鉛複合酸化物を担持した亜鉛電
極を得た。以下、電池構成、サイクル寿命は実施例1と
同様に行った。この結果、サイクル寿命は650回と、
従来例と比較し大幅に向上した。
Example 13 Using the substrate 6 of Example 3, a mixed solution of zinc nitrate and indium nitrate was used as a raw material of an electrode active material, and the composition was 96 atm% zinc and 4 atm% indium, and Example 1 was used.
A zinc electrode having a zinc composite oxide supported on a substrate was obtained by the same method as described in (1). Hereinafter, the battery configuration and cycle life were the same as in Example 1. As a result, the cycle life is 650 times,
Significantly improved compared to the conventional example.

【0045】実施例14 実施例13で、電極活物質原料に、硝酸亜鉛と硝酸イン
ジウムと硝酸タリウム(I)の混合溶液を用い、その組
成を、亜鉛96atm%、インジウム2atm%、タリ
ウム2atm%として、実施例1と同様の方法で基板へ
亜鉛複合酸化物を担持した亜鉛電極を得た。
Example 14 In Example 13, a mixed solution of zinc nitrate, indium nitrate and thallium (I) nitrate was used as the electrode active material material, and the composition was 96 atm% zinc, 2 atm% indium and 2 atm% thallium. A zinc electrode having a zinc composite oxide supported on a substrate was obtained in the same manner as in Example 1.

【0046】以下、電池構成、サイクル寿命は実施例1
と同様に行った。この結果、サイクル寿命は850回
と、従来例と比較し大幅に向上した。
Hereinafter, the battery configuration and cycle life are shown in Example 1.
I went the same way. As a result, the cycle life was 850 times, which is a significant improvement over the conventional example.

【0047】比較例1 電極活物質として、酸化亜鉛75重量%、亜鉛金属15
重量%、及び添加物として酸化インジウム5重量%、金
属インジウム5重量%を混合し、フッ素樹脂を添加後、
水を加え混練し、ペースト状電極活物質を得た。ペース
ト状電極活物質を、厚さ1mm、開孔率50%の銅のパン
チングメタルの電極基板14の両面に塗布し、亜鉛電極
を調製した。次いで、電池構成,サイクル寿命は実施例
1と同様に行った。尚、電極基板18の比抵抗は0.0
77Ω・cmであった。この結果、サイクル寿命は300
回であった。
Comparative Example 1 75% by weight of zinc oxide and 15% of zinc metal were used as the electrode active material.
% By weight, and 5% by weight of indium oxide and 5% by weight of indium metal as additives, and after adding a fluororesin,
Water was added and kneaded to obtain a paste-like electrode active material. The paste electrode active material was applied to both surfaces of a copper punching metal electrode substrate 14 having a thickness of 1 mm and a porosity of 50% to prepare a zinc electrode. Then, the battery configuration and cycle life were the same as in Example 1. The specific resistance of the electrode substrate 18 is 0.0
It was 77 Ω · cm. As a result, the cycle life is 300
It was once.

【0048】比較例2 実施例1の1800℃で炭素化処理後の電極基板Dを電
極基板15として、亜鉛電極を調製した。亜鉛電極調製
法、電池構成、サイクル寿命は実施例1と同様に行っ
た。尚、電極基板19の比抵抗は0.022Ω・cmであ
った。この結果、サイクル寿命は280回であった。
Comparative Example 2 A zinc electrode was prepared by using the electrode substrate D after carbonization at 1800 ° C. of Example 1 as the electrode substrate 15. The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. The specific resistance of the electrode substrate 19 was 0.022 Ω · cm. As a result, the cycle life was 280 times.

【0049】比較例3 電極基板に、ピッチ系炭素繊維を用いた、燃料電池用電
極基板(KES−400呉羽化学製)を用いた。この基
板16を、実施例1に記した測定法で特性を評価した結
果、比抵抗0.025Ω・cm、かさ密度0.53g/c
c、気孔率56%、気孔径38μm、であった。
Comparative Example 3 A fuel cell electrode substrate (KES-400 manufactured by Kureha Chemical Co., Ltd.) using a pitch-based carbon fiber was used as the electrode substrate. The characteristics of this substrate 16 were evaluated by the measuring method described in Example 1, and as a result, the specific resistance was 0.025 Ω · cm and the bulk density was 0.53 g / c.
c, porosity 56%, pore diameter 38 μm.

【0050】この基板を用いて、亜鉛電極を調製した。
亜鉛電極調製法、電池構成、サイクル寿命は実施例1と
同様に行った。この結果、サイクル寿命は270回であ
った。
A zinc electrode was prepared using this substrate.
The zinc electrode preparation method, battery configuration, and cycle life were the same as in Example 1. As a result, the cycle life was 270 times.

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【発明の効果】本発明の電極基板は、比抵抗が充分低
く、導電性に優れているため、電極活物質を充分に利用
できることが可能となり、充放電効率を高く維持するこ
とができるので、二次電池のサイクル寿命が延長する。
特に本発明の亜鉛電極は、比抵抗が充分低く、導電性に
優れているため、電極活物質を充分に利用できることが
可能となり、充放電効率を高く維持することができるの
で、二次電池のサイクル寿命が延長する。
EFFECT OF THE INVENTION The electrode substrate of the present invention has a sufficiently low specific resistance and excellent conductivity, so that the electrode active material can be fully utilized and the charge / discharge efficiency can be kept high. The cycle life of the secondary battery is extended.
In particular, since the zinc electrode of the present invention has a sufficiently low specific resistance and excellent conductivity, it becomes possible to fully utilize the electrode active material, and it is possible to maintain high charge / discharge efficiency. Cycle life is extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のニッケル亜鉛二次電池の模式断面図で
ある。
FIG. 1 is a schematic cross-sectional view of a nickel-zinc secondary battery of an example.

