JPH07262941A - Flat display apparatus - Google Patents

Flat display apparatus

Info

Publication number
JPH07262941A
JPH07262941A JP5014294A JP5014294A JPH07262941A JP H07262941 A JPH07262941 A JP H07262941A JP 5014294 A JP5014294 A JP 5014294A JP 5014294 A JP5014294 A JP 5014294A JP H07262941 A JPH07262941 A JP H07262941A
Authority
JP
Japan
Prior art keywords
electrode
linear
potential
electron
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5014294A
Other languages
Japanese (ja)
Inventor
Yumiko Nakamura
有美子 中村
Kazuhiro Shono
一弘 庄野
Ryo Suzuki
量 鈴木
Tetsuya Shiraishi
哲也 白石
Shinji Nakadeguchi
真治 中出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5014294A priority Critical patent/JPH07262941A/en
Publication of JPH07262941A publication Critical patent/JPH07262941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To save electric power energy by controlling an electric field in an electron source in the way electrons are emitted only out of positions of a flat electron source facing to electron beam passing positions. CONSTITUTION:ON-voltage is applied to a divided back side electrode 16a from a divided back side electrode driving apparatus 17 and potential at which no electron is emitted out of a linear thermal cathode 1 is applied to other divided back side electrodes 16b-16i. Consequently, electrons 19 are emitted only out of a part of the electrode 16a through a small hole of a hole-having cover electrode 2. When ON-voltage is applied to only one of successively corresponding electrodes 16a-16i from the driving apparatus 17 while being timed to the scanning work to set a group of control electrodes at ON-potential, electrons 19 can be emitted only out of the electrode. As a result, electrons 19 are emitted only out of a part facing to the scanned position of the group of control electrodes of a flat electron source 4a, vain electron emission is suppressed and electric power is saved. Moreover, the electrodes 16a-16i are easily formed on an insulating film 21 after the insulating film 2 is formed on the face of a metal substrate 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、平面状の電子源から
放射される電子ビームを用いた平面型表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat display device using an electron beam emitted from a flat electron source.

【0002】[0002]

【従来の技術】図25は例えば特開平3−226949
号公報、および特開平3−245445号公報に示され
ている従来の平面型表示装置の一部拡大破断斜視図、図
26はその正面より見た断面図である。図25におい
て、1は直熱型の線状陰極(以下、「線状熱陰極」とい
う)で列(垂直)方向に複数条平行に並べられて図示し
ていない支持体に支持され、通電加熱されて電子を放出
する。2はこれらの線状熱陰極1の上面を各別に覆う断
面が半楕円形状の有孔カバー電極で、電子を通過させる
ための多数の小孔を有しており、適当な電位を印加する
ことで線状熱陰極1から電子を引き出す。3は線状熱陰
極1の下面を各別に覆う断面が半楕円形状の背面電極
で、有孔カバー電極2と異なる電位が印加される。これ
らの線状熱陰極1、有孔カバー電極2、および背面電極
3で線状電子源4a,4b・・を構成し、この線状電子
源4a,4b・・が行(水平)方向に所定の間隔で平行
に並べられて平面状電子源4を構成している。
2. Description of the Related Art FIG. 25 shows, for example, JP-A-3-226949.
FIG. 26 is a partially enlarged cutaway perspective view of a conventional flat-panel display device disclosed in Japanese Patent Laid-Open No. 3-245445 and FIG. In FIG. 25, reference numeral 1 is a direct heating type linear cathode (hereinafter, referred to as “linear heating cathode”), which is arranged in parallel in a plurality of rows in a column (vertical) direction and supported by a support (not shown), and electrically heated. Is emitted and emits electrons. Reference numeral 2 denotes a perforated cover electrode having a semi-elliptical cross section for separately covering the upper surface of each of the linear hot cathodes 1 and having a large number of small holes for passing electrons, and an appropriate potential should be applied. The electrons are extracted from the linear hot cathode 1. Reference numeral 3 denotes a back electrode having a semi-elliptical cross section for separately covering the lower surface of the linear hot cathode 1, and a potential different from that of the perforated cover electrode 2 is applied. These linear hot cathodes 1, the perforated cover electrode 2, and the back electrode 3 constitute linear electron sources 4a, 4b ... And these linear electron sources 4a, 4b. The planar electron sources 4 are arranged in parallel at intervals of.

【0003】図26において、5は第2グリッドで、こ
の例ではステンレス製で開口率の大きい孔、たとえば、
2mmピッチで1辺1.8mmの正方形の孔が開けられ
ている。6は前面ガラスで、密封容器7の一部分を構成
しており、その内面には、赤,緑,青に発光する3種の
蛍光体をドット状に塗膜した画素が配列された蛍光面8
と、その面上に導電性を持たせるためのアルミ膜(図示
せず)が形成されている。
In FIG. 26, reference numeral 5 denotes a second grid, which in this example is made of stainless steel and has a large aperture ratio.
Square holes with a side of 1.8 mm are formed at a pitch of 2 mm. Reference numeral 6 denotes a front glass, which constitutes a part of the hermetically sealed container 7, and the inner surface of which has a phosphor screen 8 on which pixels coated with dots of three kinds of phosphors that emit red, green, and blue are arranged.
And an aluminum film (not shown) for providing conductivity is formed on the surface.

【0004】9は制御電極部で、蛍光面8の各画素に対
向する電子通過孔10が形成されている表面が絶縁性で
ある基板、たとえばガラス製の絶縁基板11と、その絶
縁基板11の平面状電子源4側に画素の1行にそれぞれ
対向して配列され、分離帯12でもって互いに絶縁され
た例えばニッケル膜で構成されている複数の短冊状の制
御電極13aからなる第1の制御電極群13と、同様に
絶縁基板11の蛍光面8側に画素の1列にそれぞれ対向
して配列され、分離帯14でもって互いに絶縁された例
えばニッケル膜で構成されている複数の短冊状の制御電
極15aからなる第2の制御電極群15とで構成されて
いる。
Reference numeral 9 denotes a control electrode portion, which is a substrate whose surface on which the electron passage holes 10 facing each pixel of the phosphor screen 8 are formed is insulative, for example, an insulating substrate 11 made of glass, and the insulating substrate 11. A first control including a plurality of strip-shaped control electrodes 13a formed of, for example, a nickel film, which are arranged on the side of the planar electron source 4 so as to face one row of pixels and are insulated from each other by a separation band 12. Similarly to the electrode group 13, a plurality of strip-shaped strips made of, for example, a nickel film are arranged so as to face each other in a row of pixels on the phosphor screen 8 side of the insulating substrate 11 and are insulated from each other by the separation band 14. The second control electrode group 15 is composed of the control electrodes 15a.

【0005】密封容器7内には、各電極が、平面状電子
源4、第2グリッド5、制御電極部9、蛍光面8の順に
配設されて真空に保たれており、各電極は側面に設けら
れた図示していない封止部から外部へ電気的に接続され
て平面型表示装置を構成している。
In the sealed container 7, each electrode is arranged in the order of the planar electron source 4, the second grid 5, the control electrode portion 9 and the fluorescent screen 8 and is kept in vacuum, and each electrode is a side surface. A flat display device is configured by being electrically connected to the outside from a sealing portion (not shown) provided in the.

【0006】次に、従来例の動作について説明する。線
状熱陰極1から放出された熱電子は、線状熱陰極1の平
均電位を0Vとしたとき、約5〜40Vの電位が印加さ
れている有孔カバー電極2によって平面状電子源4から
引き出され、次に約30〜350Vの電位が印加されて
いる第2グリッド5によって蛍光体方向を向いた均一な
電子流に整形されて制御電極部9の前面に送り出され
る。この熱電子は第1の制御電極群13のうち約20〜
100Vのプラス電位が印加されている1本の制御電極
13aに引き寄せられて制御電極部9に達する。このと
き、第1の制御電極13の任意の一本の制御電極13a
の前面における電子電流密度がほぼ均一になるように、
有孔カバー電極2の楕円柱形状,第1の制御電極群13
の位置,および各制御電極13aへの印加電圧が調整さ
れる。
Next, the operation of the conventional example will be described. The thermoelectrons emitted from the linear hot cathode 1 are emitted from the planar electron source 4 by the perforated cover electrode 2 to which an electric potential of about 5 to 40 V is applied, when the average electric potential of the linear hot cathode 1 is 0V. Then, the second grid 5 to which a potential of about 30 to 350 V is applied is shaped into a uniform electron flow directed to the fluorescent substance and sent to the front surface of the control electrode unit 9. This thermoelectron is about 20 to about the first control electrode group 13.
The positive potential of 100 V is attracted to the single control electrode 13a and reaches the control electrode unit 9. At this time, any one control electrode 13a of the first control electrodes 13
So that the electron current density on the front surface of the
Elliptic cylinder shape of perforated cover electrode 2, first control electrode group 13
And the voltage applied to each control electrode 13a are adjusted.

【0007】次に、制御電極部9の動作を説明する。上
記のように、第1の制御電極群13のうち1本の制御電
極13aのみプラス電位(オン状態)となり、他の制御
電極13aが0Vまたはマイナス電位(オフ状態)にな
っていると、線状熱陰極1から放出された熱電子はこの
1本のオン状態の制御電極13aにだけ引き寄せられ、
その制御電極13aに設けられている1列の電子通過孔
10に入っていく。そしてこの電子通過孔10に入った
電子は、そのまま全てが前面ガラス6側へ通過するわけ
ではなく、第2の制御電極群15のうち、例えば40〜
100Vの電位が印加されているオン状態の制御電極1
5aの電子通過孔10だけを通過し、他の0Vまたはマ
イナス電位となっているオフ状態の制御電極15aの電
子通過孔10を通過できない。したがって、電子は第1
の制御電極群13のうちのオン状態の1本の制御電極1
3aと、第2の制御電極群15のうちのオン状態の制御
電極15aとの交点の電子通過孔10だけを通過でき
る。
Next, the operation of the control electrode section 9 will be described. As described above, when only one control electrode 13a of the first control electrode group 13 has a positive potential (ON state) and the other control electrodes 13a have 0V or a negative potential (OFF state), the line The thermoelectrons emitted from the hot cathode 1 are attracted only to this one control electrode 13a in the ON state,
The electrons pass through the row of electron passage holes 10 provided in the control electrode 13a. All of the electrons that have entered the electron passage hole 10 do not pass through to the front glass 6 side as they are, but for example, 40 to 40
Control electrode 1 in the ON state to which a potential of 100 V is applied
Only the electron passage hole 10 of the control electrode 15a in the OFF state, which passes through the electron passage hole 5a of 5a and is at 0 V or a negative potential, cannot pass. Therefore, the electron is the first
One control electrode 1 in the ON state of the control electrode group 13
3a and only the electron passage hole 10 at the intersection of the control electrode 15a in the ON state of the second control electrode group 15 can be passed.

【0008】そして、この通過電子は、蛍光面8の上に
形成されたアルミ膜に印加されている10〜30kV程
度の電位により加速され、上記交点の電子通過孔10に
対応する蛍光面8上の位置の画素を励起して発光させ
る。すなわち、第1の制御電極群13の制御電極13a
を1本ずつ順次走査してオン状態とし、それに同期させ
て発光させようとする画素の位置に対応する第2の制御
電極群15の制御電極15aをオン状態とする走査を、
人間の目に感じない程度の周期、例えば1秒あたり60
画素繰り返すことで画像が表示される。
Then, the passing electrons are accelerated by a potential of about 10 to 30 kV applied to the aluminum film formed on the phosphor screen 8, and on the phosphor screen 8 corresponding to the electron passing hole 10 at the intersection. The pixel at the position is excited to emit light. That is, the control electrode 13a of the first control electrode group 13
Is sequentially scanned one by one to be in an ON state, and a scan in which the control electrode 15a of the second control electrode group 15 corresponding to the position of a pixel which is synchronized with the scanning is turned on is performed.
A cycle that is not felt by the human eye, for example 60 per second
An image is displayed by repeating pixels.

【0009】なお、制御電極13a,15aを電子通過
孔10内面の一部を覆うような構成としたのは、制御電
極13a,15aに0Vから数10Vの小さいマイナス
電位を印加してオフ状態にしたとき、電子通過孔10に
入った電子に有効に電界を加えて電子の通過を遮断する
ためである。
The control electrodes 13a and 15a are configured to cover a part of the inner surface of the electron passage hole 10 by applying a small negative potential of 0V to several tens of volts to the control electrodes 13a and 15a to turn them off. This is because at this time, an electric field is effectively applied to the electrons that have entered the electron passage hole 10 to block passage of the electrons.

【0010】また、発光させた画素の輝度の調整は、制
御電極15aをオン状態とする時間で制御する。すなわ
ち、制御電極13のオン状態時間をtyとすると、所定
位置の画素をP%の輝度にするには、制御電極15aの
オン状態時間txを、 tx=ty・P/100 に制御する。
Further, the adjustment of the luminance of the light-emitted pixel is controlled by the time during which the control electrode 15a is turned on. That is, assuming that the on-state time of the control electrode 13 is ty, the on-state time tx of the control electrode 15a is controlled to tx = ty · P / 100 in order to make the pixel at the predetermined position have P% luminance.

【0011】[0011]

【発明が解決しようとする課題】上記のように構成され
た従来の平面型表示装置では、第1の制御電極群の制御
電極を1本ずつ走査してオン状態としているにもかかわ
らず、線状熱陰極からは、常時、全領域で電子放出がお
こなわれているため、消費電力の無駄が大きいという問
題点があった。
In the conventional flat-panel display device having the above-described structure, the line electrodes are controlled by scanning the control electrodes of the first control electrode group one by one to turn them on. Electrons are constantly emitted from the hot cathode in the entire area, and there is a problem in that power consumption is wasted.

