JPH07262173A - Quasi optimization method for scheduling problem - Google Patents

Quasi optimization method for scheduling problem

Info

Publication number
JPH07262173A
JPH07262173A JP9043294A JP9043294A JPH07262173A JP H07262173 A JPH07262173 A JP H07262173A JP 9043294 A JP9043294 A JP 9043294A JP 9043294 A JP9043294 A JP 9043294A JP H07262173 A JPH07262173 A JP H07262173A
Authority
JP
Japan
Prior art keywords
solution
constraint
penalty
constraint condition
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9043294A
Other languages
Japanese (ja)
Inventor
Takahiko Suzuki
貴彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP9043294A priority Critical patent/JPH07262173A/en
Publication of JPH07262173A publication Critical patent/JPH07262173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To decide a production process schedule in a comparatively short time and to find a solution satisfied by a planner i.e., a quasi optimization solution by evading the nonexistence of the solution by performing self adjustment by varying the constraint condition of the production process schedule. CONSTITUTION:For example, in a manufacturing system of cement, a cement clinker from a calcining system 1 is stored transiently in an intermediate silo 2, and after it is milled in a milling system 3 with gypsum, cement as a final product is sent out from a product silo 4 to shipping equipment 5. In such a case, a state in which a targeted soultion can be obtained by clearing the constraint condition is generated when unmatching occurs between input data and the constraint condition. Therefore, a penalty constant and a penalty variable to relax the limiting value of a constraint equation are added. In this way, it is possible to set a state to which constraint condition importance should be given depending on the value of the penalty constant, and simultaneously, the solution of a linear programming problem is outputted by performing the self adjustment by supplying the excess share of a constraint value as the penalty variable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線形計画法を用いたス
ケジューリング問題の準最適化方法に関する。この明細
書で言う計画とは資源の分配計画、生産工程計画、装置
の配置計画等、計画一般を含むものであるが、以下説明
の便宜のため、例として生産工程計画について説明す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-optimization method for a scheduling problem using linear programming. The plan referred to in this specification includes general plans such as a resource distribution plan, a production process plan, and a device arrangement plan, but for convenience of description, the production process plan will be described as an example.

【0002】[0002]

【従来の技術】生産工程計画では、与えられた生産量を
限られた処理能力によって、たとえばなるべく生産コス
トを最小とするように資源を配分する計画を決定しなけ
ればならず、従来はオペレータの経験と簡単な計算から
運転スケジュールを決定していた。その目的のため線形
計画を用いられていることはよく知られている所であ
る。しかし、大規模かつ複雑な生産工程においては、線
形計画法の目的関数の中の決定変数が多種類となり、制
約条件との関係から解の数が極めて多くなり、線形計画
法だけに依存して大規模な生産工程計画を決定すること
が困難であることも従来よく知られている。また、この
ような生産工程計画を決定することに分枝限定法を適用
することが従来から試みられている。分枝限定法は優越
関係と上下界値の2つに分けられることができる。優越
関係は、処理する仕事の順序関係を示すもので、これに
より解の候補を減らすことができ、多数の解の中から有
効であると考えられる解を取り出して計画を行うもので
ある。又、上下界値は解の評価値の上界値、下界値であ
り、これらの値を基に同様に解の候補を減らすことがで
きる。
2. Description of the Related Art In a production process plan, it is necessary to decide a plan for allocating resources so that a given production amount can be minimized with a limited processing capacity. The operation schedule was decided based on experience and simple calculation. It is well known that linear programming is used for that purpose. However, in a large-scale and complicated production process, there are many types of decision variables in the objective function of the linear programming method, and the number of solutions becomes extremely large due to the relation with the constraint conditions. It is well known that it is difficult to determine a large-scale production process plan. Further, it has been attempted to apply the branch and bound method to determine such a production process plan. The branch and bound method can be divided into two types: superiority relation and upper and lower bounds. The superiority relationship indicates the order relationship of the jobs to be processed, and by doing so, the number of solution candidates can be reduced, and a solution considered to be effective is extracted from a large number of solutions for planning. Further, the upper and lower bounds are the upper bound and the lower bound of the evaluation value of the solution, and the number of solution candidates can be similarly reduced based on these values.

