JPH07262632A - Magneto-optical recording medium and rproducing method for same - Google Patents

Magneto-optical recording medium and rproducing method for same

Info

Publication number
JPH07262632A
JPH07262632A JP5352694A JP5352694A JPH07262632A JP H07262632 A JPH07262632 A JP H07262632A JP 5352694 A JP5352694 A JP 5352694A JP 5352694 A JP5352694 A JP 5352694A JP H07262632 A JPH07262632 A JP H07262632A
Authority
JP
Japan
Prior art keywords
layer
reproducing
recording
magneto
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5352694A
Other languages
Japanese (ja)
Inventor
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5352694A priority Critical patent/JPH07262632A/en
Priority to EP94118208A priority patent/EP0654786B1/en
Priority to DE69430099T priority patent/DE69430099T2/en
Priority to US08/343,007 priority patent/US5621706A/en
Priority to TW083110880A priority patent/TW300303B/zh
Publication of JPH07262632A publication Critical patent/JPH07262632A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetically super resolution type magneto-optical recording medium producing a super-resolving effect without using a reproducing magnetic field and more effective in attaining stability of magnetic bits over a long-period of time and in reducing the size of a drive as compared with a conventional super-resolving medium and to provide a reproducing method for the magneto-optical recording medium. CONSTITUTION:A reproducing layer 1 consisting of at least rare earth metals and transition metals, a cutting layer 2, a bias layer 3 and a recording layer 4 are disposed on a substrate as magnetic layers exchange-coupled to one another. When the magnetic layers are heated with reproducing light, the exchange coupling force between the recording layer 4 and the reproducing layer 1 is reduced or eliminated and the sub-lattice magnetization of the reproducing layer 1 is reversed in the high temp. part to the direction at low temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体に関す
る。
FIELD OF THE INVENTION The present invention relates to a magneto-optical recording medium.

【0002】[0002]

【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化されている。特
に希土類金属と遷移金属のアモルファス合金の記録層を
用いた媒体は非常に優れた特性を示している。
2. Description of the Related Art Magneto-optical recording media have been put to practical use as high-density, low-cost rewritable information recording media. Particularly, a medium using a recording layer of an amorphous alloy of a rare earth metal and a transition metal shows very excellent characteristics.

【0003】光磁気ディスクは非常に大容量の記録媒体
であるが、社会の情報量の増大に伴いさらなる大容量化
が望まれている。光ディスクの記録密度は通常の場合、
その再生光のスポットの大きさで決ってしまう。スポッ
トの大きさはレーザーの波長が短いほど小さくすること
ができるため、レーザーの短波長化の検討が進められて
いるが、非常に困難を伴っている。
The magneto-optical disk is a recording medium having a very large capacity, and it is desired to further increase the capacity as the amount of information in society increases. If the recording density of the optical disk is normal,
It depends on the size of the spot of the reproduction light. The size of the spot can be made smaller as the wavelength of the laser becomes shorter. Therefore, a study on making the wavelength of the laser shorter is under way, but it is very difficult.

【0004】一方、レーザーの波長によって決定される
以上の分解能を色々な工夫によって得ようとする、いわ
ゆる超解像技術の試みが近年行われている。その一つ
に、光磁気ディスクを用い、多層膜間の交換結合力を用
いた超解像(Magnetically induced super resolution,
以下MSRという)が報告されている。この方式の一つ
の形態は、保磁力の小さな再生層、キュリー温度の低い
切断層、キュリー温度、保磁力が高い記録層の互いに交
換結合した3層からなる媒体を用いる。
On the other hand, attempts of so-called super-resolution technology have been made in recent years to obtain various resolutions higher than those determined by the wavelength of laser by various means. One of them is a magnetically induced super resolution, which uses a magneto-optical disk and exchange coupling force between multilayer films.
(Hereinafter referred to as MSR) has been reported. One form of this system uses a medium composed of three layers, which are exchange-coupled with each other, a reproducing layer having a small coercive force, a cutting layer having a low Curie temperature, and a recording layer having a high Curie temperature and a high coercive force.

【0005】再生磁界を印加しながら再生光により加熱
したとき、媒体の高温部で交換結合が切れる。再生層は
単独での保磁力が小さいので高温部では磁化が一様に再
生磁界の方向を向き記録ビットが消去される。この結
果、低温部のみが再生され、結果的に再生範囲が狭くな
るため、再生光を絞った場合と同じ効果が得られ、高密
度の記録ビットの再生を行うことができる。
When heated by reproducing light while applying a reproducing magnetic field, exchange coupling is broken at a high temperature portion of the medium. Since the reproducing layer has a small coercive force by itself, the magnetization is uniformly oriented in the reproducing magnetic field in the high temperature portion to erase the recorded bit. As a result, only the low temperature portion is reproduced, and the reproduction range is narrowed as a result. Therefore, the same effect as when the reproduction light is narrowed down can be obtained, and high density recording bits can be reproduced.

【0006】消去された記録ビットは、媒体温度が低く
なり交換結合が回復したときに、記録層から転写される
ことにより復活する。この方式は、信号を再生光スポッ
トの前部で検出するため、Frontaperture detection(FA
D)と呼ばれる。FAD方式の欠点として再生時に再生磁
界(Hr)が必要な点が挙げられる。再生磁界は、通常2
4000A/m以上の磁界が必要であり、再生磁界を印
加しつつ再生することによって、記録層に記録されたビ
ットが不安定になり易いという欠点があった。
The erased recording bit is restored by being transferred from the recording layer when the medium temperature is lowered and the exchange coupling is restored. In this method, the signal is detected in the front part of the reproduction light spot, and therefore, front aperture detection (FA
Called D). A drawback of the FAD method is that a reproducing magnetic field (Hr) is required during reproduction. The reproducing magnetic field is usually 2
A magnetic field of 4000 A / m or more is required, and there is a drawback that the bits recorded in the recording layer are likely to become unstable by reproducing while applying a reproducing magnetic field.

【0007】また、記録に必要な磁界より大きな磁界が
再生に必要となる可能性もあり、磁気ヘッドを小型化
し、装置を簡略化しようとする際に大きな問題となる。
特に、磁界変調記録では記録磁界が10000A/m以
下であることも多く、再生磁界の印加が磁気ヘッドには
大きな負担となる。
Further, there is a possibility that a magnetic field larger than the magnetic field required for recording may be required for reproduction, which is a big problem in downsizing the magnetic head and simplifying the apparatus.
Particularly in magnetic field modulation recording, the recording magnetic field is often 10000 A / m or less, and the application of the reproducing magnetic field imposes a heavy burden on the magnetic head.