【0012】また、線状熱陰極には加熱電流による電圧
降下のため電位勾配が生じる。このため、線状熱陰極の
位置によって電位が変化し、引き出される電子の量が線
状熱陰極の位置によって変化するため、画面上の輝度お
よび輝度平坦度が変化するという問題点があった。。
Further, a potential gradient occurs in the linear hot cathode due to the voltage drop due to the heating current. For this reason, the potential changes depending on the position of the linear hot cathode, and the amount of extracted electrons changes depending on the position of the linear hot cathode, which causes a problem that brightness on the screen and brightness flatness change. .

【0013】また、画面サイズが大きくなって前面ガラ
スおよび制御電極部を曲面にすると、電子源と制御電極
部の間の距離が場所によって異なる。このため、蛍光面
に到達する電子電流量が異なり、輝度が不均一になると
ともに電子利用率が低下するという問題点があった。
Further, when the screen size becomes large and the front glass and the control electrode portion are curved, the distance between the electron source and the control electrode portion varies depending on the place. Therefore, there are problems that the amount of electron current reaching the phosphor screen is different, the brightness becomes non-uniform, and the electron utilization rate decreases.

【0014】この発明は、上記のような問題点を解決す
るためになされたもので、省電力化の可能な平面型表示
装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a flat-panel display device capable of saving power.

【0015】また、線状熱陰極に生じる電位勾配による
画面上での輝度および輝度平坦度の変化の生じない平面
型表示装置を得ることを目的とする。
Another object of the present invention is to obtain a flat display device in which the brightness and the flatness of the brightness on the screen are not changed by the potential gradient generated in the linear hot cathode.

【0016】また、密閉容器の前面ガラスおよび制御電
極部を曲面化した画面サイズの大きい平面型表示装置に
おいても、輝度が均一で、かつ輝度低下の少ない平面型
表示装置を得ることを目的とする。
Another object of the present invention is to provide a flat panel display having a large screen size in which the front glass of the closed container and the control electrode portion are curved, and the flat panel display has a uniform brightness and a small decrease in brightness. .

【0017】[0017]

【課題を解決するための手段】この発明に係る平面型表
示装置は、真空に保たれた密封容器と、この密封容器内
の一面に配設された線状陰極、これらの線状陰極の背面
を覆う背面電極およびこれらの線状陰極の前面を覆う有
孔カバー電極で構成された線状電子源が複数条配列され
てなる平面状電子源と、密封容器内の他面に形成された
蛍光面と、この蛍光面に対向して電子源との間に配設さ
れ通過させる電子ビームの水平および垂直方向の位置を
規制する制御電極部と、制御電極部による電子ビーム通
過位置に対向した平面状電子源の位置からだけ電子が放
出されるように平面状電子源内の電界を制御する手段と
を備えたものである。
A flat-panel display device according to the present invention includes a hermetically sealed container kept in a vacuum, linear cathodes arranged on one surface in the hermetically sealed container, and back surfaces of these linear cathodes. A planar electron source in which a plurality of linear electron sources composed of a back electrode for covering the linear cathode and a perforated cover electrode for covering the front surface of these linear cathodes are arranged, and fluorescent light formed on the other surface of the sealed container. Surface, a control electrode portion which is arranged between the electron source and the electron source so as to face the fluorescent surface and regulates the horizontal and vertical positions of the electron beam to pass therethrough, and a plane which faces the electron beam passage position by the control electrode portion. Means for controlling the electric field in the planar electron source so that electrons are emitted only from the position of the planar electron source.

【0018】また、背面電極が、制御電極部を構成して
いる制御電極の所定数ごとに分割されており、この分割
背面電極に線状陰極から電子を引き出す電位(以下、
「オン電位という)を上記制御電極部による水平および
垂直方向の走査位置に合わせて印加する分割背面電極駆
動手段を備えたものである。
Further, the back electrode is divided into a predetermined number of control electrodes constituting the control electrode portion, and a potential (hereinafter, referred to as a potential for extracting electrons from the linear cathode to the divided back electrode is divided into the divided back electrodes).
It is provided with a split back electrode drive means for applying "on-potential" according to the scanning positions in the horizontal and vertical directions by the control electrode portion.

【0019】また、分割背面電極を、金属基板と、この
金属基板上に形成された絶縁膜と、この絶縁膜の上に形
成された導電体よりなる分割電極とで構成したものであ
る。
Further, the split back electrode is constituted by a metal substrate, an insulating film formed on the metal substrate, and a split electrode made of a conductor formed on the insulating film.

【0020】また、オン電位を印加した分割背面電極
と、その分割背面電極に対向する位置の線状熱陰極との
電位差が一定値となるオン電位を印加する分割背面電極
可変電位駆動手段を備えたものである。
Further, there is provided a divided back electrode variable potential driving means for applying an ON potential having a constant potential difference between the divided back electrode to which the ON potential is applied and the linear hot cathode at a position facing the divided back electrode. It is a thing.

【0021】また、オン電位を印加した分割背面電極
と、その分割背面電極に対向する位置の線状熱陰極との
電位差が一定値となる電位を印加する線状熱陰極可変電
位印加手段を備えたものである。
Further, there is provided a linear hot cathode variable potential applying means for applying a potential having a constant potential difference between the split back electrode to which the ON potential is applied and the linear hot cathode at a position facing the split back electrode. It is a thing.

【0022】また、有孔カバー電極が、制御電極部を構
成している所定の制御電極ごとに分割されており、この
分割背面電極に線状陰極から電子を引き出すオン電位を
上記制御電極部による水平および垂直方向の走査位置に
合わせて印加する分割有孔カバー電極駆動手段を備えた
ものである。
Further, the perforated cover electrode is divided for each predetermined control electrode constituting the control electrode portion, and the ON potential for drawing electrons from the linear cathode to the divided back electrode is set by the control electrode portion. It is provided with a divided perforated cover electrode driving means for applying in accordance with scanning positions in the horizontal and vertical directions.

【0023】また、オン電位を印加した分割有孔カバー
電極と、その分割有孔カバー電極に対向する位置の線状
熱陰極との電位差が一定値となるオン電位を印加する分
割有孔カバー電極可変電位駆動手段を備えたものであ
る。
Further, the divided perforated cover electrode applying the on-potential so that the potential difference between the divided perforated cover electrode to which the on-potential is applied and the linear hot cathode at a position facing the divided perforated cover electrode becomes a constant value. It is provided with a variable potential driving means.

【0024】また、オン電位を印加した分割有孔カバー
電極と、その分割有孔カバー電極に対向する位置の線状
熱陰極との電位差が一定値となる電位を印加する線状熱
陰極可変電位印加手段を備えたものである。
Further, a linear hot cathode variable potential for applying a potential such that the potential difference between the divided perforated cover electrode to which the ON potential is applied and the linear hot cathode at a position facing the divided perforated cover electrode is constant. It is provided with an application means.

【0025】また、所定数の制御電極ごとに配置されて
いる複数の線状電子源を上記制御電極部による水平およ
び垂直方向の走査位置に合わせて順次電子を放出するオ
ン状態に駆動する手段を備えたものである。
A means for driving a plurality of linear electron sources arranged for each of a predetermined number of control electrodes into an ON state for sequentially emitting electrons in accordance with the scanning positions in the horizontal and vertical directions by the control electrode section is provided. Be prepared.

【0026】また、 制御電極部による水平および垂直
方向の走査位置に対向する位置を含む2つ以上の分割背
面電極、または分割有孔カバー電極、もしくは線状電子
源から電子放出が行われるように制御する手段を備えた
ものである。
Further, the electron emission is performed from two or more split back electrodes including the positions facing the scanning positions in the horizontal and vertical directions by the control electrode section, the split perforated cover electrodes, or the linear electron source. It is provided with a means for controlling.

【0027】また、制御電極部による水平および垂直方
向の走査位置が画像に影響を及ぼす電子ビームの乱れが
生じる線状電子源の分割部分の境目の領域、または線状
電子源の間を走査している期間だけ当該領域を含む2つ
以上の分割部分、または2つ以上の線状電子源から電子
放出が行われるように制御する手段を備えたものであ
る。
Further, the scanning positions in the horizontal and vertical directions by the control electrode portion are scanned between the linear electron source regions or the boundary regions of the divided portions of the linear electron source in which the disturbance of the electron beam affecting the image occurs. For a certain period of time, a means for controlling the electron emission from two or more divided portions including the region or two or more linear electron sources is provided.

【0028】また、真空に保たれた密封容器内の一方の
面に設けられた平面状電子源と、上記密封容器内の他方
の曲面上に形成された蛍光面と、この蛍光面に対向して
上記平面状電子源との間に配設され通過させる電子ビー
ムの水平および垂直方向の位置を規制する上記蛍光面と
同じ曲面に形成された制御電極部と、この制御電極部と
上記平面状電子源との間に配設され、上記制御電極部と
平面状電子源間の距離の差によって生じる上記蛍光面上
での電子ビームの電流量のばらつきを補正するための電
子通過孔が形成されている電子ビーム量補正電極とを備
えたものである。
Further, a flat electron source provided on one surface of the hermetically sealed container kept under vacuum, a fluorescent screen formed on the other curved surface of the hermetically sealed container, and facing the fluorescent screen. And a control electrode portion formed on the same curved surface as the fluorescent screen for regulating the horizontal and vertical positions of the electron beam that is disposed between the control electrode portion and the planar electron source. An electron passage hole is provided between the control electrode portion and the planar electron source, the electron passage hole being provided between the control electrode portion and the planar electron source for correcting the variation in the current amount of the electron beam on the fluorescent screen. And an electron beam amount correcting electrode which is provided.

【0029】また、制御電極部と上記電子源との間に配
設された電子ビーム量補正電極を、上記制御電極部とは
異なる曲率半径に形成したものである。
Further, the electron beam amount correction electrode arranged between the control electrode portion and the electron source is formed with a radius of curvature different from that of the control electrode portion.

【0030】また、制御電極部と上記電子源との間に第
1,第2の電子ビーム量補正電極を配設するとともに、
上記制御電極部に近い第1の電子ビーム量補正電極は上
記制御電極部と同じかまたはそれより大きい曲率半径
に、上記電子源に近い第2の電子ビーム量補正電極は上
記第1の電子ビーム量補正電極より大きい曲率半径に形
成したものである。
Further, the first and second electron beam amount correcting electrodes are provided between the control electrode portion and the electron source, and
The first electron beam amount correcting electrode near the control electrode portion has a radius of curvature equal to or larger than that of the control electrode portion, and the second electron beam amount correcting electrode near the electron source has the first electron beam. The radius of curvature is larger than that of the quantity correction electrode.

【0031】また、第2の電子ビーム量補正電極を平面
に形成したものである。
Further, the second electron beam amount correcting electrode is formed on a plane.

【0032】また、曲面に形成された第1の電子ビーム
量補正電極と、平面に形成された第2の電子ビーム量補
正電極とを周縁部分で重ね合わせたものである。
Further, the first electron beam amount correction electrode formed on the curved surface and the second electron beam amount correction electrode formed on the flat surface are overlapped at the peripheral edge portion.

【0033】また、第1の電子ビーム量補正電極より大
きい曲率半径にまたは平面に形成され、かつ、電子源と
制御電極間の距離が大きい部分だけを覆う大きさに形成
された第2の電子ビーム量補正電極を備えたものであ
る。
Further, the second electron is formed to have a radius of curvature larger than that of the first electron beam amount correction electrode or to be flat and to cover only a portion where the distance between the electron source and the control electrode is large. A beam amount correction electrode is provided.

【0034】[0034]

【作用】上記のように構成された平面型表示装置におい
ては、制御電極の走査動作に合わせて必要な部分からだ
け電子を放出させることができる。
In the flat-panel display device having the above-described structure, electrons can be emitted only from the necessary portion in accordance with the scanning operation of the control electrode.

【0035】また、この発明によれば、制御電極の走査
動作に合わせて分割した背面電極の電位を変化させて電
子放出をオン、オフ制御して必要な部分からだけ電子を
放出させることができる。
Further, according to the present invention, the potential of the divided back electrode is changed in accordance with the scanning operation of the control electrode to control the on / off of the electron emission, and the electron can be emitted only from a necessary portion. .

【0036】また、分割背面電極を、金属基板と、この
金属基板上に形成された絶縁膜と、この絶縁膜の上に形
成された導電体よりなる分割電極とで構成したので、容
易に製造できる。
Further, since the split back electrode is composed of the metal substrate, the insulating film formed on the metal substrate, and the split electrode made of a conductor formed on the insulating film, the split back electrode is easily manufactured. it can.

【0037】また、分割背面電極可変電位駆動手段によ
って、オン電位を印加した分割背面電極と、その分割背
面電極に対向する位置の線状熱陰極の電位との差が一定
値となるように当該分割背面電極に順次異なるオン電位
を印加するので、線状熱陰極の加熱電流による電圧降下
の影響が抑制され、有孔カバー電極によって引き出され
る電子電流量が等しくなる。
Further, the divided back electrode variable potential driving means makes the difference between the divided back electrode to which the ON potential is applied and the electric potential of the linear hot cathode facing the divided back electrode constant. Since different ON potentials are sequentially applied to the divided back electrodes, the influence of the voltage drop due to the heating current of the linear hot cathode is suppressed, and the amount of electron current drawn by the perforated cover electrode becomes equal.

【0038】また、線状熱陰極可変電位印加手段によっ
て、オン電位を印加した分割背面電極とその分割背面電
極に対向する位置の線状熱陰極の電位との差が一定値と
なるように当該線状熱陰極に順次異なる電位を印加する
ので、線状熱陰極の加熱電流による電圧降下の影響が抑
制されるために有孔カバー電極によって引き出される電
子電流量が等しくなる。
Also, the linear hot cathode variable potential applying means applies a constant value to the difference between the potential of the split back electrode to which the ON potential is applied and the potential of the linear hot cathode at a position facing the split back electrode. Since different potentials are sequentially applied to the linear hot cathode, the influence of the voltage drop due to the heating current of the linear hot cathode is suppressed, so that the amount of electron current drawn by the perforated cover electrode becomes equal.