【0003】[0003]

【発明が解決しようとする課題】生産工程計面を決定す
る方法は以上に説明したとおりであるが、線形計画法を
用いる上での問題点として、計算の結果、実行可能解が
存在しない場合(すべての制約条件を満たし切れない場
合)が生じることである。このような場合、従来では、
制約式の修正を行い実行可能解が存在するまで繰り返し
計算を行っていた。そのため、実用的な時間内に適当な
解を得られない場合が多くなるという問題点があった。
The method for determining the production process profile is as described above. However, a problem in using the linear programming method is that there is no feasible solution as a result of calculation. (When all constraints cannot be met). In such cases, conventionally,
The constraint formula was modified and the calculation was repeated until a feasible solution existed. Therefore, there is a problem that an appropriate solution is often not obtained within a practical time.

【0004】また、線形計画法を用いず、オペレータの
経験と簡単な計算から運転スケジュールを決定している
場合もあり、このような場合には、目的関数を満足する
計画立案が困難になるという問題点があった。
In some cases, the operation schedule is determined based on the experience of the operator and a simple calculation without using the linear programming method. In such a case, it is difficult to make a plan satisfying the objective function. There was a problem.

【0005】この発明は上記のような問題点を解決する
ためになされたもので、生産工程計画が比較的短時間の
間に決定され、かつ計画者が満足できる解即ち準最適解
を求めることが可能となスケジューリング問題の準最適
化方法を提供することを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and it is necessary to determine a production process plan in a relatively short time and to obtain a solution which is satisfactory to the planner, that is, a suboptimal solution. The goal is to provide a semi-optimization method for the scheduling problem.

【0006】[0006]

【課題を解決するための手段】生産工程計画の各制約条
件には隘路となるものがあり、その制約条件を可変にし
自己調整させることにより解の非存在を回避することで
生産工程計画の決定を効率よく行うことにした。
[Means for solving the problems] Each constraint condition of the production process plan is a bottleneck, and the production process plan is determined by avoiding the absence of a solution by making the constraint condition variable and self-adjusting. Decided to do efficiently.

【0007】[0007]

【作用】線形計画問題の計算は、実用的な時間内に適当
な解を見つけることが可能となるので、生産工程計画立
案作業が比較的短時間の間に行える。また、必ず解を見
つけだすことが可能となるので、制約式の修正を行い実
行可能解が存在するまで繰り返し計算を行う必要がなく
なり、計画者が満足できる解を求めることが可能とな
る。
In the calculation of the linear programming problem, an appropriate solution can be found within a practical time, so that the production process planning work can be performed in a relatively short time. In addition, since it is possible to always find a solution, it is not necessary to modify the constraint formula and repeatedly calculate until a feasible solution exists, and the planner can obtain a satisfactory solution.

【0008】[0008]

【実施例】以下図面を参照しながら本発明の実施例をセ
メントの製造システムを例にとって説明する。図1は本
発明が適用されるセメントの製造システムのブロック図
である。同図に示すように、焼成系列1からのセメント
クリンカが中間品サイロ2に一時蓄えられ、粉砕系列3
で石膏と共に粉砕された後、最終製品としてのセメント
が製品サイロ4から出荷設備5に送出される。
Embodiments of the present invention will now be described with reference to the drawings, taking a cement manufacturing system as an example. FIG. 1 is a block diagram of a cement manufacturing system to which the present invention is applied. As shown in the figure, the cement clinker from the firing series 1 is temporarily stored in the intermediate product silo 2, and the crushing series 3
After being crushed together with gypsum in, cement as a final product is sent from the product silo 4 to the shipping facility 5.