【0008】[0008]

【発明が解決しようとする課題】これに対し先の出願
で、FADと同様に記録層、切断層、再生層の交換結合
した3層の磁性層を用いながら、温度が上がり交換結合
が切れた際に、記録層と再生層の静磁的な結合により再
生層の副格子磁化が交換結合が強い場合に対して反転
し、これによって超解像再生が可能となる、言うなれば
静磁結合型超解像を示した。
On the other hand, in the previous application, as in the case of FAD, the temperature increased and the exchange coupling was broken while using the three exchange-coupled magnetic layers of the recording layer, the cutting layer and the reproducing layer. At this time, due to the magnetostatic coupling between the recording layer and the reproducing layer, the sub-lattice magnetization of the reproducing layer is inverted as compared with the case where the exchange coupling is strong, which enables super-resolution reproduction. The type showed super-resolution.

【0009】この方法では再生磁界が無い状態、あるい
は非常に低い再生磁界において超解像が可能である。こ
の方法においては、再生層を静磁界で反転させるために
記録層がかなり大きな磁化を有する必要がある。しかし
磁化が大きい場合、記録層の垂直磁気異方性が低下して
磁化の方向が斜めになってしまったり、記録マーク内部
に微少な反転領域が生じたりする。従って記録層は大き
な静磁界の発生と高い垂直磁気異方性という相反する性
質を求められており、両者を十分に満足させることがで
きなかった。
With this method, super-resolution is possible in the absence of a reproducing magnetic field or in a very low reproducing magnetic field. In this method, the recording layer needs to have a considerably large magnetization in order to invert the reproducing layer with a static magnetic field. However, when the magnetization is large, the perpendicular magnetic anisotropy of the recording layer is lowered and the direction of the magnetization becomes oblique, or a minute inversion region is generated inside the recording mark. Therefore, the recording layer is required to have contradictory properties such as generation of a large static magnetic field and high perpendicular magnetic anisotropy, and both cannot be sufficiently satisfied.

【0010】[0010]

【課題を解決するための手段】本発明では再生時に高温
部を磁化反転させることより、マスクを用いる従来の原
理とは異なる方法で超解像効果をえる媒体において、記
録層に接してバイアス層を設けることにより優れた再生
特性を得ることを可能にするものである。本発明の要旨
は少なくとも希土類と遷移金属よりなる再生層、切断
層、バイアス層、記録層の4層よりなる互いに交換結合
した磁性層が基板上に設けられており、再生層、切断
層、バイアス層、記録層のキュリー温度を各々Tc1、T
c2、Tc3、Tc4、保磁力を各々Hc1、Hc2、Hc3、Hc4
としたときに、Tc1、Tc2、Tc3、Tc4は50℃以上で
あり、且つ
According to the present invention, by reversing the magnetization of a high temperature portion at the time of reproduction, a bias layer is formed in contact with a recording layer in a medium which can obtain a super-resolution effect by a method different from the conventional principle using a mask. It is possible to obtain excellent reproduction characteristics by providing The gist of the present invention is to provide a magnetic layer, which is composed of at least a reproducing layer made of a rare earth and a transition metal, a cutting layer, a bias layer, and a recording layer, which are exchange-coupled with each other, on a substrate. Curie temperatures of the recording layer and the recording layer are Tc1 and Tc, respectively.
c2, Tc3, Tc4 and coercive force are Hc1, Hc2, Hc3 and Hc4 respectively
And Tc1, Tc2, Tc3 and Tc4 are 50 ° C. or higher, and

【0011】[0011]

【数2】Tc1>Tc2、Tc3>Tc2、Tc4>Tc2 という関係を満たし、磁性層は再生光による加熱によっ
てTc2近傍もしくはそれ以上の温度に加熱された際、記
録層と再生層の間の交換結合力が減少するかあるいは無
くなり、その結果、高温部分において再生層の副格子磁
化がその部分の低温時の方向に対して反転する光磁気記
録媒体であって、バイアス層が記録層と比べて大きい体
積磁化率を有することを特徴とする光磁気記録媒体に存
する。
[Equation 2] Tc1> Tc2, Tc3> Tc2, Tc4> Tc2, and the magnetic layer is exchanged between the recording layer and the reproducing layer when heated by the reproducing light to a temperature near Tc2 or higher. In a magneto-optical recording medium in which the coupling force decreases or disappears, and as a result, the sub-lattice magnetization of the reproducing layer at the high temperature portion is reversed with respect to the direction at the time of low temperature, the bias layer is It exists in a magneto-optical recording medium characterized by having a large volume magnetic susceptibility.

【0012】Tc1、Tc2、Tc3、Tc4を50℃以上と設
定したのは、通常媒体の使用環境温度がほぼ50℃以下
であるためである。こういった媒体に記録を行う場合、
まず一定方向に磁界を印加しながら連続光を照射して磁
化を一方向に揃える(消去)。次に逆方向に磁界を印加
しながら、情報に応じたパルス光を照射し、消去とは逆
方向の磁化による磁区を生成する(記録)。
The reason for setting Tc1, Tc2, Tc3, and Tc4 to 50 ° C. or higher is that the ambient temperature of the medium is usually 50 ° C. or lower. When recording on such media,
First, while applying a magnetic field in a fixed direction, continuous light is irradiated to align the magnetization in one direction (erasing). Next, while applying a magnetic field in the opposite direction, pulsed light corresponding to information is irradiated to generate a magnetic domain due to magnetization in the opposite direction to erasing (recording).

【0013】これとは別に記録磁界に情報に応じた変調
を与える磁界変調方式も用いることができる。我々が先
に示した図2に示すような再生層1、切断層2、記録層
3の3層の構成では、再生層1と記録層3の優勢な副格
子磁化が異り、切断層2のキュリー温度Tc2以下の交換
結合力5が強い場合では交換結合力5のため互いの磁化
は逆方向を向いて安定している。
Apart from this, a magnetic field modulation system for applying a modulation to the recording magnetic field according to information can also be used. In the three-layer structure of the reproducing layer 1, the cutting layer 2, and the recording layer 3 as shown in FIG. 2 which we have previously shown, the dominant sublattice magnetizations of the reproducing layer 1 and the recording layer 3 are different, and the cutting layer 2 When the exchange coupling force 5 below the Curie temperature Tc2 is strong, the mutual magnetization is stable because the exchange coupling force 5 is directed in the opposite direction.

【0014】このような媒体を再生光により加熱した
際、Tc2の近傍で記録層3と再生層1の間の交換結合力
5が小さくなるか、あるいは無くなる。この時、再生層
1の磁化に働く主たる力は、記録層3と再生層1の間の
磁化同士の静磁結合力6による力である。この静磁結合
力6が交換結合力5とは逆向きに働くため、再生層1の
副格子磁化はその低温時の状態に対して反転を起こす。
When such a medium is heated by reproducing light, the exchange coupling force 5 between the recording layer 3 and the reproducing layer 1 becomes small or disappears in the vicinity of Tc2. At this time, the main force acting on the magnetization of the reproducing layer 1 is the force due to the magnetostatic coupling force 6 between the magnetizations of the recording layer 3 and the reproducing layer 1. Since the magnetostatic coupling force 6 acts in the opposite direction to the exchange coupling force 5, the sublattice magnetization of the reproducing layer 1 is inverted with respect to the state at the low temperature.