【0039】また、分割有孔カバー電極駆動手段によっ
て、制御電極部による水平および垂直方向の走査位置に
合わせて分割背面電極にオン電位を印加するので、制御
電極の走査動作に合わせた必要な部分からだけ電子を放
出させることができる。
Further, since the divided perforated cover electrode driving means applies the ON potential to the divided back electrode in accordance with the scanning positions in the horizontal and vertical directions by the control electrode portion, a necessary portion corresponding to the scanning operation of the control electrode is formed. Electrons can be emitted only from.

【0040】また、分割有孔カバー電極可変電位駆動手
段によって、分割有孔カバー電極と、その分割有孔カバ
ー電極に対向する位置の線状熱陰極の電位との差が一定
値となるように当該分割有孔カバー電極に順次異なるオ
ン電位を印加するので、線状熱陰極の加熱電流による電
圧降下の影響が解消され、有孔カバー電極によって引き
出される電子電流量が等しくなる。
Further, the divided perforated cover electrode variable potential driving means controls the difference between the divided perforated cover electrode and the potential of the linear hot cathode at a position facing the divided perforated cover electrode to a constant value. Since different ON potentials are sequentially applied to the divided perforated cover electrodes, the influence of the voltage drop due to the heating current of the linear hot cathode is eliminated, and the electron current amounts drawn by the perforated cover electrodes become equal.

【0041】また、線状熱陰極電位印加装置によって、
オン電位を印加した分割有孔カバー電極と、その分割有
孔カバー電極に対向する位置の線状熱陰極との電位差が
一定値となるように当該線状熱陰極に順次異なる電位を
印加するので、線状熱陰極の加熱電流による電圧降下の
影響が解消され、有孔カバー電極によって引き出される
電子電流量が等しくなる。
Further, by the linear hot cathode potential applying device,
Different potentials are sequentially applied to the linear hot cathode so that the potential difference between the split perforated cover electrode to which the ON potential is applied and the linear hot cathode at a position facing the split perforated cover electrode becomes a constant value. The influence of the voltage drop due to the heating current of the linear hot cathode is eliminated, and the amount of electron current drawn by the perforated cover electrode becomes equal.

【0042】また、線状電子源をオン状態に駆動する手
段によって、制御電極部による水平および垂直方向の走
査位置に合わせて順次オン状態にするので、制御電極の
走査動作に合わせて必要な部分から電子を放出させるこ
とができる。
Further, the means for driving the linear electron source into the on state sequentially turns on in accordance with the scanning positions in the horizontal and vertical directions by the control electrode portion, so that a portion required according to the scanning operation of the control electrode is performed. Can emit electrons from.

【0043】また、 制御電極部による水平および垂直
方向の走査位置に対向する位置を含む2つ以上の分割背
面電極、または分割有孔カバー電極、もしくは線状電子
源から電子放出が行われるように制御する手段を備えた
ので、分割境目でのビームの乱れによる画像への影響が
生じない。
Further, the electron emission is performed from two or more split back electrodes including the positions facing the scanning positions in the horizontal and vertical directions by the control electrode portion, the split perforated cover electrodes, or the linear electron source. Since the control means is provided, the image disturbance due to the turbulence of the beam at the division boundary does not occur.

【0044】また、制御電極部による水平および垂直方
向の走査位置が画像に影響を及ぼす電子ビームの乱れが
生じる線状電子源の分割部分の境目の領域、または線状
電子源の間を走査している期間だけ当該領域を含む2つ
以上の分割部分、または2つ以上の線状電子源から電子
放出が行われるように制御する手段を備えたので、分割
境目でのビームの乱れによる画像への影響が生じない。
Further, the scanning position in the horizontal and vertical directions by the control electrode portion scans between the linear electron sources or the boundary region of the divided portions of the linear electron source in which the disturbance of the electron beam affecting the image occurs. Since there is provided means for controlling so that electrons are emitted from two or more divided portions including the relevant region or two or more linear electron sources only during a certain period, the image due to the disturbance of the beam at the dividing boundary is displayed. The effect of does not occur.

【0045】また、真空に保たれた密封容器内の一方の
面に設けられた平面状電子源と、上記密封容器内の他方
の曲面上に形成された蛍光面と、この蛍光面に対向して
上記平面状電子源との間に配設され通過させる電子ビー
ムの水平および垂直方向の位置を規制する上記蛍光面と
同じ曲面に形成された制御電極部と、この制御電極部と
上記平面状電子源との間に配設され、上記制御電極部と
平面状電子源間の距離の差によって生じる上記蛍光面上
での電子ビームの電流量のばらつきを補正するための電
子通過孔が形成されている電子ビーム量補正電極とを備
えたので、制御電極群と平面状電子源との距離の差に基
づく蛍光面上での電子電流量のばらつきが少なくなる。
Further, a flat electron source provided on one surface of the sealed container kept in vacuum, a fluorescent screen formed on the other curved surface of the sealed container, and facing the fluorescent screen. And a control electrode portion formed on the same curved surface as the fluorescent screen for regulating the horizontal and vertical positions of the electron beam that is disposed between the control electrode portion and the planar electron source. An electron passage hole is provided between the control electrode portion and the planar electron source, the electron passage hole being provided between the control electrode portion and the planar electron source for correcting the variation in the current amount of the electron beam on the fluorescent screen. Since the electron beam amount correcting electrode is provided, variations in the electron current amount on the fluorescent screen due to the difference in distance between the control electrode group and the planar electron source are reduced.

【0046】また、制御電極部と上記電子源との間に配
設された電子ビーム量補正電極を、上記制御電極部とは
異なる曲率半径に形成したので、電子源と制御電極の間
の距離の差による蛍光面上での電子電流量のばらつきが
少なくなる。
Further, since the electron beam amount correction electrode arranged between the control electrode portion and the electron source is formed with a radius of curvature different from that of the control electrode portion, the distance between the electron source and the control electrode is increased. The difference in the amount of electron current on the phosphor screen due to the difference between the two becomes small.

【0047】また、制御電極部と上記電子源との間に第
1,第2の電子ビーム量補正電極が配設されており、上
記制御電極部に近い第1の電子ビーム量補正電極は上記
制御電極部と同じかまたはそれより大きい曲率半径に、
上記電子源に近い第2の電子ビーム量補正電極は上記第
1の電子ビーム量補正電極より大きい曲率半径に形成し
たので、電子源と制御電極の間の距離の差による蛍光面
上での電子電流量のばらつきが少なくなる。
Further, the first and second electron beam amount correction electrodes are arranged between the control electrode portion and the electron source, and the first electron beam amount correction electrode near the control electrode portion is the above-mentioned. With a radius of curvature equal to or greater than the control electrode section,
Since the second electron beam amount correction electrode near the electron source is formed to have a larger radius of curvature than the first electron beam amount correction electrode, electrons on the fluorescent screen due to the difference in the distance between the electron source and the control electrode are formed. Variation in current amount is reduced.

【0048】また、第2の電子ビーム量補正電極を平面
に形成したので、電子源と制御電極の間の距離の差によ
る蛍光面上での電子電流量のばらつきが少なくなる。
Further, since the second electron beam amount correction electrode is formed on the plane, the variation of the electron current amount on the fluorescent screen due to the difference in the distance between the electron source and the control electrode is reduced.

【0049】また、曲面に形成された第1の電子ビーム
量補正電極と、平面に形成された第2の電子ビーム量補
正電極とを周縁部分で重ね合わせたので、電子源と制御
電極の間の距離の差による蛍光面上での電子電流量のば
らつきが少なくなる。
Further, since the first electron beam amount correction electrode formed on the curved surface and the second electron beam amount correction electrode formed on the flat surface are overlapped at the peripheral portion, the electron source and the control electrode are The variation in the amount of electron current on the phosphor screen due to the difference in the distance is reduced.

【0050】また、第1の電子ビーム量補正電極より大
きい曲率半径にまたは平面に形成され、かつ、電子源と
制御電極間の距離が大きい部分だけ覆う大きさに形成さ
れた第2の電子ビーム量補正電極を備えたので、電子源
と制御電極の間の距離の差による蛍光面上での電子電流
量のばらつきが少なくなる。
A second electron beam formed to have a radius of curvature larger than that of the first electron beam amount correction electrode or to a flat surface and to cover only a portion where the distance between the electron source and the control electrode is large. Since the quantity correction electrode is provided, variations in the quantity of electron current on the phosphor screen due to the difference in the distance between the electron source and the control electrode are reduced.

【0051】[0051]

【実施例】【Example】

実施例1.図1はこの発明の実施例1による平面型表示
装置の一つの線状電子源4aを示す斜視図で、図25お
よび図26と同一符号はそれぞれ同一部分を示してい
る。図において、16は分割背面電極群で、この実施例
では、第一の制御電極群13の10個の制御電極13a
ごとに対向するように分割された分割背面電極16a〜
16iで構成されており、分割背面電極16aがNo1
〜No10の制御電極13aに対向し、分割背面電極1
6bがNo11〜No20の制御電極13aに対向し、
以下、各分割背面電極16iまで、それぞれ10個の制
御電極13aに対向している。17は分割背面電極駆動
装置、18は加熱用の電源で、ここでは説明を簡単にす
るめに、直流の加熱電流を線状熱陰極1に通電するもの
とする。19は線状電子源4aから放出された電子で、
有孔カバー電極2にオン電位が印加されたとき、有孔カ
バー電極2を通して放出される。
Example 1. 1 is a perspective view showing one linear electron source 4a of a flat panel display according to Embodiment 1 of the present invention, and the same reference numerals as those in FIGS. 25 and 26 denote the same parts. In the figure, 16 is a divided back electrode group, and in this embodiment, 10 control electrodes 13a of the first control electrode group 13 are provided.
The divided back electrodes 16a divided so as to face each other.
16i, and the divided back electrode 16a is No1.
To the control electrode 13a of No. 10 and the divided back electrode 1
6b faces the control electrodes 13a of No11 to No20,
Hereinafter, each of the divided back electrodes 16i faces the ten control electrodes 13a. Reference numeral 17 is a split back electrode driving device, and 18 is a power source for heating. Here, in order to simplify the description, a DC heating current is applied to the linear hot cathode 1. Reference numeral 19 is an electron emitted from the linear electron source 4a,
When an on-potential is applied to the perforated cover electrode 2, it is emitted through the perforated cover electrode 2.

【0052】図2は、上記のように構成された平面状電
子源4を備えた平面型表示装置の駆動方法を示すタイミ
ング図で、第一の制御電極群13と分割背面電極群16
に印加されるオン電位のタイミングを示しており、第一
の制御電極群13の走査動作に合わせて、表示に必要な
分割部分だけから電子が放出されるように、分割背面電
極駆動装置17から分割背面電極16a〜16iにオン
電位が印加される。
FIG. 2 is a timing chart showing a driving method of the flat panel display device having the flat electron source 4 configured as described above. The first control electrode group 13 and the split rear surface electrode group 16 are shown.
3 shows the timing of the ON potential applied to the divided rear electrode driving device 17 so that electrons are emitted only from the divided portions necessary for display in accordance with the scanning operation of the first control electrode group 13. The ON potential is applied to the divided back electrodes 16a to 16i.

【0053】次に、実施例1の動作を説明する。いま、
分割背面電極駆動装置17から分割背面電極16aにオ
ン電位を印加し、他の分割背面電極16b〜16iには
線状熱陰極1から電子を放出させない電位(以下、「オ
フ電位」という)を印加すると、図1に示すように、分
割背面電極16aの部分だけから有孔カバー電極2の小
孔を通して電子19が放出される。
Next, the operation of the first embodiment will be described. Now
An on-potential is applied from the split back electrode driving device 17 to the split back electrode 16a, and a potential (hereinafter, referred to as "off potential") that does not emit electrons from the linear hot cathode 1 is applied to the other split back electrodes 16b to 16i. Then, as shown in FIG. 1, electrons 19 are emitted only from the divided back electrode 16a through the small holes of the perforated cover electrode 2.

【0054】図2のタイミング図に示すように、第一の
制御電極群13にオン電位を印加する走査動作のタイミ
ングに合わせて、分割背面電極駆動装置17から分割背
面電極16aのみオン電位、分割背面電極16bのみオ
ン電位、というように、順次対応する分割背面電極にオ
ン電位を印加すると、オン電位を印加した分割背面電極
の部分だけから電子19が放出される。
As shown in the timing chart of FIG. 2, only the split back electrode 16a is turned on and the split back electrode 16a is turned on in accordance with the timing of the scanning operation for applying the on potential to the first control electrode group 13. When the on-potential is sequentially applied to the corresponding divided back electrodes such that only the back electrode 16b has the on-potential, the electrons 19 are emitted only from the divided back electrode portions to which the on-potential is applied.

【0055】この実施例1によれば、平面状電子源4の
第一の制御電極群13の走査位置に対向した部分だけか
ら電子を放出させることができるので、無駄な電子放出
を抑えることができ、省電力化が図れる。
According to the first embodiment, electrons can be emitted only from the portion of the planar electron source 4 facing the scanning position of the first control electrode group 13, so that useless electron emission can be suppressed. The power consumption can be reduced.