【0009】かかる構成において、出荷設備5からセメ
ント出荷量D2tが要求されているものとし、この場合
の供給電力量がEの範囲で変動する電力コストを最小
にするようなスケジューリング問題について以下説明す
る。
In such a configuration, it is assumed that the shipment amount of cement D 2t is requested from the shipping facility 5, and the scheduling problem that minimizes the power cost in which the supplied power amount fluctuates within the range of E ∧ is as follows. explain.

【0010】時間区間t=1〜Pでのセメント製造工程
における電力配分量を決定するスケジュール問題を線形
計画問題に定式化すると、例として通常以下のようにな
る。先ず、変数としては、 電力配分量:Eft (f=1〜N,t=1〜P) が挙げられる。定数としては、 電力コスト係数:C 配合係数:H 生産係数:A 中間品初期在庫:L10 中間品生産量:Y セメント製品初期在庫:L20 セメント製品出荷量:D2t 中間品サイロ上下限:M1max,M1min 製品サイロ上下限:M2max,M2min 等が挙げられる。
When the schedule problem for determining the amount of electric power distribution in the cement manufacturing process in the time interval t = 1 to P is formulated into a linear programming problem, it is usually as follows as an example. First, as a variable, the power distribution amount: E ft (f = 1 to N, t = 1 to P) can be mentioned. Electric power cost coefficient: Ct mix coefficient: H Production coefficient: A f Intermediate product initial stock: L 10 Intermediate product production: Y t Cement product initial stock: L 20 Cement product shipment: D 2t Intermediate product silo upper and lower limit: M 1max, M 1min product silo on the lower limit: M 2max, M 2min and the like.

【0011】目的関数は数1、制約条件としては、使用
電力制限が数2、中間品サイロ上下限制約が数3、セメ
ント製品サイロ上下限制約が数4、中間品サイロモデル
が数5、セメント製品サイロモデルが数6で示される。
The objective function is equation 1, the constraint conditions are power consumption limitation 2, equation 3 silo upper and lower limit constraint, cement product silo upper and lower constraint equation 4, intermediate product silo model equation 5, cement The product silo model is shown in Eq.

【0012】[0012]

【数1】 [Equation 1]

【0013】[0013]

【数2】 [Equation 2]

【0014】[0014]

【数3】 [Equation 3]

【0015】[0015]

【数4】 [Equation 4]

【0016】[0016]

【数5】 [Equation 5]

【0017】[0017]

【数6】 [Equation 6]

【0018】このように定式化した線形計画問題におい
て、入力データと制約条件との不整合が発生し、目的と
する最適解が存在しない場合が生じる。すなわち、前記
数2〜数6に示す制約条件を越えなければ解が得られな
い事態が生じる。これに対し、以下のような変更(追加
等)を行うことによって、本発明を適用した線形計画問
題に定式化できる。
In the linear programming problem formulated as described above, inconsistency between the input data and the constraint condition may occur, and the target optimum solution may not exist. That is, a situation occurs in which a solution cannot be obtained unless the constraint conditions shown in the equations 2 to 6 are exceeded. On the other hand, the linear programming problem to which the present invention is applied can be formulated by making the following changes (additions, etc.).

【0019】本開発では、制約式の制限値(上限値、下
限値等)を緩和させるための定数(ペナルティ定数と呼
ぶ):a、b、c、d、eと緩和させるための変数(ペ
ナルティ変数と呼ぶ):α、β、δ、ζ、θを追加す
る。目的関数は数7、制約条件としては、使用電力制限
が数8、中間品サイロ上下限制約が数9、セメント製品
サイロ上下限制約が数10、中間品サイロモデルが数1
1、セメント製品サイロモデルが数12となる。
In the present development, constants (referred to as penalty constants) for relaxing the limit values (upper limit value, lower limit value, etc.) of the constraint equation: a, b, c, d, e and variables for reducing (penalty constant). Called variables): Add α, β, δ, ζ, θ. The objective function is Eq. 7, the power consumption limit is Eq. 8, the intermediate product silo upper / lower limit constraint is Eq. 9, the cement product silo upper / lower limit constraint is Eq. 10, and the intermediate product silo model is Eq.
1. The number of cement product silo models is 12.