【0015】このような構成で静磁結合力5によって磁
化反転を起こすためには、Tc2において記録層3と再生
層1で互いに優勢な副格子磁化が異なる必要がある。す
なわち、記録層3が希土類金属優勢ならば再生層1が遷
移金属優勢となり、記録層3が遷移金属優勢ならば再生
層1が希土類金属優勢となる。通常の再生の場合、記録
磁区7の間隔を縮めていくと記録方向と消去方向の信号
が互いに打ち消し合い、信号の区別ができなくなくなり
信号レベルが低下してしまう。
In order to cause the magnetization reversal by the magnetostatic coupling force 5 in such a structure, it is necessary that the predominant sublattice magnetizations of the recording layer 3 and the reproducing layer 1 are different from each other at Tc2. That is, if the recording layer 3 is the rare earth metal dominant, the reproducing layer 1 is the transition metal dominant, and if the recording layer 3 is the transition metal dominant, the reproducing layer 1 is the rare earth metal dominant. In the case of normal reproduction, when the distance between the recording magnetic domains 7 is shortened, the signals in the recording direction and the erasing direction cancel each other out, so that the signals cannot be distinguished and the signal level is lowered.

【0016】これに対し、上記の方法では図3に示すよ
うに再生している高温部8の副格子磁化が反転してしま
うため、その部分から得られるそのカー回転による信号
も極性が逆になる。従って、高温部8が記録方向の場
合、信号は周囲の消去部からの信号と同一の極性となり
両者が足し合わされることにより、たとえ記録磁区7が
高密度であっても大きな信号レベルがとれる。
On the other hand, in the above method, since the sublattice magnetization of the high temperature portion 8 being reproduced is inverted as shown in FIG. 3, the signal due to the Kerr rotation obtained from that portion also has the opposite polarity. Become. Therefore, when the high temperature portion 8 is in the recording direction, the signal has the same polarity as the signal from the surrounding erasing portion, and the two signals are added, so that a large signal level can be obtained even if the recording magnetic domain 7 has a high density.

【0017】高温部8が消去方向の場合、信号は周囲の
記録部からの信号と同一の極性となりやはり大きな信号
レベルがとれる。また、本発明の方法では磁化反転が再
生スポット9の高温部8でのみ起こるため、再生スポッ
ト9全体が信号に関与してくる従来の方法と比べ、非常
に幅の狭いシャープな再生信号が得られ、微細な記録で
も容易に再生可能である。
When the high temperature portion 8 is in the erasing direction, the signal has the same polarity as the signal from the surrounding recording portion, and a large signal level can be obtained. Further, in the method of the present invention, the magnetization reversal occurs only in the high temperature portion 8 of the reproduction spot 9, so that a sharp reproduction signal having a very narrow width is obtained as compared with the conventional method in which the entire reproduction spot 9 is involved in the signal. Therefore, even fine recording can be easily reproduced.

【0018】こういった、言うなれば静磁結合型超解像
において静磁結合により安定な磁化反転を起こすには、
Tc2近傍において記録層、再生層双方が逆の極性でかな
りの大きさの磁化を有している必要がある。ところが記
録層の磁化を大きくしていくと垂直磁気異方性が低下
し、磁化が垂直に立たなくなったり、微小な磁化反転を
生じてしまう。
In order to cause stable magnetization reversal by magnetostatic coupling in the magnetostatic coupling type super-resolution as described above,
In the vicinity of Tc2, both the recording layer and the reproducing layer must have opposite polarities and have a considerable amount of magnetization. However, as the magnetization of the recording layer is increased, the perpendicular magnetic anisotropy decreases, and the magnetization does not stand vertically, or minute magnetization reversal occurs.

【0019】記録層は十分な静磁界が得られる磁化の大
きいもので、しかも十分な垂直磁気異方性が得られる磁
性層を選ばなければならず、両者を十分に満たすものが
存在しなかった。特に記録層をTc2において希土類金属
優勢の組成とした場合、室温付近において磁化率はTc2
よりも大きくなるため、良い特性が得られない。
For the recording layer, a magnetic layer having a large magnetization capable of obtaining a sufficient static magnetic field and a magnetic layer having a sufficient perpendicular magnetic anisotropy must be selected, and there is no recording layer that sufficiently satisfies both. . In particular, when the recording layer has a composition in which the rare earth metal is dominant at Tc2, the magnetic susceptibility near room temperature is Tc2.
Since it is larger than that, good characteristics cannot be obtained.

【0020】従って、記録層は遷移金属優勢の組成であ
る必要があった。このため本発明では記録層4と接して
図1に示すように反転用の静磁界6を発生するバイアス
層3を設ける。記録層4とバイアス層3は交換結合力5
によって、切断層2がキュリー温度Tc2を超えた場合で
も結合されている。記録層4には磁化率の小さい垂直磁
気異方性の高い膜を用い、一方バイアス層3は記録層4
よりも磁化率が大きい膜を設けて、大きな静磁界6を発
生するようにする。
Therefore, the recording layer had to have a composition in which the transition metal was dominant. For this reason, in the present invention, the bias layer 3 is provided in contact with the recording layer 4 to generate the static magnetic field 6 for reversal as shown in FIG. The recording layer 4 and the bias layer 3 have an exchange coupling force of 5
Thus, the cutting layers 2 are bonded even when the Curie temperature Tc2 is exceeded. A film having a small magnetic susceptibility and a high perpendicular magnetic anisotropy is used for the recording layer 4, while the bias layer 3 is used for the recording layer 4.
A film having a larger magnetic susceptibility is provided to generate a large static magnetic field 6.

【0021】こうして、記録層4が垂直磁気異方性を発
生し、バイアス層3が静磁界を発生という役割分担を行
うことによって、大きな組成マージンを得る事ができる
と同時にバイアス層3が発生する強力な静磁界6によっ
てより良好な信号特性を得る事が可能である。また、バ
イアス層3と記録層4は異なる極性を採用することも可
能であるから、記録層4の選択の幅が大きく広がる。
In this way, the recording layer 4 generates perpendicular magnetic anisotropy, and the bias layer 3 plays a role of generating a static magnetic field, whereby a large composition margin can be obtained and at the same time the bias layer 3 is generated. It is possible to obtain better signal characteristics by the strong static magnetic field 6. Further, since the bias layers 3 and the recording layers 4 can adopt different polarities, the range of selection of the recording layers 4 is greatly expanded.

【0022】室温においてバイアス層の磁化率が大き
く、磁化方向が完全に垂直になっていなくても、記録層
の磁化が垂直になっていれば、Tc2近傍でバイアス層の
磁化率が減少し磁化が垂直になった際に良好な特性を得
る事ができる。低温でバイアス層が垂直になっておら
ず、高温で垂直となる構成は、低温部からの信号レベル
が小さくなるためクロストークが減少し、好ましい構成
である。
Even if the bias layer has a large magnetic susceptibility at room temperature and the magnetization direction is not completely perpendicular, if the recording layer is perpendicularly magnetized, the magnetic susceptibility of the bias layer decreases near Tc2. Good characteristics can be obtained when is vertical. The configuration in which the bias layer is not vertical at a low temperature and is vertical at a high temperature is a preferable configuration because the signal level from the low temperature portion becomes small and crosstalk is reduced.