【0056】図3は、実施例1の分割背面電極群16の
一構成例を示す断面図で、金属基板20の面上に絶縁膜
21を形成し、その絶縁膜21の上に分割背面電極16
a〜16iを蒸着等の方法で形成したものである。
FIG. 3 is a cross-sectional view showing one structural example of the divided back electrode group 16 of the first embodiment. An insulating film 21 is formed on the surface of the metal substrate 20, and the divided back electrode is formed on the insulating film 21. 16
a to 16i are formed by a method such as vapor deposition.

【0057】この構成例によれば、分割背面電極群を容
易に製作することができる。
According to this configuration example, the divided back electrode group can be easily manufactured.

【0058】実施例2.図4は、この発明の実施例2の
駆動方法を示すタイミング図である。この実施例2は線
状熱陰極1に加熱電流によって生じる電圧降下の影響の
解消を図ったもので、線状電子源4aの構成は図1と同
じである。
Example 2. FIG. 4 is a timing chart showing a driving method according to the second embodiment of the present invention. The second embodiment is intended to eliminate the influence of the voltage drop caused by the heating current in the linear hot cathode 1, and the configuration of the linear electron source 4a is the same as that in FIG.

【0059】すなわち、分割背面電極駆動装置17から
分割背面電極16aに印加するオン電位の値をa(V)
とすると、その隣の分割背面電極16bにはa(V)よ
り線状熱陰極1の分割背面電極16aから16bの間の
電圧降下分だけ高い電位b(V)を印加し、その隣の分
割背面電極16cにはb(V)より線状熱陰極1の分割
背面電極16bから16cの間の電圧降下分だけ高い電
位c(V)を印加するというように、順次高い電位を印
加してゆく。
That is, the value of the ON potential applied from the split back electrode driving device 17 to the split back electrode 16a is a (V).
Then, a potential b (V) higher than a (V) by a voltage drop between the divided back electrodes 16a to 16b of the linear hot cathode 1 is applied to the adjacent divided back electrode 16b, and the adjacent divided back electrode 16b is applied. Higher potentials are sequentially applied to the back electrode 16c such that a potential c (V) higher than b (V) by a voltage drop between the split back electrodes 16b to 16c of the linear hot cathode 1 is applied. .

【0060】このようにすると、線状熱陰極1の加熱電
流による電圧降下の影響が解消され、オン状態の分割背
面電極に対向する部分の線状熱陰極1と有孔カバー電極
2の間の電界強度が線状熱陰極1の全長にわたってほぼ
均一になるため、分割背面電極16a〜16iの各部分
から有孔カバー電極2によって引き出される電子電流量
がほぼ均一になる。
By doing so, the influence of the voltage drop due to the heating current of the linear hot cathode 1 is eliminated, and the portion between the linear hot cathode 1 and the perforated cover electrode 2 facing the split rear electrode in the ON state is eliminated. Since the electric field strength is substantially uniform over the entire length of the linear hot cathode 1, the amount of electron current drawn by the perforated cover electrode 2 from each part of the divided back electrodes 16a to 16i is substantially uniform.

【0061】この実施例2によれば、実施例1と同様に
省電力化が図れるとともに、画面上での輝度および輝度
平坦度が向上する。
According to the second embodiment, power can be saved as in the first embodiment, and the brightness and the brightness flatness on the screen can be improved.

【0062】実施例3.図5は、この発明の実施例3の
駆動回路を示す図で、線状電子源4aの構成は図1と同
じであり、22は線状熱陰極可変電位印加装置である。
図6は、この発明の実施例3の駆動方法を示すタイミン
グ図である。
Example 3. FIG. 5 is a diagram showing a drive circuit according to a third embodiment of the present invention. The structure of the linear electron source 4a is the same as that of FIG. 1, and 22 is a linear hot cathode variable potential applying device.
FIG. 6 is a timing chart showing a driving method according to the third embodiment of the present invention.

【0063】この実施例3は線状熱陰極1に加熱電流に
よって生じる電圧降下の影響の解消を図ったもので、分
割背面電極駆動装置17から分割背面電極16a〜16
iに印加するオン電位に同期して、線状熱陰極1の電位
を変化させ、オン電位が印加されている分割背面電極と
これに対向する位置の線状熱陰極1との電位差が同じと
なるようにしたものである。
In the third embodiment, the influence of the voltage drop caused by the heating current on the linear hot cathode 1 is eliminated, and the split back electrode driving device 17 to the split back electrodes 16a to 16 are used.
When the potential of the linear hot cathode 1 is changed in synchronization with the ON potential applied to i, the potential difference between the split back electrode to which the ON potential is applied and the linear hot cathode 1 at a position facing the split rear electrode is the same. It was made to become.

【0064】次に、実施例3の動作を説明する。いま、
実施例1と同様に分割背面電極駆動装置17から分割背
面電極群16に同じ値のオン,オフ電位を印加するとと
もに、分割背面電極駆動装置17から分割背面電極16
aにオン電位を印加したときは線状熱陰極可変電位印加
装置22から線状熱陰極1にa(V)の電位を印加し、
その隣の分割背面電極16bにオン電位を印加したとき
は線状熱陰極1にa(V)より線状熱陰極1の電圧降下
分だけ低いb(V)の電位を印加し、その隣の分割背面
電極16cにオン電位を印加したときは線状熱陰極1に
b(V)より線状熱陰極1の電圧降下分だけ低いc
(V)の電位を印加するようにして、分割背面電極16
a〜16iと線状熱陰極1との電位差が、どの分割部分
でも同じとなるように駆動する。
Next, the operation of the third embodiment will be described. Now
In the same manner as in Example 1, the divided back electrode driving device 17 applies the same ON / OFF potential to the divided back electrode group 16, and the divided back electrode driving device 17 causes the divided back electrode 16 to be applied.
When the ON potential is applied to a, the potential of a (V) is applied to the linear hot cathode 1 from the linear hot cathode variable potential applying device 22.
When an ON potential is applied to the adjacent divided back electrode 16b, a potential of b (V) lower than that of a (V) by the voltage drop of the linear hot cathode 1 is applied to the linear hot cathode 1 and the adjacent When an ON potential is applied to the split back electrode 16c, the linear hot cathode 1 is lower than b (V) by a voltage drop of the linear hot cathode 1 c.
By applying the potential of (V), the split back electrode 16
The driving is performed so that the potential difference between a to 16i and the linear hot cathode 1 is the same in any divided portion.

【0065】この実施例3の駆動方法によれば、オン状
態の分割背面電極部分の線状熱陰極1と有孔カバー電極
2の間の電界強度が線状熱陰極1の全長にわたってほぼ
均一となり、分割背面電極16a〜16iの各部分から
有孔カバー電極2によって引き出される電子電流量がほ
ぼ均一になるので、画面上での輝度および輝度平坦度が
向上するとともに、省電力化が図れる。
According to the driving method of the third embodiment, the electric field strength between the linear hot cathode 1 and the perforated cover electrode 2 in the split rear electrode portion in the ON state becomes substantially uniform over the entire length of the linear hot cathode 1. Since the amount of electron current drawn from the divided back electrodes 16a to 16i by the perforated cover electrode 2 becomes substantially uniform, the brightness and brightness flatness on the screen are improved, and power saving can be achieved.

【0066】実施例4.図7は、この発明の実施例4の
駆動回路を示す図で、図1と同一符号はそれぞれ同一部
分を示している。図において、23は分割有孔カバー電
極群で、第一の制御電極群13の10個の制御電極13
aごとに対向するように分割された分割有孔カバー電極
23a〜23iで構成されており、分割有孔カバー電極
23aがNo1〜No10の制御電極13aに対向し、
分割有孔カバー電極23bがNo11〜No22の制御
電極13aに対向し、以下、各分割有孔カバー電極23
iまで、それぞれ10個の制御電極13aに対向してい
る。24は分割有孔カバー電極駆動装置である。
Example 4. 7 is a diagram showing a drive circuit according to a fourth embodiment of the present invention, and the same reference numerals as those in FIG. 1 denote the same parts. In the figure, reference numeral 23 denotes a divided perforated cover electrode group, which is the 10 control electrodes 13 of the first control electrode group 13.
Each of the divided perforated cover electrodes 23a to 23i is divided so as to face each other, and the divided perforated cover electrodes 23a face the control electrodes 13a of No1 to No10,
The divided perforated cover electrode 23b faces the control electrodes 13a of No11 to No22, and hereinafter, each divided perforated cover electrode 23
Up to i, they face 10 control electrodes 13a, respectively. Reference numeral 24 denotes a divided perforated cover electrode driving device.

【0067】図8は上記のように構成された電子源を有
する平面型表示装置の駆動方法を示すタイミング図で、
第一の制御電極群13と分割有孔カバー電極23a〜2
3iに印加されるオン電位のタイミングを示しており、
第一の制御電極群13の走査動作に合わせて、分割有孔
カバー電極23a〜23iのうち、表示に必要な部分だ
けから電子が放出されるように、分割有孔カバー電極駆
動装置24からオン電位が印加される。
FIG. 8 is a timing chart showing a driving method of the flat panel display device having the electron source constructed as described above.
First control electrode group 13 and divided perforated cover electrodes 23a-2
3 shows the timing of the ON potential applied to 3i,
In accordance with the scanning operation of the first control electrode group 13, the divided perforated cover electrode driving device 24 is turned on so that the electrons are emitted only from the portions of the divided perforated cover electrodes 23a to 23i necessary for display. An electric potential is applied.

【0068】次に、実施例4の動作を説明する。 図8
に示すように、第一の制御電極群13にオン電位を印加
する走査動作のタイミングに合わせて、分割有孔カバー
電極駆動装置24から分割有孔カバー電極23aにのみ
オン電位を与え、他の分割有孔カバー電極23b〜23
iにはオフ電位を与えると、図7に示すように、分割有
孔カバー電極23aの部分からだけ電子19が分割有孔
カバー電極23aの小孔を通って放出される。したがっ
て、図8に示すように、第一の制御電極群13の走査動
作のタイミングに合わせて分割有孔カバー電極23aの
みオン電位、分割有孔カバー電極23bのみオン電位と
いうように、分割有孔カバー電極駆動装置24から順次
オン電位を印加することで、平面状電子源4の第一の制
御電極群13の走査位置に対向した部分だけから電子を
放出させることができる。
Next, the operation of the fourth embodiment will be described. Figure 8
As shown in FIG. 5, the divided perforated cover electrode driving device 24 applies the on potential to only the divided perforated cover electrodes 23a at the timing of the scanning operation for applying the on potential to the first control electrode group 13, and other Split perforated cover electrodes 23b-23
When an off-potential is applied to i, as shown in FIG. 7, electrons 19 are emitted only from the portion of the divided perforated cover electrode 23a through the small holes of the divided perforated cover electrode 23a. Therefore, as shown in FIG. 8, the divided perforated cover electrodes 23a are turned on and the divided perforated cover electrodes 23b are turned on in accordance with the scanning operation timing of the first control electrode group 13. By sequentially applying the ON potential from the cover electrode driving device 24, electrons can be emitted only from the portion of the planar electron source 4 facing the scanning position of the first control electrode group 13.

【0069】実施例4によれば、平面状電子源4の第一
の制御電極群13の走査位置に対向した部分だけから電
子を放出させることができるので、実施例1と同様に無
駄な電子放出を抑えることができ、省電力化が図れる。
According to the fourth embodiment, the electrons can be emitted only from the portion of the planar electron source 4 facing the scanning position of the first control electrode group 13, so that the useless electrons are emitted as in the first embodiment. The emission can be suppressed and the power consumption can be saved.

【0070】実施例5.図9は、この発明の実施例5の
駆動回路を示す図で、図7と同一符号はそれぞれ同一部
分を示しており、25は分割有孔カバー電極可変電位駆
動装置、図10はこの実施例5の駆動方法を示すタイミ
ング図で、この実施例5も実施例2と同様に、線状熱陰
極1の加熱電流による電圧降下の影響の解消を図ったも
のである。
Example 5. FIG. 9 is a diagram showing a drive circuit according to a fifth embodiment of the present invention, in which the same reference numerals as those in FIG. 7 denote the same parts, 25 is a divided perforated cover electrode variable potential drive device, and FIG. 10 is this embodiment. 5 is a timing chart showing a driving method of No. 5, in which the fifth embodiment is intended to eliminate the influence of the voltage drop due to the heating current of the linear hot cathode 1 as in the second embodiment.

【0071】即ち、分割有孔カバー電極可変電位駆動装
置25から分割有孔カバー電極23a〜23iに印加す
るオン電位の値を、各分割有孔カバー電極に対向する線
状熱陰極1の電位に応じて変化させ、オン電位が印加さ
れている各分割背面電極とこれに対向する位置の線状熱
陰極1との電位差が同じとなるようにしたものである。
That is, the value of the ON potential applied from the divided perforated cover electrode variable potential driving device 25 to the divided perforated cover electrodes 23a to 23i is set to the electric potential of the linear hot cathode 1 facing each divided perforated cover electrode. The divided back electrodes to which the ON potential is applied are made to have the same potential difference between the linear hot cathodes 1 at the positions facing the divided back electrodes.

【0072】次に、実施例5の動作を説明する。いま、
線状熱陰極1の両端間の電圧降下がA、分割有孔カバー
電極群23の分割数がNであるとし、分割有孔カバー電
極可変電位駆動装置25から分割有孔カバー電極23a
に印加するオン電位の値がV(V)であったとすると、
その隣の分割有孔カバー電極23bにはV+A/N
(V)のオン電位、その隣の分割有孔カバー電極23c
にはV+2A/N(V)のオン電位というように、図1
0に示すタイミングでもって、順次電圧降下分ずつ高く
なるオン電位を印加する。
Next, the operation of the fifth embodiment will be described. Now
It is assumed that the voltage drop across the linear hot cathode 1 is A and the number of divisions of the divided perforated cover electrode group 23 is N, and the divided perforated cover electrode variable potential drive device 25 is divided into the divided perforated cover electrode 23a.
If the value of the on-potential applied to V is V (V),
Next to the divided perforated cover electrode 23b, V + A / N
(V) ON-potential, next to the divided perforated cover electrode 23c
The ON potential of V + 2 A / N (V) is shown in FIG.
At the timing indicated by 0, the on-potential that gradually increases by the voltage drop is applied.