【0020】[0020]

【数7】 [Equation 7]

【0021】[0021]

【数8】 [Equation 8]

【0022】[0022]

【数9】 [Equation 9]

【0023】[0023]

【数10】 [Equation 10]

【0024】[0024]

【数11】 [Equation 11]

【0025】[0025]

【数12】 [Equation 12]

【0026】このように定式化した本発明において、ペ
ナルティ定数:a、b、c、d、e及びペナルティ変
数:α、β、δ、ζ、θが、この線形計画問題に対して
与える作用は、ペナルティ定数の設定によって異なって
くる。つまり、ペナルティ定数とペナルティ変数を含ん
だ目的関数(数7)が、ペナルティ変数を含んだ制約条
件(数8〜数10)を満たしながら最小化されるので、
ペナルティ定数を非常に大きな値に設定すると、そのペ
ナルティ定数を含んだ制約条件はペナルティ定数を大き
くした分だけ縛られる。したがって、その制約条件で使
用されるペナルティ変数は、ペナルティ定数を大きくす
ればするほどできるだけ小さな値を取らざるを得なくな
る。
In the present invention thus formulated, the action of the penalty constants: a, b, c, d, e and the penalty variables: α, β, δ, ζ, θ on the linear programming problem is , It depends on the setting of the penalty constant. That is, since the objective function (Equation 7) including the penalty constant and the penalty variable is minimized while satisfying the constraint condition (Equation 8 to 10) including the penalty variable,
When the penalty constant is set to a very large value, the constraint condition including the penalty constant is bound by the increased penalty constant. Therefore, the penalty variable used in the constraint condition has to take the smallest possible value as the penalty constant increases.

【0027】要するに、ペナルティ定数とペナルティ変
数と線形計画問題との関係をまとめていうと、ペナルテ
ィ定数の設定値をどう取るかによってどの制約条件に重
みをおくか設定することができると同時に、制約条件の
制約値の超過分をペナルティ変数として与え、自己調整
させることにより線形計画問題の解を出力する。こうし
て、コストは制約条件の制限値を超過した分だけ増加す
るものの、実行可能解を見つけスケジューリングのデー
タとして取り込むことができる。
In summary, the relation among the penalty constant, the penalty variable, and the linear programming problem can be summarized as follows. It is possible to set which constraint condition should be weighted depending on how the set value of the penalty constant is taken, and at the same time, the constraint condition can be set. The excess of the constraint value of is given as a penalty variable and self-adjusted to output the solution of the linear programming problem. In this way, although the cost increases by the amount exceeding the limit value of the constraint condition, it is possible to find a feasible solution and capture it as scheduling data.

【0028】次に、従来の数1〜数6に示す定式化と本
発明の数7〜数12に示す定式化に準じて、計画立案ま
での処理の流れを図2及び図3に示す。データ入力6、
12から計画立案11、15までの処理において、従来
例では線形計画問題7を解く上で上述したように必ずし
も実行可能解10が存在するとは限らず、実行可能解が
無い場合8には再度制約式の修正9などの検討が必要と
なる。それが本発明においては、線形計画問題の計算1
3で、前記数8〜数10に示す制約式の上限値もしくは
下限値に超過を許す変数を加え、その超過分のペナルテ
ィ定数倍を数7に示す目的関数式に加え込んでいる。ま
たこの線形計画問題例は目的関数値を最小化する問題で
あるので、制約条件を満たしながら尚かつできるだけ最
小にするように計算がなされる。この方法により既定の
上限値もしくは下限値で制約条件を満たす場合にはペナ
ルティ変数に値は入らず、既定の上限値もしくは下限値
を超過させなければ制約条件を満たさない場合にはペナ
ルティ変数に値が入り、目的関数値は大きくなるが必ず
実行可能解14を導き出すこととなる。
2 and 3 show the flow of processing up to planning in accordance with the conventional formulations shown in Formulas 1 to 6 and the formulations shown in Formulas 7 to 12 of the present invention. Data input 6,
In the processing from 12 to the planning 11 and 15, in the conventional example, the feasible solution 10 does not always exist as described above in solving the linear programming problem 7, and when there is no feasible solution, the constraint is re-constrained in the case of 8. It is necessary to consider the modification 9 of the formula. That is, in the present invention, calculation of linear programming problem 1
In step 3, a variable that allows an excess is added to the upper limit value or the lower limit value of the constraint equations shown in the equations 8 to 10, and a penalty constant multiple of the excess is added to the objective function equation shown in the equation 7. Further, since this example of the linear programming problem is a problem that minimizes the objective function value, the calculation is performed so as to satisfy the constraint condition and also minimize it. By this method, the penalty variable does not have a value when the constraint condition is satisfied with the default upper limit value or the lower limit value, and the penalty variable is value when the constraint condition is not satisfied unless the default upper limit value or the lower limit value is exceeded. And the objective function value becomes large, but the feasible solution 14 is always derived.