【0023】バイアス層がTc2で遷移金属優勢の組成で
あるとき、再生層はTc2で希土類金属優勢の組成であ
る。このときは先に述べた理由と同様に、低温で再生層
の磁化が完全に垂直に向いていないことが好ましい。以
下に各層についてさらに詳細に説明する。再生層は安定
に磁化反転を起こす必要があるため、再生層の保磁力H
cがある程度小さい必要がある。
When the bias layer is Tc2 and transition metal-dominant composition, the reproducing layer is Tc2 and rare earth metal-dominant composition. At this time, similarly to the reason described above, it is preferable that the magnetization of the reproducing layer is not perfectly perpendicular at low temperature. Each layer will be described in more detail below. Since the reproducing layer is required to cause stable magnetization reversal, the coercive force H of the reproducing layer is
c must be small to some extent.

【0024】しかし、小さ過ぎる場合は再生信号の劣化
が生じるため、Tc2においてHcは2000A/m以
上、40000A/m以下であることが好ましい。ま
た、磁化反転による磁壁のエネルギー増加を小さくする
には再生層の垂直磁気異方性を小さくすることが好まし
いが、小さ過ぎると再生信号の劣化が生じるため、Tc2
における垂直磁気異方性は2×105erg/cc以上、8×
106erg/cc以下が好ましく、特に好ましくは5×105
erg/cc以上、6×106erg/cc以下である。
However, if it is too small, the reproduction signal is deteriorated. Therefore, at Tc2, Hc is preferably 2000 A / m or more and 40,000 A / m or less. Further, it is preferable to reduce the perpendicular magnetic anisotropy of the reproducing layer in order to reduce the increase in the energy of the domain wall due to the magnetization reversal, but if it is too small, the reproduction signal deteriorates.
Perpendicular magnetic anisotropy is 2 × 10 5 erg / cc or more, 8 ×
It is preferably 10 6 erg / cc or less, particularly preferably 5 × 10 5
It is erg / cc or more and 6 × 10 6 erg / cc or less.

【0025】垂直磁気異方性は成膜時のガス圧力等によ
り膜応力を調節することで変化させることが可能であ
り、5×108dyne/cm2以上、5×109dyne/cm2以下が
好ましい。再生層に用いられる物質としては、GdFe
Co、GdCo、GdFe、GdDyFe、GdDyC
o、GdDyFeCo、GdTbFe、GdTbCo、
GdTbFeCo、DyFeCo、DyCo、TbC
o、TbFeCo、TbDyFeCo、TbDyCo等
の希土類と遷移金属の合金が好ましく用いられる。
The perpendicular magnetic anisotropy can be changed by adjusting the film stress by the gas pressure or the like during film formation, and it is 5 × 10 8 dyne / cm 2 or more and 5 × 10 9 dyne / cm 2 The following are preferred. The material used for the reproducing layer is GdFe
Co, GdCo, GdFe, GdDyFe, GdDyC
o, GdDyFeCo, GdTbFe, GdTbCo,
GdTbFeCo, DyFeCo, DyCo, TbC
Alloys of rare earths and transition metals such as o, TbFeCo, TbDyFeCo, and TbDyCo are preferably used.

【0026】中でも、Gdを含有する合金を用いるのが
キュリー温度や保磁力の点から好ましい。特にGdFe
Coを主体とする合金を用いるのが好ましい。キュリー
温度としては、250℃以上であることが好ましい。P
tCoや、PtとCoの超格子等の磁性体を単独で、あ
るいは希土類と遷移金属との合金との積層で再生層とし
て用いることもできる。
Among them, it is preferable to use an alloy containing Gd from the viewpoint of Curie temperature and coercive force. Especially GdFe
It is preferable to use an alloy containing Co as a main component. The Curie temperature is preferably 250 ° C. or higher. P
A magnetic substance such as tCo or a superlattice of Pt and Co may be used alone or as a reproducing layer by laminating an alloy of a rare earth and a transition metal.

【0027】再生層の垂直磁気異方性を大きくするに
は、磁性層にある程度の膜応力をもたせて逆磁歪効果に
よる異方性を発生させるのが好ましい。膜応力は大きす
ぎると膜の耐久性に悪影響を与えるため1×109erg/c
c以上、5×109erg/cc以下であることが好ましい。再
生層の膜厚は薄い方が磁化が受ける力が大きくて好まし
い。
In order to increase the perpendicular magnetic anisotropy of the reproducing layer, it is preferable that the magnetic layer be given a certain amount of film stress to generate anisotropy due to the inverse magnetostriction effect. If the film stress is too large, it will adversely affect the durability of the film, so 1 × 10 9 erg / c
It is preferably c or more and 5 × 10 9 erg / cc or less. The smaller the thickness of the reproducing layer is, the larger the magnetic force is, which is preferable.

【0028】しかし、薄すぎる場合、再生信号が小さく
なるので8nm以上、500nm以下が好ましい。さら
に好ましくは、12nm以上、350nm以下である。
一方、再生層の受ける力は再生層自身が持つ磁化も影響
する。従って、再生層もTc2においてある程度以上の磁
化を持つ事が好ましい。Tc2における再生層の好ましい
体積磁化率は150emu/cc以上であり、さらに好ましく
は200emu/cc以上である。
However, if it is too thin, the reproduction signal becomes small, so that it is preferably 8 nm or more and 500 nm or less. More preferably, it is 12 nm or more and 350 nm or less.
On the other hand, the force received by the reproducing layer also affects the magnetization of the reproducing layer itself. Therefore, it is preferable that the reproducing layer also has a certain degree of magnetization at Tc2. The volume susceptibility of the reproducing layer at Tc2 is preferably 150 emu / cc or more, more preferably 200 emu / cc or more.

【0029】一方、室温において磁化が大きすぎる場合
は垂直磁気異方性の低下のため、再生層と交換結合した
記録層の磁化が垂直に立たなくなるため、室温において
再生の磁化は500emu/cc以下が好ましく、さらに好ま
しくは450emu/cc以下である。ここで言う室温とは使
用環境温度であるが、代表的には約25℃である。
On the other hand, if the magnetization is too large at room temperature, the perpendicular magnetic anisotropy decreases, and the magnetization of the recording layer exchange-coupled with the reproducing layer does not stand perpendicularly. Therefore, the reproducing magnetization at room temperature is 500 emu / cc or less. Is preferred, and more preferably 450 emu / cc or less. The room temperature referred to here is a temperature of use environment, but is typically about 25 ° C.