【0073】この実施例5の駆動方法によれば、オン状
態での線状熱陰極1と分割有孔カバー電極の間の電界強
度が線状熱陰極1の全長にわたってほぼ等しくなるの
で、実施例2と同様に、画面上での輝度および輝度平坦
度が向上するとともに、省電力化が図れる効果が得られ
る。
According to the driving method of Example 5, the electric field strength between the linear hot cathode 1 and the divided perforated cover electrode in the ON state is substantially equal over the entire length of the linear hot cathode 1. As in the case of 2, the brightness and the brightness flatness on the screen are improved, and the effect of saving power can be obtained.

【0074】実施例6.図11はこの発明の実施例6の
駆動回路を示す図で、図5および図7と同一符号はそれ
ぞれ同一部分を示している。図12はこの実施例6の駆
動方法を示すタイミング図で、この実施例6も実施例3
と同様に、線状熱陰極1の加熱電流による電圧降下の影
響の解消を図ったものである。
Example 6. FIG. 11 is a diagram showing a drive circuit according to a sixth embodiment of the present invention. The same reference numerals as those in FIGS. 5 and 7 denote the same parts. FIG. 12 is a timing chart showing the driving method of the sixth embodiment.
Similarly to the above, the influence of the voltage drop due to the heating current of the linear hot cathode 1 is eliminated.

【0075】次に、実施例6の動作を説明する。 図1
2に示すように、分割有孔カバー電極駆動装置24から
分割有孔カバー電極23aにオン電位を印加したときは
線状熱陰極1に線状熱陰極可変電位印加装置22からa
(V)の電位を印加し、その隣の分割有孔カバー電極2
3bにオン電位を印加したときは線状熱陰極1にa
(V)より線状熱陰極1の電圧降下分だけ低いb(V)
の電位を印加し、その隣の分割有孔カバー電極23cに
オン電位を印加したときは線状熱陰極1にb(V)より
線状熱陰極1の電圧降下分だけ低いc(V)の電位を印
加する。
Next, the operation of the sixth embodiment will be described. Figure 1
As shown in FIG. 2, when the ON potential is applied from the divided perforated cover electrode driving device 24 to the divided perforated cover electrode 23a, the linear hot cathode variable potential applying devices 22 to a are applied to the linear hot cathode 1.
The potential of (V) is applied, and the divided perforated cover electrode 2 next to it
When an on-potential is applied to 3b, a is applied to the linear hot cathode 1.
B (V) lower than (V) by the voltage drop of the linear hot cathode 1
When an ON potential is applied to the divided perforated cover electrode 23c adjacent thereto, the linear hot cathode 1 has a voltage of c (V) lower than b (V) by a voltage drop of the linear hot cathode 1. Apply a potential.

【0076】この実施例6の駆動方法によれば、オン状
態の分割有孔カバー電極23a〜23iと線状熱陰極1
の間の電界強度が線状熱陰極1の全長にわたってほぼ均
一となり、分割有孔カバー電極23a〜23iの各部分
から引き出される電子電流量がほぼ均一になるので、画
面上での輝度および輝度平坦度が向上するとともに、省
電力化が図れる効果が得られる。
According to the driving method of the sixth embodiment, the split perforated cover electrodes 23a-23i in the ON state and the linear hot cathode 1 are arranged.
The electric field strength between the two is substantially uniform over the entire length of the linear hot cathode 1, and the amount of electron current drawn from each part of the divided perforated cover electrodes 23a to 23i is substantially uniform, so that the brightness and the brightness on the screen are flat. As a result, it is possible to obtain the effect of improving power consumption and saving power.

【0077】実施例7.図13はこの発明の実施例7の
駆動回路を示す図で、図1と同一符号はそれぞれ同一部
分を示している。図において、1a〜1iは線状陰極、
2a〜2iはカバー電極で、線状陰極1a〜1i、カバ
ー電極2a〜2iおよび背面電極3で線状電子源4a〜
4iを形成して平面状電子源4を構成している。26は
線状電子源4a〜4iをオン状態に駆動する手段の1例
である線状陰極オン電位印加装置である。
Example 7. 13 is a diagram showing a drive circuit according to a seventh embodiment of the present invention, and the same reference numerals as those in FIG. 1 denote the same parts. In the figure, 1a to 1i are linear cathodes,
Reference numerals 2a to 2i are cover electrodes, and linear cathodes 1a to 1i, cover electrodes 2a to 2i and back electrode 3 are linear electron sources 4a to 4i.
4i is formed to configure the planar electron source 4. Reference numeral 26 is a linear cathode on-potential applying device which is an example of a means for driving the linear electron sources 4a to 4i to the ON state.

【0078】図14はこの実施例7の駆動方法を示すタ
イミング図で、第一の制御電極群13と線状陰極1a〜
1iに印加されるオン電位のタイミングを示しており、
第一の制御電極群13の走査動作に合わせて、線状陰極
オン電位印加装置26から表示に必要な線状陰極だけに
オン電位が印加される。
FIG. 14 is a timing chart showing the driving method of the seventh embodiment, in which the first control electrode group 13 and the linear cathodes 1a.about.
It shows the timing of the ON potential applied to 1i,
In accordance with the scanning operation of the first control electrode group 13, the linear cathode on-potential applying device 26 applies the on-potential only to the linear cathode required for display.

【0079】すなわち、第一の制御電極群13の走査動
作に合わせて必要な部分だけから電子が放出されるよう
に、例えば、線状陰極1aのみオン電位、線状陰極1b
のみオン電位となるように、線状陰極1a〜1iにオン
電位を印加する。
That is, for example, only the linear cathode 1a is turned on and the linear cathode 1b is turned on so that electrons are emitted only from a necessary portion according to the scanning operation of the first control electrode group 13.
The on-potential is applied to the linear cathodes 1a to 1i so that only the on-potential has the on-potential.

【0080】この実施例7の駆動方法によれば、第一の
制御電極群13のうち、オン状態の制御電極13aに対
向している平面状電子源4の部分だけがオン状態になる
ので、実施例1と同様に省電力化が図れる効果が得られ
る。
According to the driving method of the seventh embodiment, only the portion of the planar electron source 4 facing the control electrode 13a in the ON state in the first control electrode group 13 is in the ON state. Similar to the first embodiment, the effect of saving power can be obtained.

【0081】実施例8.なお、上記実施例7では線状陰
極1a〜1iにオン電位を印加して線状電子源4a〜4
iを1本ごとにオン、オフ制御したが、上記動作原理か
ら明かなように有孔カバー電極に印加する電位を変化さ
せて線状電子源4a〜4iを1本ごとにオン、オフ制御
する駆動方法としても同様の効果が得られる。
Example 8. In the seventh embodiment, the linear cathodes 1a to 1i are applied with an ON potential to supply the linear electron sources 4a to 4i.
Although i is controlled to be turned on and off for each one, the electric potential applied to the perforated cover electrode is changed so that the linear electron sources 4a to 4i are turned on and off for each one, as is clear from the above-mentioned operation principle. The same effect can be obtained as a driving method.

【0082】実施例9.さらに、上記動作原理から明か
なように、背面電極3a〜3iに印加する電位を変化さ
せて線状電子源4a〜4iを1本ごとにオン、オフ制御
する駆動方法としても同様の効果が得られる。
Example 9. Further, as is apparent from the above-mentioned operation principle, the same effect can be obtained as a driving method in which the electric potentials applied to the back electrodes 3a to 3i are changed to turn on and off the linear electron sources 4a to 4i one by one. To be

【0083】実施例10.実施例1ないし実施例9で
は、第一の制御電極群13の走査動作に合わせて一つの
分割背面電極16a〜16i,または分割有孔カバー電
極2a〜2iを分割部分ごとに、または線状電子源4a
〜4iを1本ごとにオン、オフ制御するようにしたが、
二つ以上の分割部分、または二つ以上の線状電子源が順
次オン状態となるように制御してもよい。図15は二つ
の分割背面電極16aと16bにオン電位が印加された
状態を、また、図16は二つの分割有孔カバー電極2a
〜2bにオン電位が印加された状態を、また、図17は
二つの線状陰極1a,1bにオン電位が印加されて線状
電子源4a〜4iがオン状態になった場合を示してい
る。
Example 10. In the first to ninth embodiments, one divided back surface electrode 16a to 16i or one divided perforated cover electrode 2a to 2i is divided in each divided portion in accordance with the scanning operation of the first control electrode group 13, or a linear electron. Source 4a
I tried to turn on and off each ~ 4i,
You may control so that two or more division parts or two or more linear electron sources may be turned on one by one. FIG. 15 shows a state in which an ON potential is applied to the two split back electrodes 16a and 16b, and FIG. 16 shows two split perforated cover electrodes 2a.
.About.2b are applied with the ON potential, and FIG. 17 shows the case where the ON potentials are applied to the two linear cathodes 1a and 1b and the linear electron sources 4a to 4i are turned on. .

【0084】図18は実施例10の駆動方法のタイミン
グ図で、第一の制御電極群13への印加電位のタイミン
グと、分割背面電極16,分割有孔カバー電極群23,
および線状熱陰極群1への印加電位のタイミングを示し
ており、常に二つの分割部分がオン状態となるようにオ
ン電位が印加される。
FIG. 18 is a timing chart of the driving method of the tenth embodiment, which shows the timing of the potential applied to the first control electrode group 13, the divided back electrode 16, the divided perforated cover electrode group 23,
And the timing of the applied potential to the linear hot cathode group 1 are shown, and the ON potential is applied so that the two divided portions are always in the ON state.

【0085】実施例10の駆動方法によれば、分割背面
電極16,分割有孔カバー電極群23,および線状熱陰
極群1の分割境目での電子ビームの乱れによる画像への
影響が低減できるとともに、省電力化が可能となる。
According to the driving method of Example 10, the influence on the image due to the disturbance of the electron beam at the dividing boundary of the divided back electrode 16, the divided perforated cover electrode group 23, and the linear hot cathode group 1 can be reduced. At the same time, it is possible to save power.

【0086】実施例11.実施例10では常時二つ以上
の分割部分がオン状態となるようにオン電位を印加した
が、本実施例11では、図19に示したタイミング図の
ように、第1の制御電極群13が、電子ビームの乱れが
画像に影響を及ぼす分割背面電極16,分割有孔カバー
電極群23,および線状熱陰極群1の分割境目の領域を
走査している期間だけ二つ以上の分割部分がオン状態と
なるように重なり期間を設けてオン電位を印加するよう
にした駆動方法で、実施例10と同様の効果が得られ
る。
Example 11. In the tenth embodiment, the on-potential is applied so that two or more divided parts are always in the on state. However, in the eleventh embodiment, as shown in the timing chart of FIG. 19, the first control electrode group 13 is , The split back electrode 16, the split perforated cover electrode group 23, and the linear hot cathode group 1 affect the image by the disturbance of the electron beam. The same effect as that of the tenth embodiment can be obtained by the driving method in which the overlapping period is provided so as to be in the ON state and the ON potential is applied.

【0087】実施例12.図20はこの発明の実施例1
2の平面型表示装置の構成を示す断面図で、図1と同一
符号はそれぞれ同一部分を示しており、27は従来の前
面ガラス6をある曲率半径RMでもって曲面化したもの
であり、28は従来の制御電極部9を前面ガラス6と同
じ曲率半径RMで曲面化したものである。また、29は
平面状電子源4と制御電極部28の間に設置された電子
通過孔を有する電子ビーム量補正電極で、前面ガラス2
7および制御電極部28とは異なる曲率半径R1に形成
されている。
Example 12 FIG. 20 shows the first embodiment of the present invention.
2 is a cross-sectional view showing the configuration of the flat-panel display device, in which the same reference numerals as those in FIG. 1 denote the same parts, and 27 is a conventional front glass 6 which is curved with a radius of curvature RM. Is a conventional control electrode portion 9 which is curved with the same radius of curvature RM as the front glass 6. Further, reference numeral 29 is an electron beam amount correction electrode having an electron passage hole provided between the planar electron source 4 and the control electrode portion 28.
7 and the control electrode portion 28 are formed to have a radius of curvature R1 different from that of the control electrode portion 28.

【0088】次にこの実施例12の動作を説明する。電
子ビーム量補正電極29と制御電極部28間の距離が長
い場合には、線状熱陰極1に垂直な断面では電子ビーム
量補正電極29と制御電極部28間で空間電荷の影響が
顕著になり、電子が発散して制御電極部28の通過効率
が減少し、線状熱陰極1と平行な断面では、制御電極部
28のオフ電位が支配的になり、電子が制御電極部28
まで到達しない。また、電子ビーム量補正電極29と制
御電極部28間の距離が短かくなると、線状熱陰極1に
垂直な断面では有孔カバー電極2と電子ビーム量補正電
極29間で空間電荷の影響が顕著になり、電子が発散
し、線状熱陰極1と平行な断面では電子通過孔10付近
での収束効果が小さくなる。つまり、線状熱陰極1に垂
直な断面および平行な断面には、それぞれ電子ビーム量
補正電極29を設置する最適位置が存在する。
Next, the operation of the twelfth embodiment will be described. When the distance between the electron beam amount correction electrode 29 and the control electrode unit 28 is long, the influence of space charge is remarkable between the electron beam amount correction electrode 29 and the control electrode unit 28 in the cross section perpendicular to the linear hot cathode 1. Then, the electrons diverge and the passage efficiency of the control electrode portion 28 decreases, and in the cross section parallel to the linear hot cathode 1, the off-potential of the control electrode portion 28 becomes dominant, and the electrons become the control electrode portion 28.
Does not reach In addition, when the distance between the electron beam amount correction electrode 29 and the control electrode portion 28 becomes short, the influence of space charge between the perforated cover electrode 2 and the electron beam amount correction electrode 29 is affected in the cross section perpendicular to the linear hot cathode 1. It becomes noticeable, the electrons diverge, and the converging effect in the vicinity of the electron passage hole 10 becomes small in the cross section parallel to the linear hot cathode 1. That is, there are optimum positions for installing the electron beam amount correction electrodes 29 in the cross section perpendicular to the linear hot cathode 1 and the cross section parallel to the linear hot cathode 1.