【図2】電極基板に担持した活物質を示す。FIG. 2 shows an active material supported on an electrode substrate.

【符号の説明】[Explanation of symbols]

1…負極 2…正極 3…セパレータ 4…電解液 5…保液紙 6…ケース 7…電極基板 8…活物質 DESCRIPTION OF SYMBOLS 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Electrolyte solution 5 ... Liquid retaining paper 6 ... Case 7 ... Electrode substrate 8 ... Active material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 空孔を有する導電性多孔質材料よりな
り、比抵抗が0.01Ω・cm以下である電極基板に、電
極活物質を担持させてなる電極を用いたことを特徴とす
るアルカリ二次電池。
1. An alkali characterized by using an electrode made of a conductive porous material having pores and having an electrode active material supported on an electrode substrate having a specific resistance of 0.01 Ω · cm or less. Secondary battery.
【請求項2】 前記電極基板が多孔質黒鉛化材料からな
る請求項1記載のアルカリ二次電池。
2. The alkaline secondary battery according to claim 1, wherein the electrode substrate is made of a porous graphitized material.
【請求項3】 前記電極活物質が主として酸化亜鉛から
なる亜鉛電極を用いたニッケル−亜鉛二次電池である請
求項1又は2記載のアルカリ二次電池。
3. The alkaline secondary battery according to claim 1, which is a nickel-zinc secondary battery using a zinc electrode in which the electrode active material is mainly zinc oxide.
【請求項4】 前記酸化亜鉛の亜鉛を、亜鉛より水素過
電圧が大きく且つ、酸化還元電位が貴である元素で置換
した亜鉛複合酸化物からなる亜鉛電極を用いたニッケル
−亜鉛二次電池である請求項3記載のアルカリ二次電
池。
4. A nickel-zinc secondary battery using a zinc electrode made of a zinc composite oxide in which zinc of zinc oxide is replaced with an element having a hydrogen overvoltage higher than zinc and a redox potential higher than that of zinc. The alkaline secondary battery according to claim 3.
【請求項5】 前記亜鉛電極として、亜鉛化合物と、亜
鉛よりも水素過電圧が大きく且つ、酸化還元電位が貴で
ある元素の化合物との混合組成物を、前記電極基板空孔
内へ担持し、熱分解により酸化亜鉛を主成分とする活物
質を該空孔内へ担持したことを特徴とする請求項3又は
4記載のアルカリ二次電池。
5. As the zinc electrode, a mixed composition of a zinc compound and a compound of an element having a hydrogen overvoltage higher than zinc and a redox potential higher than that of zinc is carried in the electrode substrate pores, The alkaline secondary battery according to claim 3 or 4, wherein an active material containing zinc oxide as a main component is supported in the pores by thermal decomposition.
JP6047195A 1994-03-17 1994-03-17 Alkaline secondary battery Withdrawn JPH07263020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6047195A JPH07263020A (en) 1994-03-17 1994-03-17 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6047195A JPH07263020A (en) 1994-03-17 1994-03-17 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH07263020A true JPH07263020A (en) 1995-10-13

Family

ID=12768350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6047195A Withdrawn JPH07263020A (en) 1994-03-17 1994-03-17 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH07263020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538458A (en) * 2007-08-31 2010-12-09 コーニング インコーポレイテッド Electric double layer capacitor, composite carbon electrode useful for capacitive deionization, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538458A (en) * 2007-08-31 2010-12-09 コーニング インコーポレイテッド Electric double layer capacitor, composite carbon electrode useful for capacitive deionization, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10629893B2 (en) Method of producing an electrode substrate made of carbon fibers
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
JPWO2019187537A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH08138650A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
RU2427052C1 (en) Electrode material for electric capacitor, its manufacturing method, and electric supercapacitor
KR101209847B1 (en) Fibrous Current Collector Comprising Carbon Nano Fiber, Electrode Using the Same, and Method of Manufacturing the Same
US4064331A (en) Method for the preparation of iron electrodes
JP3165478U (en) Battery electrode
JP4973892B2 (en) Capacitors
JP4973882B2 (en) Capacitors
US7061750B2 (en) Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
JPH1111921A (en) Solid activated carbon
JP3602933B2 (en) Activated carbon substrate
JPH07263020A (en) Alkaline secondary battery
KR101969140B1 (en) An improved electrode for Vanadium Flow Battery and the Vanadium Flow Battery comprising the same
JP4179581B2 (en) Activated carbon, its production method and its use
JPH08138651A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
CN107785587B (en) Electrode for vanadium redox flow battery with improved functionality and vanadium redox flow battery adopting same
JPH10144570A (en) Electric double layer capacitor
JP4822555B2 (en) Non-woven nickel chrome current collector for capacitor, electrode and capacitor using the same
Wachtler et al. Carbon and Graphite for Electrochemical Power Sources
KR101065249B1 (en) Preparing method of anode active material for lithium secondary battery and lithium secondary battery comprising anode active material formed therefrom
JP2005209703A (en) Electrochemical capacitor and its manufacturing method
JP2011243707A (en) Electrode for capacitor and capacitor using the same
JP2000143225A (en) Activatated carbon material and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605