【0030】切断層は、キュリー温度が再生層や記録層
と比べて小さいものである必要がある。切断層のキュリ
ー温度は、100〜180℃程度が好ましい。切断層は
垂直磁気異方性が高く、再生層の磁化に強い力を発生さ
せるものが好ましい。
The cutting layer needs to have a Curie temperature lower than that of the reproducing layer or the recording layer. The Curie temperature of the cutting layer is preferably about 100 to 180 ° C. It is preferable that the cutting layer has a high perpendicular magnetic anisotropy and generates a strong force in the magnetization of the reproducing layer.

【0031】切断層に用いられる物質としては、TbF
e、TbFeCo、DyFeCo、DyFe、TbDy
FeCo等の希土類と遷移金属の合金が好ましい。切断
層の膜厚は2nm以上、30nm以下であることが好ま
しい。バイアス層は再生層を反転する磁界を発生するた
めに、少なくとも再生層より大きな磁化を有することが
必要である。
The material used for the cutting layer is TbF.
e, TbFeCo, DyFeCo, DyFe, TbDy
Alloys of rare earths and transition metals such as FeCo are preferred. The thickness of the cutting layer is preferably 2 nm or more and 30 nm or less. The bias layer needs to have at least a larger magnetization than the reproducing layer in order to generate a magnetic field that reverses the reproducing layer.

【0032】バイアス層の体積磁化率はTc2において1
50emu/cc以上である事が好ましく、さらに好ましくは
200emu/cc以上である。ただ、大きすぎるとTc2にお
いて磁化が垂直ではなくなり信号特性が劣化するため、
500emu/cc以下であることが好ましい。バイアス層の
キュリー温度は250℃以上であることが好ましい。ま
た、膜厚は2nm以上、50nm以下であることが好ま
しい。
The volume susceptibility of the bias layer is 1 at Tc2.
It is preferably 50 emu / cc or more, more preferably 200 emu / cc or more. However, if it is too large, the magnetization is not perpendicular at Tc2 and the signal characteristics deteriorate, so
It is preferably 500 emu / cc or less. The Curie temperature of the bias layer is preferably 250 ° C. or higher. The film thickness is preferably 2 nm or more and 50 nm or less.

【0033】バイアス層に用いられる物質としては、G
dFeCo、GdCo、GdFe、GdDyFe、Gd
DyCo、GdDyFeCo、GdTbFe、GdTb
Co、GdTbFeCo、DyFeCo、DyCo、T
bCo、TbFeCo、TbDyFeCo、TbDyC
o等の希土類と遷移金属の合金が好ましく用いられる。
The material used for the bias layer is G
dFeCo, GdCo, GdFe, GdDyFe, Gd
DyCo, GdDyFeCo, GdTbFe, GdTb
Co, GdTbFeCo, DyFeCo, DyCo, T
bCo, TbFeCo, TbDyFeCo, TbDyC
An alloy of a rare earth element such as o and a transition metal is preferably used.

【0034】中でも、Gdを含有する合金を用いるのが
好ましい。特にGdFeCoを用いるのが好ましい。記
録層は、安定して記録を蓄えている層であるから、再生
ビームで劣化しないキュリー温度を有していることが必
要である。記録層のキュリー温度は、200〜280℃
程度が好ましい。
Above all, it is preferable to use an alloy containing Gd. It is particularly preferable to use GdFeCo. Since the recording layer is a layer in which recording is stably stored, it is necessary that the recording layer has a Curie temperature that is not deteriorated by a reproducing beam. The Curie temperature of the recording layer is 200 to 280 ° C.
A degree is preferable.

【0035】記録層のキュリー温度が高すぎると、記録
に要するレーザーのパワーが大きくなりすぎてしまう。
記録層は、高い垂直磁気異方性を持つことも、再生層の
磁化に強い力を与えるために必要である。記録層を構成
する物質としては、TbFeCo、TbCo、DyFe
Co、TbDyFeCo、GdTbFe、GdTbFe
Co等の希土類と遷移金属の合金が好ましく用いられ
る。
If the Curie temperature of the recording layer is too high, the laser power required for recording will be too high.
The recording layer also needs to have a high perpendicular magnetic anisotropy in order to give a strong force to the magnetization of the reproducing layer. TbFeCo, TbCo, DyFe are used as the material forming the recording layer.
Co, TbDyFeCo, GdTbFe, GdTbFe
An alloy of a rare earth element such as Co and a transition metal is preferably used.

【0036】特にTbを含有する合金を用いるのが高い
垂直磁気異方性を得る上で好ましく、中でもTbFeC
oが好ましい。記録層の膜厚は10nm以上、50nm
以下であることが好ましい。記録層の持つ磁化はTc2に
おいてバイアス層よりも小さく、Tc2において150em
u/cc以下であることが好ましい。
It is particularly preferable to use an alloy containing Tb in order to obtain a high perpendicular magnetic anisotropy. Among them, TbFeC
o is preferred. The thickness of the recording layer is 10 nm or more and 50 nm
The following is preferable. The magnetization of the recording layer is smaller than that of the bias layer at Tc2, and is 150em at Tc2.
It is preferably u / cc or less.

【0037】また、記録層が安定に磁化を蓄えておくに
は少なくとも再生層の保磁力よりも大きな保磁力を有す
ることが好ましい。好ましい保磁力は240kA/m以
上である。垂直磁気異方性は2×106erg/cc以上であ
ることが好ましい。以上の磁性層は、希土類金属と遷移
金属の合金を用いた場合、非常に酸化しやすいため、磁
性層の両側に保護膜を着けた態様をとることが好まし
い。
Further, in order to store the magnetization stably in the recording layer, it is preferable that the recording layer has at least a coercive force larger than that of the reproducing layer. A preferable coercive force is 240 kA / m or more. The perpendicular magnetic anisotropy is preferably 2 × 10 6 erg / cc or more. When the alloy of rare earth metal and transition metal is used for the above magnetic layer, it is very easy to oxidize, so it is preferable to adopt a mode in which protective films are provided on both sides of the magnetic layer.

【0038】保護膜としては、酸化Si、酸化Al、酸
化Ta、酸化Ti、窒化Si、窒化Al、炭化Siなど
の単体あるいはそれらの混合物が好ましく用いられる。
保護膜の膜厚は50nm〜150nm程度が好ましい。
基板側の保護膜、即ち、基板と磁性層とのあいだの保護
膜を形成後、保護膜の表面をプラズマエッチングするこ
とで、保護膜上に次いで設ける磁性層の磁気異方性を向
上させることができる。
As the protective film, simple substances such as Si oxide, Al oxide, Ta oxide, Ti oxide, Si nitride, Al nitride and Si carbide, or a mixture thereof are preferably used.
The thickness of the protective film is preferably about 50 nm to 150 nm.
After forming a protective film on the substrate side, that is, a protective film between the substrate and the magnetic layer, plasma etching the surface of the protective film to improve the magnetic anisotropy of the magnetic layer provided next on the protective film. You can

【0039】磁性層の記録層側に直接あるいは保護層を
介して、放熱層としてAl、Cu、Au、Ag等の単
体、あるいはそれを主体とした合金よりなる高熱伝導物
質を設けることは、再生時の熱分布を安定させるうえで
望ましい構成である。放熱層の膜厚は10nm〜100
nm程度が好ましい。
Providing a high heat-conducting substance made of a simple substance such as Al, Cu, Au, Ag or the like or an alloy mainly composed of Al, Cu, Au, Ag or the like as a heat dissipation layer on the recording layer side of the magnetic layer directly or through a protective layer This is a desirable structure for stabilizing the heat distribution during use. The thickness of the heat dissipation layer is 10 nm to 100
About nm is preferable.