【0029】この発明は最大化問題においても同様に、
ペナルティの値を目的関数値から差し引くことにより適
用できる。又、セメント生産計画に限らず、各種のスケ
ジューリング問題に適用できることは言うまでもない。
The invention also applies to the maximization problem,
It can be applied by subtracting the penalty value from the objective function value. Needless to say, the present invention can be applied to various scheduling problems, not limited to cement production planning.

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、線
形計画問題を他システムとの連動で解く大規模なスケジ
ューリングシステムを動かし処理する場合に、必ず実行
可能解を導き出す方法を用いているため、計算時間やシ
ステムの一貫性の点ですぐれている。
As described above, according to the present invention, when a large-scale scheduling system that solves a linear programming problem by linking with another system is operated and processed, a method that always derives an feasible solution is used. Therefore, it is superior in terms of calculation time and system consistency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する線形計画問題例の処理工程を
示す図である。
FIG. 1 is a diagram showing the processing steps of an example linear programming problem embodying the present invention.

【図2】従来の計画立案までの処理の流れを示す図であ
る。
FIG. 2 is a diagram showing a flow of processing up to conventional planning.

【図3】本発明の計画立案までの処理の流れを示す図で
ある。
FIG. 3 is a diagram showing a flow of processing up to planning of the present invention.

【符号の説明】[Explanation of symbols]

1 焼成系列 2 中間品サイロ 3 粉砕系列 4 製品サイロ 5 出荷設備 6 データ入力 7 線形計画問題の計算 8 実行可能解(無) 9 制約式の修正 10 実行可能解(有) 11 計画立案 12 データ入力 13 線形計画問題の計算 14 実行可能解(有) 15 計画立案 1 Firing series 2 Intermediate product silo 3 Grinding series 4 Product silo 5 Shipping facility 6 Data input 7 Calculation of linear programming problem 8 Feasible solution (none) 9 Correction of constraint equation 10 Feasible solution (yes) 11 Planning 12 Data input 13 Calculation of linear programming 14 Feasible solution (Yes) 15 Planning

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複雑な運転形態を様相する大規模なスケジ
ューリング問題において、各種の制約条件を線形計画問
題に定式化するに当たり、制約条件を可変にし自己調整
させることにより解の非存在を回避することを特徴とす
るスケジューリング問題の準最適化方法。
1. In a large-scale scheduling problem having a complex operation pattern, when various constraints are formulated into a linear programming problem, the constraints are made variable and self-adjusted to avoid the absence of a solution. A sub-optimization method for scheduling problems characterized by the following.
【請求項2】制約条件の制限値を緩和する変数を制約式
に加えると共に、加えた変数に対応したペナルティ相当
分を目的関数に付加することにより、線形計画問題に定
式化することを特徴とする請求項1記載のスケジューリ
ング問題の準最適化方法。
2. A linear programming problem is formulated by adding a variable that relaxes the limit value of the constraint condition to the constraint expression and adding a penalty equivalent to the added variable to the objective function. A sub-optimization method for a scheduling problem according to claim 1.
JP9043294A 1994-03-24 1994-03-24 Quasi optimization method for scheduling problem Pending JPH07262173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9043294A JPH07262173A (en) 1994-03-24 1994-03-24 Quasi optimization method for scheduling problem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9043294A JPH07262173A (en) 1994-03-24 1994-03-24 Quasi optimization method for scheduling problem