【0089】この実施例12によれば、垂直および平行
両断面を考慮した最適位置に電子ビーム量補正電極29
を設置することが可能となり、平面状電子源4と制御電
極部28間の距離の差による蛍光面8上の電子電流量差
を小さくできるので、蛍光面8上の輝度が不均一になる
こと、および輝度が低下することの無い平面型表示装置
が得られる。
According to the twelfth embodiment, the electron beam amount correcting electrode 29 is placed at the optimum position in consideration of both vertical and parallel cross sections.
Can be installed, and the difference in the amount of electron current on the phosphor screen 8 due to the difference in the distance between the planar electron source 4 and the control electrode portion 28 can be reduced, so that the brightness on the phosphor screen 8 becomes uneven. It is possible to obtain a flat-panel display device in which the brightness does not decrease.

【0090】実施例13.図21はこの発明の実施例1
3の平面型表示装置の構成を示す断面図で、図20と同
一符号はそれぞれ同一部分を示しており、30は平面状
電子源4と制御電極部28間に設置された制御電極部2
8および前面ガラス27と同じ曲率半径または異なる曲
率半径R2に形成された電子通過孔を有する第1の電子
ビーム量補正電極、31は第1の電子ビーム量補正電極
30とは異なる曲率半径R3に形成された第2の電子ビ
ーム量補正電極で、RM≦R2<R3の関係に形成され
ている。
Example 13 FIG. 21 shows the first embodiment of the present invention.
20 is a cross-sectional view showing the configuration of the flat-panel display device of FIG. 3, the same reference numerals as in FIG. 20 denote the same parts, and 30 denotes the control electrode section 2 installed between the planar electron source 4 and the control electrode section 28.
8 and the first electron beam amount correcting electrode 31 having an electron passage hole formed with the same radius of curvature as the front glass 27 or different radius of curvature R2, 31 has a different radius of curvature R3 from the first electron beam amount correcting electrode 30. The formed second electron beam amount correction electrode has a relationship of RM ≦ R2 <R3.

【0091】この実施例13によれば、任意の場所にお
いて、線状熱陰極1に垂直な断面の最適位置に1枚、線
状熱陰極1に平行な断面の最適位置に1枚の電極を設置
することができるので、実施例12と同様の効果がえら
れる。
According to the thirteenth embodiment, one electrode is provided at an optimum position of a cross section perpendicular to the linear hot cathode 1 and an electrode is provided at an optimum position of a cross section parallel to the linear hot cathode 1 at an arbitrary position. Since it can be installed, the same effect as in the twelfth embodiment can be obtained.

【0092】実施例14.図22はこの発明の実施例1
4の平面型表示装置の構成を示す断面図で、図21と同
一符号はそれぞれ同一部分を示しており、32は平面に
形成した第2の電子ビーム量補正電極である。
Example 14 22 shows a first embodiment of the present invention.
FIG. 22 is a cross-sectional view showing the configuration of the flat panel display device of No. 4, in which the same reference numerals as those in FIG. 21 denote the same portions, and 32 denotes a second electron beam amount correction electrode formed on the plane.

【0093】この実施例14によれば、実施例13と同
様の効果が得られる。
According to the fourteenth embodiment, the same effect as that of the thirteenth embodiment can be obtained.

【0094】実施例15.図23はこの発明の実施例1
5の平面型表示装置の構成を示す断面図で、図22と同
一符号はそれぞれ同一部分を示しており、第1の電子ビ
ーム量補正電極30と、平面に形成した第2の電子ビー
ム量補正電極31とを画面の両端で重ねた状態で配設し
たものである。
Example 15. FIG. 23 is a first embodiment of the present invention.
22 is a cross-sectional view showing the configuration of the flat-panel display device of FIG. 5, and the same reference numerals as those in FIG. 22 denote the same parts, respectively, and the first electron beam amount correction electrode 30 and the second electron beam amount correction formed on the plane surface. The electrode 31 and the electrode 31 are arranged so as to overlap each other at both ends of the screen.

【0095】上記実施例13および実施例14では、平
面状電子源4と制御電極部28間に2枚の電極が設置さ
れており、いかなる場所でもそれぞれの電極はある距離
を隔てて設置されている。しかし、平面状電子源4と制
御電極部28間の距離が相対的に短い場合には、線状熱
陰極1に垂直、平行な両断面での最適位置が一致する場
合がある。この実施例15はこのような場合に実施例1
3および実施例14と同様の効果が得られる。
In the thirteenth and fourteenth embodiments, two electrodes are installed between the planar electron source 4 and the control electrode section 28, and each electrode is installed at a certain distance at any place. There is. However, when the distance between the planar electron source 4 and the control electrode portion 28 is relatively short, the optimum positions on both cross sections perpendicular to and parallel to the linear hot cathode 1 may coincide. In this case, the fifteenth embodiment is the first embodiment.
3 and the same effects as those of Example 14 can be obtained.

【0096】実施例16.図24はこの発明の実施例1
6の平面型表示装置の構成を示す断面図で、図23と同
一符号はそれぞれ同一部分を示しており、第1の電子ビ
ーム量補正電極30の一部分に、平面に形成した第2の
電子ビーム量補正電極31を周縁部分で重ねた状態で配
設したものであって、実施例13ないし実施例15と同
様の効果が得られる。
Example 16. FIG. 24 shows the first embodiment of the present invention.
23 is a cross-sectional view showing the configuration of the flat-panel display device of No. 6, and the same reference numerals as those in FIG. 23 denote the same parts respectively, and a second electron beam formed on a plane in a part of the first electron beam amount correction electrode 30. The quantity correction electrodes 31 are arranged in a state of being overlapped at the peripheral portion, and the same effects as those of the thirteenth to fifteenth embodiments can be obtained.

【0097】上記実施例13,14および15では、す
べての範囲で平面状電子源4と制御電極部28間に第
1,第2の電子ビーム量補正電極30,32を設置した
が、この実施例16は、平面状電子源4と制御電極部2
8間の距離が相対的に長い範囲にのみ第1,第2の電子
ビーム量補正電極30,32を配設し、距離が相対的に
短い範囲は第1の電子ビーム量補正電極30のみを配設
したものであって、実施例13ないし実施例15と同様
の効果が得られる。
In the above-mentioned Examples 13, 14 and 15, the first and second electron beam amount correcting electrodes 30, 32 were provided between the planar electron source 4 and the control electrode portion 28 in all ranges. Example 16 is a planar electron source 4 and a control electrode unit 2.
The first and second electron beam amount correction electrodes 30, 32 are arranged only in the range where the distance between the eight is relatively long, and only the first electron beam amount correction electrode 30 is arranged in the range where the distance is relatively short. With the arrangement, the same effects as those of the thirteenth to fifteenth embodiments can be obtained.

【0098】なお、上記各実施例では、直熱型の線状陰
極を用いたが、直熱型に限られるものではなく、傍熱型
の線状陰極や、冷陰極でもよく、この場合には電位勾配
が生じないので、実施例2,3,5,6のように線状陰
極の電位補正を行う必要はない。
In each of the above embodiments, the direct heating type linear cathode is used, but the direct heating type is not limited, and an indirectly heating type linear cathode or a cold cathode may be used. Does not cause a potential gradient, it is not necessary to correct the potential of the linear cathode as in Examples 2, 3, 5 and 6.

【0099】[0099]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0100】この発明による平面型表示装置によれば、
背面電極、有孔カバー電極、線状陰極それぞれを操作し
て電子放出をオン、オフ制御することにより、制御電極
の走査動作に合わせて必要な部分からのみ電子を放出さ
せることが可能となるため、制御電極の走査動作に合わ
せて必要な部分からだけ電子を放出させることができ、
無駄な電子放出を抑えて省電力化が図れる。
According to the flat panel display device of the present invention,
By controlling each of the back electrode, the perforated cover electrode, and the linear cathode to turn on / off the electron emission, it becomes possible to emit electrons only from a necessary portion in accordance with the scanning operation of the control electrode. , Electrons can be emitted only from a necessary portion in accordance with the scanning operation of the control electrode,
Power consumption can be reduced by suppressing unnecessary electron emission.

【0101】また、制御電極の走査動作に合わせて分割
した背面電極の電位を変化させて電子放出をオン、オフ
制御して必要な部分からだけ電子を放出させることがで
きるので、制御電極の走査動作に合わせて必要な部分か
らだけ電子を放出させることができ、無駄な電子放出を
抑えて省電力化が図れる。
Further, since the electron emission can be controlled to be turned on and off by changing the potential of the back electrode divided according to the scanning operation of the control electrode so that the electrons can be emitted only from a necessary portion, the scanning of the control electrode is performed. It is possible to emit electrons only from a necessary portion in accordance with the operation, so that wasteful electron emission can be suppressed and power saving can be achieved.

【0102】また、分割背面電極を、金属基板と、この
金属基板上に形成された絶縁膜と、この絶縁膜の上に形
成された導電体よりなる分割電極とで構成したので、容
易に製造でき、コストの低減が図れる。
Further, since the divided back electrode is composed of the metal substrate, the insulating film formed on the metal substrate, and the divided electrode made of a conductor formed on the insulating film, the divided back electrode is easily manufactured. Therefore, the cost can be reduced.

【0103】また、分割背面電極可変電位駆動手段によ
って、オン電位を印加した分割背面電極と、その分割背
面電極に対向する位置の線状熱陰極との電位差が一定値
となるように当該分割背面電極に順次異なるオン電位を
印加するので、線状熱陰極の加熱電流による電圧降下の
影響が抑制され、有孔カバー電極によって引き出される
電子電流量が等しくなり、ひいては画面上での輝度およ
び輝度平坦度が向上する。
Further, the divided back electrode variable potential driving means causes the potential difference between the divided back electrode to which the ON potential is applied and the linear hot cathode at a position facing the divided back electrode to be a constant value. Since different on-potentials are applied to the electrodes sequentially, the effect of voltage drop due to the heating current of the linear hot cathode is suppressed, the amount of electron current drawn by the perforated cover electrode becomes equal, and eventually the brightness and brightness on the screen are flat. The degree improves.

【0104】また、線状熱陰極可変電位印加手段によっ
て、オン電位を印加した分割背面電極と、その分割背面
電極に対向する位置の線状熱陰極との電位差が一定値と
なるように当該線状熱陰極に順次異なる電位を印加する
ので、線状熱陰極の加熱電流による電圧降下の影響が抑
制されるために有孔カバー電極によって引き出される電
子電流量が等しくなり、ひいては画面上での輝度および
輝度平坦度が向上する。
The linear hot cathode variable potential applying means applies a constant potential to the potential difference between the split back electrode to which the ON potential is applied and the linear hot cathode at a position facing the split back electrode. Since different potentials are sequentially applied to the tubular hot cathode, the influence of the voltage drop due to the heating current of the linear hot cathode is suppressed, so the amount of electron current drawn by the perforated cover electrode becomes equal, and as a result, the brightness on the screen is increased. And the brightness flatness is improved.

【0105】また、分割有孔カバー電極駆動手段によっ
て、分割背面電極に制御電極部による水平および垂直方
向の走査位置に合わせてオン電位を印加するので、制御
電極の走査動作に合わせた必要な部分からだけ電子を放
出させることができるので、省電力化が可能となる
Further, since the divided perforated cover electrode driving means applies the ON potential to the divided back electrodes in accordance with the scanning positions in the horizontal and vertical directions by the control electrode portion, a necessary portion corresponding to the scanning operation of the control electrodes can be obtained. Since it is possible to emit electrons only from, it is possible to save power.

【0106】また、分割有孔カバー電極可変電位駆動手
段によって、分割有孔カバー電極と、その分割有孔カバ
ー電極に対向する位置の線状熱陰極との電位差が一定値
となるように当該分割有孔カバー電極に順次異なるオン
電位を印加するので、線状熱陰極の加熱電流による電圧
降下の影響が抑制され、有孔カバー電極によって引き出
される電子電流量が等しくなり、ひいては画面上での輝
度および輝度平坦度が向上する。
Further, the divided perforated cover electrode variable potential drive means divides the divided perforated cover electrode so that the potential difference between the divided perforated cover electrode and the linear hot cathode at a position facing the divided perforated cover electrode becomes a constant value. Since different on-potentials are sequentially applied to the perforated cover electrode, the effect of voltage drop due to the heating current of the linear hot cathode is suppressed, the amount of electron current drawn by the perforated cover electrode becomes equal, and the brightness on the screen is also increased. And the brightness flatness is improved.

【0107】また、線状熱陰極可変電位印加手段によっ
て、オン電位を印加した分割有孔カバー電極と、その分
割有孔カバー電極に対向する位置の線状熱陰極との電位
差が一定値となるように当該線状熱陰極に順次異なる電
位を印加するので、線状熱陰極の加熱電流による電圧降
下の影響が抑制され、有孔カバー電極によって引き出せ
る電子電流量が等しくなり、ひいては画面上での輝度お
よび輝度平坦度が向上する。
Further, the potential difference between the divided perforated cover electrode to which the ON potential is applied by the linear hot cathode variable potential applying means and the linear hot cathode at a position facing the divided perforated cover electrode becomes a constant value. Since different potentials are sequentially applied to the linear hot cathode as described above, the influence of the voltage drop due to the heating current of the linear hot cathode is suppressed, the amount of electron current that can be drawn out by the perforated cover electrode becomes equal, and by extension, on the screen. The brightness and brightness flatness are improved.