【0040】[0040]

【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 実施例1 スパッタリング装置に1.4μmのトラックピッチの案
内溝を持ったポリカーボネート基板を導入し、5×10
-5Pa以下の真空度まで排気を行った。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 A polycarbonate substrate having a guide groove with a track pitch of 1.4 μm was introduced into a sputtering apparatus, and 5 × 10
Evacuation was performed to a vacuum degree of -5 Pa or less.

【0041】この後、保護層として基板上に反応性スパ
ッタリングを用い80nmの酸化Taを形成した。次に
酸化Ta上に、Gd34(Fe80Co2066(数値は原子
%)よりなる30nmの再生層、Tb20Fe80よりなる
15nmの切断層、Gd18(Fe70Co3082よりなる
20nmのバイアス層、Tb23(Fe80Co2077より
なる40nmの記録層を設けた。
After that, as the protective layer, 80 nm oxide Ta was formed on the substrate by reactive sputtering. Next, on the oxidized Ta, a 30 nm reproducing layer made of Gd 34 (Fe 80 Co 20 ) 66 (numerical value is atomic%), a 15 nm cutting layer made of Tb 20 Fe 80 , and a Gd 18 (Fe 70 Co 30 ) 82 A 20 nm bias layer and a 40 nm recording layer of Tb 23 (Fe 80 Co 20 ) 77 .

【0042】最後にSiNよりなる80nmの保護層を
設けた。再生層、切断層、バイアス層、記録層のキュリ
ー温度を測定したところ、再生層が300℃以上、切断
層が120℃、バイアス層が300℃以上、記録層が2
40℃であった。また、再生層は室温においては希土類
金属の磁化が優勢であり補償温度は190℃であった。
Finally, an 80 nm protective layer made of SiN was provided. The Curie temperatures of the reproducing layer, the cutting layer, the bias layer, and the recording layer were measured. The reproducing layer was 300 ° C. or higher, the cutting layer was 120 ° C., the bias layer was 300 ° C. or higher, and the recording layer was 2 ° C.
It was 40 ° C. The magnetization of the rare earth metal was dominant in the reproducing layer at room temperature, and the compensation temperature was 190 ° C.

【0043】切断層、バイアス層は室温において遷移金
属の磁化が優勢であった。また、再生層の室温(25
℃)における保磁力はほぼ零でカー回転角θk1は0.2
4deg.、体積磁化率は380emu/ccであり、120
℃においては保磁力は10000A/mでありカー回転
角θk2は0.34deg.、体積磁化率は250emu/cc
であった。
The magnetization of the transition metal was predominant in the cutting layer and the bias layer at room temperature. In addition, the room temperature (25
Coercive force at ℃) is almost zero and Kerr rotation angle θk1 is 0.2
4 deg. , The volume magnetic susceptibility is 380 emu / cc, 120
The coercive force is 10,000 A / m and the Kerr rotation angle θk2 is 0.34 deg. , Volume susceptibility is 250emu / cc
Met.

【0044】バイアス層の120℃における体積磁化率
は390emu/ccであった。このようにして作製したディ
スクを波長780nm、開口数0.55の評価機を用い
てCN比の評価を行った。記録条件は線速7m/s、周
波数9MHz(マーク長0.39μm)30%である。
記録を行った後、再生磁界を印加しない状態で再生パワ
ーPrを変化させながら測定していったところ、Prが
2.0mW以上ではそれ以下の場合と信号の位相が完全
に反転すると同時に高いCN比(狭帯域信号雑音比)が
とれ、Pr=2.4mWでは46.5dBのCN比が得
られた。さらに、隣接トラックに2MHzで記録を行い
クロストークを測定したところ、−36dBと低い値が
得られた。
The volume magnetic susceptibility of the bias layer at 120 ° C. was 390 emu / cc. The disc thus produced was evaluated for CN ratio using an evaluator having a wavelength of 780 nm and a numerical aperture of 0.55. The recording conditions are a linear velocity of 7 m / s and a frequency of 9 MHz (mark length 0.39 μm) 30%.
After recording, measurement was performed while changing the reproducing power Pr without applying a reproducing magnetic field. When Pr was 2.0 mW or more, the signal phase was completely reversed and the high CN The ratio (narrowband signal-to-noise ratio) was obtained, and when Pr = 2.4 mW, a CN ratio of 46.5 dB was obtained. Furthermore, when recording was performed at 2 MHz on an adjacent track and crosstalk was measured, a low value of -36 dB was obtained.

【0045】実施例2 スパッタリング装置に1.4μmのトラックピッチの案
内溝を持ったポリカーボネート基板を導入し、5×10
-5Pa以下の真空度まで排気を行った。
Example 2 A polycarbonate substrate having a guide groove with a track pitch of 1.4 μm was introduced into a sputtering apparatus, and 5 × 10 5 was used.
Evacuation was performed to a vacuum degree of -5 Pa or less.

【0046】この後、保護層として基板上に反応性スパ
ッタリングを用い80nmの酸化Taを形成した。次に
酸化Ta上に、Gd19(Fe80Co2081よりなる30
nmの再生層、Tb20Fe80よりなる15nmの切断
層、Gd35(Fe70Co3065よりなる20nmのバイ
アス層、Tb23(Fe80Co2077よりなる40nmの
記録層を設けた。
After that, as the protective layer, 80 nm oxide Ta was formed on the substrate by reactive sputtering. Next, on the oxidized Ta, 30 including Gd 19 (Fe 80 Co 20 ) 81 is formed.
nm reproduction layer, a 15 nm cutting layer made of Tb 20 Fe 80 , a 20 nm bias layer made of Gd 35 (Fe 70 Co 30 ) 65 , and a 40 nm recording layer made of Tb 23 (Fe 80 Co 20 ) 77 . .

【0047】最後にSiNよりなる80nmの保護層を
設けた。記録層の組成xは第2表のように変化させた。
再生層、切断層、バイアス層、記録層のキュリー温度を
測定したところ、再生層が300℃以上、切断層が12
0℃、バイアス層が300℃以上、記録層が240℃で
あった。
Finally, an 80 nm protective layer made of SiN was provided. The composition x of the recording layer was changed as shown in Table 2.
The Curie temperatures of the reproducing layer, the cutting layer, the bias layer and the recording layer were measured.
The temperature was 0 ° C., the bias layer was 300 ° C. or higher, and the recording layer was 240 ° C.