Publications (1)

Publication Number Publication Date
JPH07262173A true JPH07262173A (en) 1995-10-13

Family

ID=13998455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9043294A Pending JPH07262173A (en) 1994-03-24 1994-03-24 Quasi optimization method for scheduling problem

Country Status (1)

Country Link
JP (1) JPH07262173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004414A (en) * 2004-05-18 2006-01-05 Kobe Steel Ltd Production plan generation method, production plan generation device and program
JP2013143030A (en) * 2012-01-11 2013-07-22 Nippon Steel & Sumitomo Metal Operation schedule preparation method of steel making processes, operation schedule preparation system of the same, operation method of the same and manufacturing method of steel material
CN104573882A (en) * 2015-02-11 2015-04-29 上海宝钢节能环保技术有限公司 Comprehensive optimization method for clean circulating cooling water system based on hierarchical nested algorithm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004414A (en) * 2004-05-18 2006-01-05 Kobe Steel Ltd Production plan generation method, production plan generation device and program
JP2013143030A (en) * 2012-01-11 2013-07-22 Nippon Steel & Sumitomo Metal Operation schedule preparation method of steel making processes, operation schedule preparation system of the same, operation method of the same and manufacturing method of steel material
CN104573882A (en) * 2015-02-11 2015-04-29 上海宝钢节能环保技术有限公司 Comprehensive optimization method for clean circulating cooling water system based on hierarchical nested algorithm

Similar Documents

Publication Publication Date Title
Pinto et al. A continuous time mixed integer linear programming model for short term scheduling of multistage batch plants
Hoogeveen Single-machine scheduling to minimize a function of two or three maximum cost criteria
Castro et al. Discrete and continuous-time formulations for dealing with break periods: Preemptive and non-preemptive scheduling
Lo CNC machine tool surface interpolator for ball-end milling of free-form surfaces
JPH07262173A (en) Quasi optimization method for scheduling problem
JP2002222008A (en) Numerically controlled curved surface processing device
CN110347038B (en) Two-degree-of-freedom Smith estimation control method in cement clinker cooling process
Ammar Float analysis of non‐serial repetitive activities
Sanches et al. Evaluation of heuristics for a branch and bound algorithm to minimize the makespan in a flowshop with blocking
Pratsini et al. Effect of process learning on manufacturing schedules
JPH05108649A (en) Production/physical distribution schedule generating device
Niedermeier et al. Energy supply aware power planning for flexible loads
CN113033923B (en) Method for predicting, evaluating and optimizing cement clinker performance, device and system thereof
TWI741760B (en) Learning based resource allocation method, learning based resource allocation system and user interface
CN116167505B (en) Method and system for cutting steel bar sleeve
KR102487325B1 (en) Scheculing system of abrasive particle for semiconductor and the method thereof
JPH0934715A (en) Combination optimizing processing method
Castroa et al. Discrete and continuous-time formulations for dealing with breaks: preemptive and non-preemptive scheduling
Bautista Valhondo et al. Solving the ORVP with preservation of the production mix using BDP.
JPH0785153A (en) Method and device for correcting process plan
JP6801562B2 (en) Planning equipment, planning methods, and programs
Zhang et al. A decomposition and coordination scheduling method for flow-shop problem based on TOC
Prada et al. Problems of production lines in parallel machines with lapses: Mathematical modelling
Liu et al. Non-Sequential Linear Construction Project Scheduling Model for Minimizing Idle Equipment Using Constraint Programming (CP). Mathematics 2021, 9, 2492
CN113033923A (en) Method, device and system for predicting, evaluating and optimizing performance of cement clinker