【0108】また、線状電子源を、制御電極部による水
平および垂直方向の走査位置に合わせて順次電子を放出
するオン状態に駆動するようにしたので、制御電極の走
査動作に合わせて必要な部分からのみ電子を放出させる
ことができ、省電力化が可能となる。
Further, since the linear electron source is driven to the ON state in which electrons are sequentially emitted in accordance with the horizontal and vertical scanning positions by the control electrode portion, it is necessary according to the scanning operation of the control electrode. Electrons can be emitted only from a part, and power can be saved.

【0109】また、制御電極部による水平および垂直方
向の走査位置に対向する位置を含む2つ以上の分割背面
電極、または分割有孔カバー電極、もしくは線状電子源
から電子放出が行われるようにしたので、分割境目での
ビームの乱れによる画像への影響が低減され、画像への
影響を低減できる。
Further, electrons are emitted from two or more split rear electrodes including the positions facing the scanning positions in the horizontal and vertical directions by the control electrode portion, the split perforated cover electrodes, or the linear electron source. Therefore, the influence on the image due to the turbulence of the beam at the division boundary is reduced, and the influence on the image can be reduced.

【0110】また、制御電極部による水平および垂直方
向の走査位置が画像に影響を及ぼす電子ビームの乱れが
生じる線状電子源の分割部分の境目の領域、または線状
電子源の間を走査している期間だけ当該領域を含む2つ
以上の分割部分、または2つ以上の線状電子源から電子
放出が行われるようにしたので、分割境目でのビームの
乱れによる画像への影響を低減できる。
Further, the scanning position in the horizontal and vertical directions by the control electrode portion scans between the linear electron sources or the boundary area of the divided portions of the linear electron source in which the disturbance of the electron beam affecting the image occurs. Since the electrons are emitted from the two or more divided portions including the region or the two or more linear electron sources only during a certain period, it is possible to reduce the influence on the image due to the turbulence of the beam at the dividing boundary. .

【0111】また、真空に保たれた密封容器内の一方の
面に設けられた平面状電子源と、上記密封容器内の他方
の曲面上に形成された蛍光面と、この蛍光面に対向して
上記平面状電子源との間に配設され通過させる電子ビー
ムの水平および垂直方向の位置を規制する上記蛍光面と
同じ曲面に形成された制御電極部と、この制御電極部と
上記平面状電子源との間に配設され、上記制御電極部と
平面状電子源間の距離の差によって生じる上記蛍光面上
での電子ビームの電流量のばらつきを補正するための電
子通過孔が形成されている電子ビーム量補正電極とを備
えたので、制御電極群と平面状電子源との距離の差に基
づく蛍光面上での電子電流量のばらつきを補正すること
ができ、輝度が不均一になることおよび、輝度の低下が
防止できる。
Further, a flat electron source provided on one surface of the sealed container kept in a vacuum, a fluorescent screen formed on the other curved surface of the sealed container, and facing the fluorescent screen. And a control electrode portion formed on the same curved surface as the fluorescent screen for regulating the horizontal and vertical positions of the electron beam that is disposed between the control electrode portion and the planar electron source. An electron passage hole is provided between the control electrode portion and the planar electron source, the electron passage hole being provided between the control electrode portion and the planar electron source for correcting the variation in the current amount of the electron beam on the fluorescent screen. Since it has the electron beam amount correction electrode, it is possible to correct the variation in the amount of electron current on the fluorescent screen due to the difference in the distance between the control electrode group and the planar electron source, and to make the brightness uneven. It is possible to prevent the deterioration of the brightness.

【0112】また、制御電極部と上記電子源との間に配
設された電子ビーム量補正電極を、上記制御電極部とは
異なる曲率半径に形成したので、電子源と制御電極の間
の距離の差による蛍光体上の電子電流量差を補正するこ
とができ、輝度が不均一になることおよび、輝度の低下
が防止できる。
Further, since the electron beam amount correcting electrode arranged between the control electrode portion and the electron source is formed to have a radius of curvature different from that of the control electrode portion, the distance between the electron source and the control electrode is increased. It is possible to correct the difference in the amount of electron current on the phosphor due to the difference in A, and it is possible to prevent the brightness from becoming non-uniform and prevent the brightness from decreasing.

【0113】また、制御電極部と上記電子源との間に第
1,第2の電子ビーム量補正電極が配設されており、上
記制御電極部に近い第1の電子ビーム量補正電極は上記
制御電極部と同じかまたはそれより大きい曲率半径に、
上記電子源に近い第2の電子ビーム量補正電極は上記第
1の電子ビーム量補正電極より大きい曲率半径に形成し
たので、電子源と制御電極の間の距離の差による蛍光面
上の電子電流量差を補正することができ、輝度が不均一
になることおよび、輝度の低下が防止できる。
Further, the first and second electron beam amount correcting electrodes are arranged between the control electrode portion and the electron source, and the first electron beam amount correcting electrode near the control electrode portion is the above-mentioned electrode. With a radius of curvature equal to or greater than the control electrode section,
Since the second electron beam amount correction electrode near the electron source is formed to have a larger radius of curvature than the first electron beam amount correction electrode, the electron current on the phosphor screen due to the difference in the distance between the electron source and the control electrode. It is possible to correct the difference in amount, prevent uneven brightness, and prevent decrease in brightness.

【0114】また、第2の電子ビーム量補正電極を、平
面に形成したので、電子源と制御電極の間の距離の差に
よる蛍光面上の電子電流量差を補正することができ、輝
度が不均一になることおよび、輝度の低下が防止でき
る。
Further, since the second electron beam amount correction electrode is formed on the plane, it is possible to correct the electron current amount difference on the phosphor screen due to the difference in the distance between the electron source and the control electrode, and the brightness is improved. It is possible to prevent nonuniformity and decrease in brightness.

【0115】また、曲面に形成された第1の電子ビーム
量補正電極と、平面に形成された第2の電子ビーム量補
正電極とを周縁部分で重ね合わせたので、電子源と制御
電極の間の距離の差による蛍光面上の電子電流量差を補
正することができ、輝度が不均一になることおよび、輝
度の低下が防止できる。
Further, since the first electron beam amount correcting electrode formed on the curved surface and the second electron beam amount correcting electrode formed on the flat surface are superposed on each other at the peripheral edge portion, there is a gap between the electron source and the control electrode. The difference in the amount of electron current on the phosphor screen due to the difference in the distance can be corrected, and the uneven brightness and the decrease in brightness can be prevented.

【0116】また、第1の電子ビーム量補正電極より大
きい曲率半径にまたは平面に形成され、かつ、電子源と
制御電極間の距離が大きい部分だけ覆う大きさに形成さ
れた第2の電子ビーム量補正電極を備えたので、電子源
と制御電極の間の距離の差による蛍光面上の電子電流量
差を補正することができ、輝度が不均一になることおよ
び、輝度の低下が防止できる。
Further, the second electron beam formed to have a radius of curvature larger than that of the first electron beam amount correction electrode or to a flat surface and to cover only a portion where the distance between the electron source and the control electrode is large. Since the amount correction electrode is provided, it is possible to correct the difference in the amount of electron current on the phosphor screen due to the difference in the distance between the electron source and the control electrode, and it is possible to prevent the brightness from becoming non-uniform and to prevent the brightness from decreasing. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の平面型表示装置の電子源
の構成を示す斜視図である。
FIG. 1 is a perspective view showing a configuration of an electron source of a flat panel display device according to a first embodiment of the present invention.

【図2】実施例1の駆動方法を示すタイミング図であ
る。
FIG. 2 is a timing diagram illustrating a driving method according to the first exemplary embodiment.

【図3】実施例1の分割背面電極群の構成を示す断面図
である。
FIG. 3 is a cross-sectional view showing a configuration of a divided back electrode group of Example 1.

【図4】この発明の実施例2の駆動方法を示すタイミン
グ図である。
FIG. 4 is a timing diagram showing a driving method according to a second embodiment of the present invention.

【図5】この発明の実施例3の電子源の構成と駆動回路
を示す図である。
FIG. 5 is a diagram showing a configuration of an electron source and a drive circuit according to a third embodiment of the present invention.

【図6】実施例3の駆動方法を示すタイミング図であ
る。
FIG. 6 is a timing chart showing a driving method according to a third embodiment.

【図7】この発明の実施例4の電子源の構成と駆動回路
を示す図である。
FIG. 7 is a diagram showing a structure of an electron source and a drive circuit according to a fourth embodiment of the present invention.

【図8】実施例4の駆動方法を示すタイミング図であ
る。
FIG. 8 is a timing diagram illustrating a driving method according to a fourth exemplary embodiment.

【図9】この発明の実施例5の電子源の構成と駆動回路
を示す図である。
FIG. 9 is a diagram showing a structure of an electron source and a drive circuit according to a fifth embodiment of the present invention.

【図10】実施例5の駆動方法を示すタイミング図であ
る。
FIG. 10 is a timing chart showing a driving method according to a fifth embodiment.

【図11】この発明の実施例6の電子源の構成と駆動回
路を示す図である。
FIG. 11 is a diagram showing a structure of an electron source and a drive circuit according to a sixth embodiment of the present invention.

【図12】実施例6の駆動方法を示すタイミング図であ
る。
FIG. 12 is a timing diagram illustrating a driving method according to a sixth embodiment.

【図13】この発明の実施例7の駆動回路を示す図であ
る。
FIG. 13 is a diagram showing a drive circuit according to a seventh embodiment of the present invention.

【図14】実施例7の駆動方法を示すタイミング図であ
る。
FIG. 14 is a timing diagram illustrating a driving method according to a seventh embodiment.

【図15】この発明の実施例10の動作状態を示す電子
源の断面図である。
FIG. 15 is a sectional view of an electron source showing an operating state of Embodiment 10 of the present invention.

【図16】この発明の実施例10の動作状態を示す電子
源の断面図である。
FIG. 16 is a sectional view of an electron source showing an operating state of Embodiment 10 of the present invention.

【図17】この発明の実施例10の動作状態を示す電子
源の断面図である。
FIG. 17 is a sectional view of an electron source showing an operating state of Embodiment 10 of the present invention.

【図18】実施例10の駆動方法を示すタイミング図で
ある。
FIG. 18 is a timing diagram illustrating a driving method according to the tenth embodiment.

【図19】実施例11の駆動方法を示すタイミング図で
ある。
FIG. 19 is a timing diagram illustrating a driving method according to an eleventh embodiment.

【図20】この発明の実施例12の平面型表示装置の電
極配置を示す断面図である。
FIG. 20 is a sectional view showing an electrode arrangement of a flat panel display device according to a twelfth embodiment of the present invention.

【図21】この発明の実施例13の平面型表示装置の電
極配置を示す断面図である。
FIG. 21 is a sectional view showing an electrode arrangement of a flat panel display device according to Embodiment 13 of the present invention.

【図22】この発明の実施例14の平面型表示装置の電
極配置を示す断面図である。
FIG. 22 is a sectional view showing an electrode arrangement of a flat panel display device according to Embodiment 14 of the present invention.

【図23】この発明の実施例15の平面型表示装置の電
極配置を示す断面図である。
FIG. 23 is a sectional view showing an electrode arrangement of a flat panel display device according to Embodiment 15 of the present invention.

【図24】この発明の実施例16の平面型表示装置の電
極配置を示す断面図である。
FIG. 24 is a sectional view showing an electrode arrangement of a flat panel display device according to Embodiment 16 of the present invention.

【図25】従来の平面型表示装置の構成を示す一部破断
斜視図である。
FIG. 25 is a partially cutaway perspective view showing a configuration of a conventional flat-panel display device.