【0048】記録層のキュリー温度は組成によって若干
異なるが、約240℃であった。またバイアス層は室温
(25℃)においては希土類金属の磁化が優勢であり補
償温度は200℃であった。再生層、切断層は室温にお
いて遷移金属の磁化が優勢であった。再生層の室温にお
ける保磁力は2200A/mでカー回転角θk1は0.1
8deg.、体積磁化率は420emu/ccであり、120
℃における保磁力は1600A/mであり、カー回転角
θk2は0.34deg.、体積磁化率は330emu/ccで
あった。
The Curie temperature of the recording layer was about 240 ° C., although it varied slightly depending on the composition. At room temperature (25 ° C.), the bias layer was dominated by the magnetization of the rare earth metal, and the compensation temperature was 200 ° C. The magnetization of the transition metal was dominant in the reproducing layer and the cutting layer at room temperature. The coercive force of the reproducing layer at room temperature is 2200 A / m, and the Kerr rotation angle θk1 is 0.1.
8 deg. , The volume magnetic susceptibility is 420 emu / cc, and 120
The coercive force at 1 ° C is 1600 A / m, and the Kerr rotation angle θk2 is 0.34 deg. The volume susceptibility was 330 emu / cc.

【0049】バイアス層の120℃における体積磁化率
は380emu/ccであった。このようにして作製したディ
スクを波長780nm、開口数0.55の評価機を用い
てCN比の評価を行った。記録条件は線速7m/s、周
波数9MHz、記録パワー9mW、記録duty30%であ
る。
The volume magnetic susceptibility of the bias layer at 120 ° C. was 380 emu / cc. The disc thus produced was evaluated for CN ratio using an evaluator having a wavelength of 780 nm and a numerical aperture of 0.55. Recording conditions are a linear velocity of 7 m / s, a frequency of 9 MHz, a recording power of 9 mW, and a recording duty of 30%.

【0050】記録を行った後、再生磁界を印加しない状
態で再生パワーPrを変化させながら測定していったと
ころ、Prが2.0mW以上ではそれ以下の場合と信号
の位相が完全に反転すると同時に高いCN比がとれ、P
r=2.4mWでは47.3dBのCN比が得られた。
さらに、隣接トラックに2MHzで記録を行いクロスト
ークを測定したところ、−39dBと低い値が得られ
た。
After recording, measurement was performed while changing the reproducing power Pr without applying a reproducing magnetic field. When Pr was 2.0 mW or more, it was found that the signal phase was completely inverted when the Pr was 2.0 mW or less. High CN ratio at the same time, P
At r = 2.4 mW, a CN ratio of 47.3 dB was obtained.
Furthermore, when recording was performed at 2 MHz on an adjacent track and crosstalk was measured, a low value of -39 dB was obtained.

【0051】比較例1 バイアス層を設けないこと以外は実施例1と同様にして
ディスクを作製した。実施例1と同条件で再生磁場を印
加せず再生パワーPr=2.4mWでCN比を測定した
ところ43.2dBであった。 比較例2 再生層の組成をGd26(Fe80Co2074として、バイ
アス層をもうけなかった以外は実施例1と同様にしてデ
ィスクを作製した。
Comparative Example 1 A disk was produced in the same manner as in Example 1 except that the bias layer was not provided. The CN ratio was 43.2 dB when the CN ratio was measured under the same conditions as in Example 1 without applying the reproducing magnetic field and with the reproducing power Pr = 2.4 mW. Comparative Example 2 A disk was produced in the same manner as in Example 1 except that the reproducing layer was composed of Gd 26 (Fe 80 Co 20 ) 74 and no bias layer was provided.

【0052】再生層のキュリー温度は300℃以上であ
った。また、室温で希土類金属優勢であり、補償温度は
90℃であった。再生層の室温における保磁力は560
00A/mで、カー回転角θk1=0.33、120℃に
おける保磁力は48000A/mで、カー回転角θk2=
0.34であった。
The Curie temperature of the reproducing layer was 300 ° C. or higher. The rare earth metal was dominant at room temperature, and the compensation temperature was 90 ° C. The coercive force of the reproducing layer at room temperature is 560
Kerr rotation angle θk1 = 0.33 at 00 A / m, coercive force at 120 ° C. is 48000 A / m, Kerr rotation angle θk2 =
It was 0.34.

【0053】その後、実施例1と同条件で再生磁場を印
加せず再生パワーPr=2.0mWでCN比を測定した
ところ28dBであった。消去方向に再生磁場を400
00A/m印加して再生を行ったところ46.1dBが
得られた。信号の極性の反転は観察されなかった。さら
に再生磁場40000A/mを印加した状態で実施例1
と同様にしてクロストークの測定を行ったところ−23
dBであった。
After that, when the reproducing magnetic field was not applied under the same conditions as in Example 1 and the CN ratio was measured with the reproducing power Pr = 2.0 mW, it was 28 dB. A reproducing magnetic field of 400 in the erasing direction
When reproduction was performed by applying 00 A / m, 46.1 dB was obtained. No reversal of signal polarity was observed. Further, Example 1 was performed with a reproducing magnetic field of 40000 A / m applied.
Crosstalk was measured in the same manner as in -23.
It was dB.

【0054】比較例3 実施例1で用いたものと同一の基板を用い、保護層とし
て酸化Taを90nm、記録層としてTb21(Fe93
779 を28nm、中間層としてSiNを30nm、
反射層としてAlを40nm設けたディスクを作製し
た。その後、実施例1と同条件で再生磁場を印加せず再
生パワーPr=2.0mWでCN比を測定したところ2
6dBであった。信号の位相の反転は観察されなかっ
た。さらに、実施例1と同様にしてクロストークの測定
を行ったところ−25dBであった。
Comparative Example 3 Using the same substrate as that used in Example 1, 90 nm Ta oxide was used as a protective layer and Tb 21 (Fe 93 C) was used as a recording layer.
o 7 ) 79 is 28 nm, SiN is 30 nm as an intermediate layer,
A disk having Al of 40 nm as a reflective layer was prepared. Then, the CN ratio was measured under the same conditions as in Example 1 without applying a reproducing magnetic field and at a reproducing power Pr = 2.0 mW.
It was 6 dB. No signal phase reversal was observed. Furthermore, when the crosstalk was measured in the same manner as in Example 1, it was -25 dB.

【0055】[0055]

【発明の効果】静磁結合による磁区反転を用いた超解像
光磁気記録媒体に磁界を発生するためのバイアス層を設
ける事によって従来より優れた超解像の効果が得られ
る。
By providing a bias layer for generating a magnetic field in a super-resolution magneto-optical recording medium using magnetic domain inversion by magnetostatic coupling, a super-resolution effect superior to the conventional one can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光磁気記録再生方式の機構説明図FIG. 1 is an explanatory view of a mechanism of a magneto-optical recording / reproducing system of the present invention.

【図2】従来の静磁結合型超解像光磁気記録媒体の機構
説明図
FIG. 2 is an explanatory diagram of a mechanism of a conventional magnetostatic coupling type super-resolution magneto-optical recording medium.

【図3】静磁結合型超解像光磁気記録媒体の平面説明図FIG. 3 is an explanatory plan view of a magnetostatic coupling type super-resolution magneto-optical recording medium.

【符号の説明】[Explanation of symbols]

1 再生層 2 切断層 3 バイアス層 4 記録層 5 交換結合力 6 静磁結合力 7 記録磁区 8 高温部(反転部) 9 再生スポット 10 再生スポットの移動方向 11 トラック 1 reproducing layer 2 cutting layer 3 bias layer 4 recording layer 5 exchange coupling force 6 magnetostatic coupling force 7 recording magnetic domain 8 high temperature part (reversal part) 9 reproducing spot 10 reproducing spot moving direction 11 track

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも希土類金属と遷移金属よりなる
再生層、切断層、バイアス層、記録層の4層よりなる互
いに交換結合した磁性層が基板上に設けられており、再
生層、切断層、バイアス層、記録層のキュリー温度を各
々Tc1、Tc2、Tc3、Tc4としたときに、Tc1、Tc2、
Tc3、Tc4は50℃以上であり、且つ 【数1】Tc1>Tc2、Tc3>Tc2、Tc4>Tc2 という関係を満たし、磁性層は再生光による加熱によっ
てTc2近傍もしくはそれ以上の温度に加熱された際、記
録層と再生層の間の交換結合力が減少するかあるいは無
くなり、その結果、高温部分において再生層の副格子磁
化がその部分の低温時の方向に対して反転する光磁気記
録媒体であって、Tc2においてバイアス層は記録層と交
換結合をなしており、かつ記録層と比べて大きい体積磁
化率を有することを特徴とする光磁気記録媒体。
1. A magnetic layer, which is composed of at least a reproducing layer, a cutting layer, a bias layer, and a recording layer, which are composed of at least a rare earth metal and a transition metal, and which are exchange-coupled to each other, is provided on a substrate. When the Curie temperatures of the bias layer and the recording layer are Tc1, Tc2, Tc3, and Tc4, respectively, Tc1, Tc2,
Tc3 and Tc4 are 50 ° C. or higher, and the following relationships are satisfied: Tc1> Tc2, Tc3> Tc2, Tc4> Tc2, and the magnetic layer is heated to a temperature near Tc2 or higher by heating with reproducing light. At this time, in the magneto-optical recording medium, the exchange coupling force between the recording layer and the reproducing layer decreases or disappears, and as a result, the sub-lattice magnetization of the reproducing layer in the high temperature portion is reversed with respect to the direction of the low temperature portion. The magneto-optical recording medium is characterized in that the bias layer is exchange-coupled with the recording layer at Tc2 and has a larger volume magnetic susceptibility than the recording layer.
【請求項2】 Tc2において記録層が希土類金属の磁化
が優勢である場合は、バイアス層が遷移金属の磁化が優
勢であり、再生層が遷移金属の磁化が優勢である場合
は、バイアス層が希土類金属の磁化が優勢である請求項
1に記載の光磁気記録媒体。
2. At Tc2, when the recording layer is predominantly magnetized by a rare earth metal, the bias layer is predominantly magnetized by a transition metal, and when the reproducing layer is predominantly magnetized by a transition metal, the bias layer is The magneto-optical recording medium according to claim 1, wherein the rare earth metal is predominantly magnetized.
【請求項3】 請求項1に記載の光磁気記録媒体を用
い、少なくとも再生部分の一部の再生層の副格子磁化が
反転する強度の再生光を照射し、16000A/m以下
の再生磁界を印加するか、あるいは再生磁界を印加しな
い状態で再生を行うことを特徴とする光磁気記録媒体の
再生方法。
3. The magneto-optical recording medium according to claim 1, which is irradiated with reproducing light having an intensity at which the sub-lattice magnetization of at least a part of the reproducing layer of the reproducing portion is inverted to generate a reproducing magnetic field of 16000 A / m or less. A reproducing method for a magneto-optical recording medium, which is characterized in that reproduction is carried out with or without applying a reproducing magnetic field.
JP5352694A 1993-11-24 1994-03-24 Magneto-optical recording medium and rproducing method for same Pending JPH07262632A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5352694A JPH07262632A (en) 1994-03-24 1994-03-24 Magneto-optical recording medium and rproducing method for same
EP94118208A EP0654786B1 (en) 1993-11-24 1994-11-18 Magneto-optical recording medium and a method of reading-out the same
DE69430099T DE69430099T2 (en) 1993-11-24 1994-11-18 Magneto-optical recording medium and method for reading the same
US08/343,007 US5621706A (en) 1993-11-24 1994-11-21 Method and apparatus for magnetic super-resolution recording
TW083110880A TW300303B (en) 1993-11-24 1994-11-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5352694A JPH07262632A (en) 1994-03-24 1994-03-24 Magneto-optical recording medium and rproducing method for same

Publications (1)

Publication Number Publication Date
JPH07262632A true JPH07262632A (en) 1995-10-13

Family

ID=12945263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5352694A Pending JPH07262632A (en) 1993-11-24 1994-03-24 Magneto-optical recording medium and rproducing method for same

Country Status (1)

Country Link
JP (1) JPH07262632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678219B1 (en) 1999-11-02 2004-01-13 Sharp Kabushiki Kaisha Magneto-optical recording medium having a magnetic flux formed layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678219B1 (en) 1999-11-02 2004-01-13 Sharp Kabushiki Kaisha Magneto-optical recording medium having a magnetic flux formed layer

Similar Documents

Publication Publication Date Title
JPS60177455A (en) Photomagnetic recording medium for curie point writing
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
JP2000163815A (en) Magneto-optical recording medium, reproducing device and reproduction method
JPH02158938A (en) Magneto-optical recording medium and recording method
JP2000173117A (en) Magneto-optical recording medium and reproducing device
JPH07262632A (en) Magneto-optical recording medium and rproducing method for same
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
JP2929918B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2985641B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH07262631A (en) Magneto-optical recording medium and reproducing method for same
JPH11238264A (en) Magneto-optical record medium and its reproducing method
JP3355759B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2001126327A (en) Magneto-optical recording medium
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
JPH08212607A (en) Magneto-optical recording medium
JPH06309710A (en) Magneto-optical recording medium
JP2000173116A (en) Magneto-optical recording medium and reproducing device
JPH07147033A (en) Recording and reproducing method of magneto-optical recording medium
JP3592399B2 (en) Magneto-optical recording medium
JPH07334880A (en) Magneto-optical recording medium and reproducing method therefor
JPH0757316A (en) Magneto-optical recording medium and recording and reproducing method therefor
JPH0676405A (en) Magneto-optical recording medium and recording method for this medium
JPH11154359A (en) Magneto-optical recording medium
JPH09293285A (en) Magneto-optical recording medium and its reproducing method