【図26】従来例の断面図である。FIG. 26 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 線状熱陰極 1a〜1i 線状陰極 2 有孔カバー電極 3 背面電極 4 平面状電子源 4a〜4i 線状電子源 5 第2グリッド 6 前面ガラス 7 密封容器 8 蛍光面 9 制御電極部 10 電子通過孔 11 絶縁基板 12 分離帯 13 第1の制御電極群 13a 制御電極 14 分離帯 15 第2の制御電極群 15a 制御電極 16 分割背面電極群 16a〜16i 分割背面電極 17 分割背面電極駆動装置 18 加熱用の電源 20 金属基板 21 絶縁膜 22 線状熱陰極可変電位印加装置 23 分割有孔カバー電極群 23a〜23i 分割有孔カバー電極 24 分割有孔カバー電極駆動装置 25 分割有孔カバー電極可変電位駆動装置 26 線状陰極オン電位印加装置 27 前面ガラス 28 制御電極部 29 電子ビーム量電極 30 第1の電子ビーム量補正電極 31 第2の電子ビーム量補正電極 1 linear hot cathode 1a-1i linear cathode 2 perforated cover electrode 3 back electrode 4 planar electron source 4a-4i linear electron source 5 second grid 6 front glass 7 hermetic container 8 fluorescent screen 9 control electrode part 10 electron Passage hole 11 Insulating substrate 12 Separation band 13 First control electrode group 13a Control electrode 14 Separation band 15 Second control electrode group 15a Control electrode 16 Split back electrode group 16a to 16i Split back electrode 17 Split back electrode driver 18 Heating Power supply 20 metal substrate 21 insulating film 22 linear hot cathode variable potential applying device 23 divided perforated cover electrode group 23a to 23i divided perforated cover electrode 24 divided perforated cover electrode driving device 25 divided perforated cover electrode variable potential drive Device 26 Linear cathode ON-potential applying device 27 Front glass 28 Control electrode part 29 Electron beam amount electrode 30 First electron beam amount supplement Electrode 31 and the second electron beam amount correction electrode

フロントページの続き (72)発明者 白石 哲也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 中出口 真治 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社生産技術研究所内Front page continuation (72) Inventor Tetsuya Shiraishi 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Material Device Research Center (72) Inventor Shinji Shinji 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Corporation Stock Company Production Technology Laboratory

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 真空に保たれた密封容器と、この密封容
器内の一面に配設された線状陰極、これらの線状陰極の
背面に設置された背面電極およびこれらの線状陰極の前
面を覆う有孔カバー電極で構成された線状電子源が複数
条配列されてなる平面状電子源と、上記密封容器内の他
面に形成された蛍光面と、この蛍光面に対向して上記平
面状電子源との間に配設され通過させる電子ビームの水
平および垂直方向の位置を規制する制御電極部とを備え
た平面型表示装置において、上記制御電極部による電子
ビーム通過位置に対向した平面状電子源の位置からだけ
電子が放出されるように上記平面状電子源内の電界を制
御する手段を備えたことを特徴とする平面型表示装置。
1. A vacuum-sealed hermetic container, linear cathodes arranged on one surface of the hermetically sealed container, rear electrodes provided on the rear surfaces of these linear cathodes, and front surfaces of these linear cathodes. A planar electron source in which a plurality of linear electron sources composed of a perforated cover electrode covering the above is arranged, a fluorescent surface formed on the other surface of the hermetically sealed container, and a fluorescent surface formed facing the fluorescent surface. In a flat-panel display device provided with a planar electron source and having a control electrode section for regulating the horizontal and vertical positions of an electron beam to be passed therethrough, the electron beam passage position by the control electrode section is opposed. A flat-panel display device comprising means for controlling an electric field in the planar electron source so that electrons are emitted only from the position of the planar electron source.
【請求項2】 背面電極は、制御電極部の所定の制御電
極に対応して分割配置されると共に、分割背面電極駆動
手段によって線状陰極から電子を引き出すオン電位が上
記制御電極部による水平および垂直方向の走査位置に対
応して1または2以上の分割背面電極に印加されるよう
構成されていることを特徴とする請求項1記載の平面型
表示装置。
2. The back electrode is divided and arranged corresponding to a predetermined control electrode of the control electrode portion, and the ON potential for drawing electrons from the linear cathode by the split back electrode driving means is set horizontally by the control electrode portion. 2. The flat-panel display device according to claim 1, wherein the flat-panel display device is configured to be applied to one or more divided back electrodes corresponding to the scanning position in the vertical direction.
【請求項3】 分割背面電極は、金属基板と、この金属
基板上に形成された絶縁膜と、この絶縁膜の上に形成さ
れた導電体よりなる分割電極とで構成されたものである
請求項2記載の平面型表示装置。
3. The split back electrode is composed of a metal substrate, an insulating film formed on the metal substrate, and a split electrode made of a conductor formed on the insulating film. Item 2. A flat-panel display device according to item 2.
【請求項4】 分割背面電極駆動手段は、オン電位が印
加された分割背面電極と、その分割背面電極に対向する
位置の線状熱陰極との電位差が一定値となるように当該
分割背面電極に順次異なるオン電位を印加する分割背面
電極可変電位駆動手段であることを特徴とする請求項2
記載の平面型表示装置。
4. The split back electrode driving means is configured such that the split back electrode has a constant potential difference between the split back electrode to which the ON potential is applied and the linear hot cathode at a position facing the split back electrode. 3. The divided back electrode variable potential driving means for sequentially applying different ON potentials to each other.
The flat-panel display device described.
【請求項5】 オン電位が印加された分割背面電極と、
その分割背面電極に対向する位置の線状熱陰極との電位
差が一定値となるように当該線状熱陰極に順次異なる電
位を印加する線状熱陰極可変電位印加手段を備えたこと
を特徴とする請求項2記載の平面型表示装置。
5. A split back electrode to which an ON potential is applied,
A linear hot cathode variable potential applying means for sequentially applying different potentials to the linear hot cathode so that the potential difference from the linear hot cathode at a position facing the divided back electrode becomes a constant value. The flat panel display device according to claim 2.
【請求項6】 有孔カバー電極は、制御電極部の所定の
制御電極に対応して分割配置されると共に、分割有孔カ
バー電極駆動手段によって線状陰極から電子を引き出す
オン電位が上記制御電極部による水平および垂直方向の
走査位置に対応する1または2以上の分割有孔カバー電
極に印加されるよう構成されていることを特徴とする請
求項1記載の平面型表示装置。
6. The perforated cover electrode is divided and arranged corresponding to a predetermined control electrode of the control electrode portion, and the ON potential for extracting electrons from the linear cathode by the divided perforated cover electrode driving means is the control electrode. 2. The flat panel display device according to claim 1, wherein the flat display device is configured to be applied to one or more divided perforated cover electrodes corresponding to horizontal and vertical scanning positions by the section.
【請求項7】 分割有孔カバー電極駆動手段は、オン電
位が印加された分割有孔カバー電極と、その分割有孔カ
バー電極に対向する位置の線状熱陰極との電位差が一定
値となるように当該分割有孔カバー電極に順次異なるオ
ン電位を印加する分割有孔カバー電極可変電位駆動手段
であることを特徴とする請求項6記載の平面型表示装
置。
7. The divided perforated cover electrode driving means has a constant potential difference between the divided perforated cover electrode to which the ON potential is applied and the linear hot cathode at a position facing the divided perforated cover electrode. 7. The flat-panel display device according to claim 6, wherein the divided perforated cover electrode variable potential driving means sequentially applies different ON potentials to the divided perforated cover electrodes.
【請求項8】 オン電位が印加された分割有孔カバー電
極と、その分割有孔カバー電極に対向する位置の線状熱
陰極との電位差が一定値となるように当該線状熱陰極に
順次異なる電位を印加する線状熱陰極可変電位印加手段
を備えたことを特徴とする請求項6記載の平面型表示装
置。
8. The linear hot cathode is sequentially applied so that the potential difference between the divided perforated cover electrode to which the ON potential is applied and the linear hot cathode at a position facing the divided perforated cover electrode becomes a constant value. 7. The flat panel display device according to claim 6, further comprising linear hot cathode variable potential applying means for applying different potentials.
【請求項9】 制御電極部による水平および垂直方向の
走査位置が線状電子源の分割部分の境目の領域を走査し
ている期間だけ当該領域を含む2つ以上の線状電子源の
分割部分から電子放出が行われるように制御されるよう
構成されていることを特徴とする請求項2〜8項のいず
れか一項に記載の平面型表示装置。
9. A divided portion of two or more linear electron sources including a region where the scanning position in the horizontal and vertical directions by the control electrode portion scans the region of the boundary of the divided portion of the linear electron source only. 9. The flat-panel display device according to claim 2, wherein the flat-panel display device is configured to be controlled so that electrons are emitted from the device.
【請求項10】 平面状電子源を構成する線状電子源
は、所定数の制御電極ごとに配置されていると共に、制
御電極部による水平および垂直方向の走査位置に対応す
る1または2以上の線状電子源が電子を放出するオン状
態に順次駆動されるよう構成されていることを特徴とす
る請求項1記載の平面型表示装置。
10. A linear electron source forming a planar electron source is arranged for each predetermined number of control electrodes, and one or more linear electron sources corresponding to scanning positions in the horizontal and vertical directions by the control electrode portion. 2. The flat panel display device according to claim 1, wherein the linear electron source is configured to be sequentially driven to an ON state that emits electrons.
【請求項11】 制御電極部による水平および垂直方向
の走査位置が線状電子源間を走査している期間だけ当該
領域を含む2つ以上の線状電子源から電子放出が行われ
るように制御されるよう構成されていることを特徴とす
る請求項10記載の平面型表示装置。
11. Control is performed so that electrons are emitted from two or more linear electron sources including the region only during a period in which horizontal and vertical scanning positions by the control electrode section are scanning between linear electron sources. 11. The flat-panel display device according to claim 10, wherein the flat-panel display device is configured as described above.
【請求項12】 真空に保たれた密封容器と、この密封
容器内の一面に設けられた平面状電子源と、上記密封容
器内の他の曲面上に形成された蛍光面と、この蛍光面に
対向して上記平面状電子源との間に配設され通過させる
電子ビームの水平および垂直方向の位置を規制すると共
に、上記蛍光面と同じ曲面に形成された制御電極部と、
この制御電極部と上記平面状電子源との間に配設され、
上記制御電極部と平面状電子源間の距離の差によって生
じる上記蛍光面上での電子ビームの電流量のばらつきを
補正するための電子通過孔が形成されている電子ビーム
量補正電極とを備えた平面型表示装置。
12. A hermetically sealed container kept in a vacuum, a planar electron source provided on one surface of the hermetically sealed container, a fluorescent screen formed on another curved surface in the hermetically sealed container, and the fluorescent screen. While controlling the position in the horizontal and vertical directions of the electron beam which is arranged between the planar electron source and the electron source facing each other, and a control electrode portion formed on the same curved surface as the fluorescent screen,
Disposed between the control electrode portion and the planar electron source,
An electron beam amount correction electrode having an electron passage hole for correcting a variation in current amount of the electron beam on the fluorescent screen caused by a difference in distance between the control electrode portion and the planar electron source. Flat display device.
【請求項13】 電子ビーム量補正電極は、制御電極部
とは異なる曲率半径に形成されてなることを特徴とする
請求項12記載の平面型表示装置。
13. The flat panel display device according to claim 12, wherein the electron beam amount correction electrode is formed with a radius of curvature different from that of the control electrode portion.
【請求項14】 電子ビーム量補正電極は、互いに隔て
て配置された第1,第2の電子ビーム量補正電極から構
成されており、制御電極部に近い側の第1の電子ビーム
量補正電極は上記制御電極部と同じかまたはそれより大
きい曲率半径に形成され、平面状記電子源に近い側の第
2の電子ビーム量補正電極は上記第1の電子ビーム量補
正電極より大きい曲率半径に形成されていることを特徴
とする請求項12記載の平面型表示装置。
14. The electron beam amount correction electrode is composed of first and second electron beam amount correction electrodes arranged apart from each other, and the first electron beam amount correction electrode on the side closer to the control electrode portion. Is formed to have a radius of curvature equal to or larger than that of the control electrode portion, and the second electron beam amount correction electrode on the side closer to the planar electron source has a radius of curvature larger than that of the first electron beam amount correction electrode. 13. The flat panel display device according to claim 12, wherein the flat panel display device is formed.
【請求項15】 第2の電子ビーム量補正電極が、平面
に形成されてなることを特徴とする請求項14記載の平
面型表示装置。
15. The flat panel display device according to claim 14, wherein the second electron beam amount correction electrode is formed on a flat surface.
【請求項16】 曲面に形成された第1の電子ビーム量
補正電極と、平面に形成された第2の電子ビーム量補正
電極とは周縁部分で接合されていることを特徴とする請
求項15記載の平面型表示装置。
16. The first electron beam amount correction electrode formed on the curved surface and the second electron beam amount correction electrode formed on the flat surface are joined at the peripheral edge portion. The flat-panel display device described.
【請求項17】 第2の電子ビーム量補正電極は、第1
の電子ビーム量補正電極より大きい曲率半径を有するか
または平面状に形成され、かつ平面状電子源と制御電極
間の距離が大きい部分だけを覆う大きさに形成されてい
ることを特徴とする請求項14記載の平面型表示装置。
17. The second electron beam amount correction electrode is the first electron beam amount correction electrode.
The electron beam amount correcting electrode has a radius of curvature larger than that of the electron beam amount correcting electrode, or is formed in a planar shape, and is formed in a size that covers only a portion where the distance between the planar electron source and the control electrode is large. Item 15. The flat-panel display device according to Item 14.
JP5014294A 1994-03-22 1994-03-22 Flat display apparatus Pending JPH07262941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5014294A JPH07262941A (en) 1994-03-22 1994-03-22 Flat display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5014294A JPH07262941A (en) 1994-03-22 1994-03-22 Flat display apparatus

Publications (1)

Publication Number Publication Date
JPH07262941A true JPH07262941A (en) 1995-10-13

Family

ID=12850916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5014294A Pending JPH07262941A (en) 1994-03-22 1994-03-22 Flat display apparatus

Country Status (1)

Country Link
JP (1) JPH07262941A (en)

Similar Documents

Publication Publication Date Title
EP0630037B1 (en) Image display
US5055744A (en) Display device
JP3060655B2 (en) Flat panel display
JPH0261949A (en) Fluorescent microdot screen and its addressing method
JP2789754B2 (en) Large screen display device
JPH07262941A (en) Flat display apparatus
US4633134A (en) Color fluorescent display device having anode conductors in zig-zag pattern
US7138761B2 (en) Field emission display and driving method thereof
JP3168869B2 (en) Thin display device
JP2765200B2 (en) Flat panel display
JP2556161B2 (en) Flat panel display
KR960008130B1 (en) A graphic fluorescence display tube
JPH0350554Y2 (en)
JPH06333520A (en) Plane type display device
JP2003263967A (en) Fluorescent display tube and driving method thereof
JPH07320667A (en) Thin display device
JPH06333519A (en) Plane type display device and back light
JPH0883584A (en) Flat frame display device
JPS6110837A (en) Flat-plate type cathode-ray tube
JPH05251021A (en) Display unit
JPH0536366A (en) Flat display device
JPH03197995A (en) Driving method for plane cathode-ray display device
JPH07181918A (en) Driving method for image display device
JPH01204336A (en) Flat type image display device
JPH0613003A (en) Flat display