JPH07261181A - Production of liquid crystal display device - Google Patents

Production of liquid crystal display device

Info

Publication number
JPH07261181A
JPH07261181A JP6046810A JP4681094A JPH07261181A JP H07261181 A JPH07261181 A JP H07261181A JP 6046810 A JP6046810 A JP 6046810A JP 4681094 A JP4681094 A JP 4681094A JP H07261181 A JPH07261181 A JP H07261181A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6046810A
Other languages
Japanese (ja)
Inventor
Katsumi Kondo
克己 近藤
Hisao Yokokura
久男 横倉
Masato Oe
昌人 大江
Sukekazu Araya
介和 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6046810A priority Critical patent/JPH07261181A/en
Publication of JPH07261181A publication Critical patent/JPH07261181A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a liquid crystal display device which is increased in tolerance for contamination of liquid crystals and orientation process and is free from unequal display by combining a transverse electric field system and a polymer for which a low heating temp. after applying is enough and is soluble in a solvent with active matrix elements such as thin-film transistor element. CONSTITUTION:The matrix elements are formed by having scanning electrodes 12, common electrodes 1, signal electrodes 3 intersecting with the scanning electrodes 12, active elements and pixel electrodes 4 on one substrate of a pair of substrates constituting a cell and arranging the pixel electrodes 4 and the common electrodes 1 so as to impress electric fields parallel with the substrate planes mainly on the liquid crystals. A soln. of a polymer soluble in the solvent is applied on such substrates. The solvent in the soln. of the polymer is then removed to impart liquid crystal orientability to the surfaces of the polymer. The cell is assembled by disposing a pair of the substrates having the liquid crystal molecule orientability on the surfaces via the sealing part formed in the peripheral parts of the substrates in such a manner that the surfaces having the liquid crystal molecule orientability face each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表示むらのない高画質
のアクティブマトリクス型液晶表示装置の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an active matrix type liquid crystal display device having high image quality without display unevenness.

【0002】[0002]

【従来の技術】従来のアクティブマトリクス型液晶表示
装置では、液晶層を駆動する電極としては2枚の基板界
面上に形成し相対向させた透明電極を用いていた。これ
は、液晶に印加する電界の方向を基板界面にほぼ垂直な
方向とすることで動作する、ツイステッドネマチック表
示方式に代表される表示方式(以後縦電界方式と呼ぶ)
を採用していることによる。一方、液晶に印加する電界
の方向を基板界面にほぼ平行な方向とする方式(以後横
電界方式と呼ぶ)として、櫛歯電極対を用いた方式が、
例えば特公昭63−21907 号公報により提案されている
が、表示装置としては実用化されていない。
2. Description of the Related Art In a conventional active matrix type liquid crystal display device, transparent electrodes, which are formed on the interface between two substrates and face each other, are used as electrodes for driving a liquid crystal layer. This is a display method typified by a twisted nematic display method (hereinafter referred to as a vertical electric field method) that operates by making the direction of the electric field applied to the liquid crystal substantially perpendicular to the substrate interface.
By adopting. On the other hand, as a method of setting the direction of the electric field applied to the liquid crystal to a direction substantially parallel to the substrate interface (hereinafter referred to as lateral electric field method), a method using a comb-teeth electrode pair is used.
For example, it is proposed by Japanese Patent Publication No. 63-21907, but it has not been put to practical use as a display device.

【0003】[0003]

【発明が解決しようとする課題】従来の縦電界方式を用
いたアクティブマトリクス型液晶表示装置では、縦電界
方式を用いたことによる以下のような数々の問題が生
じ、その結果表示むらのない高画質の液晶表示装置を得
ることが困難であった。
In the conventional active matrix type liquid crystal display device using the vertical electric field system, the following various problems occur due to the use of the vertical electric field system, and as a result, high display without display unevenness is achieved. It was difficult to obtain a liquid crystal display device of high image quality.

【0004】(1)界面の精密な制御 縦電界方式と薄膜トランジスタのような微細なアクティ
ブマトリクス素子を組み合わせると、界面状態の僅かな
変動が表示むらを引き起こす。例えば、配向膜の表面状
態が変動すると液晶分子長軸と界面とのなす角(傾き
角)も変動し、それにより電圧印加に対する液晶の応答
性が変わり明るさが変わる。
(1) Precise control of interface When a vertical electric field system is combined with a fine active matrix device such as a thin film transistor, a slight variation in interface state causes display unevenness. For example, when the surface condition of the alignment film changes, the angle (tilt angle) formed by the long axis of the liquid crystal molecule and the interface also changes, which changes the response of the liquid crystal to voltage application and changes the brightness.

【0005】配向膜の表面状態は配向膜形成プロセス条
件に微妙に依存し、プロセス条件の厳密なコントロール
が要求されている。例えば、ポリイミド配向膜の場合、
基板上に低分子量のポリイミド前駆体溶液を塗布した
後、順次加熱することにより溶剤の乾燥に加えて、重合
反応の促進により高分子量の緻密で均一な表面状態を有
する膜が形成される。特に重合反応促進のための加熱温
度は例えば200℃以上と非常に高い。この際、この高
温の加熱条件が変動すると、傾き角が設計値からずれ
て、むらを引き起こす。傾き角は加熱温度だけではな
く、ラビング条件にも依存する。一般に、ラビング強度
が高いと傾き角は低下する傾向にあるが、その変動の度
合いは使用する配向膜材料やラビングによる配向膜表面
の汚染等にも依存する。傾き角は以下の理由により、高
すぎても低すぎても良くない。例えば、傾き角が設計値
よりも低くなった場合、特に画素端部の配線等の存在に
より段差が生じている部分において配向不良ドメインが
生じ、著しくコントラスト比が低下してしまう。逆に、
傾き角が設計値よりも高くなった場合、傾き角の均一性
を保つことが困難になり、輝度むらが発生する。現状で
は量産的には4度程度の均一な傾き角を得るために、使
用する材料を厳しく吟味し、その上で加熱プロセス,ラ
ビングプロセス等厳しく制御されているが、表示むらは
皆無になってはいない。
The surface state of the alignment film is slightly dependent on the process conditions for forming the alignment film, and strict control of the process conditions is required. For example, in the case of a polyimide alignment film,
After a low-molecular-weight polyimide precursor solution is applied on a substrate, it is sequentially heated to dry the solvent, and a film having a high molecular weight and a dense and uniform surface state is formed by promoting the polymerization reaction. In particular, the heating temperature for promoting the polymerization reaction is extremely high, for example, 200 ° C. or higher. At this time, if the high-temperature heating condition changes, the tilt angle deviates from the designed value, causing unevenness. The tilt angle depends not only on the heating temperature but also on the rubbing conditions. Generally, when the rubbing strength is high, the inclination angle tends to decrease, but the degree of the fluctuation depends on the alignment film material used and the contamination of the alignment film surface due to rubbing. The tilt angle is not good either too high or too low for the following reasons. For example, when the tilt angle is lower than the design value, an alignment defect domain is generated particularly in a portion where a step is generated due to the presence of wiring or the like at the pixel end, and the contrast ratio is significantly reduced. vice versa,
When the tilt angle becomes higher than the design value, it becomes difficult to maintain the uniformity of the tilt angle, and uneven brightness occurs. Currently, in mass production, in order to obtain a uniform tilt angle of about 4 degrees, the materials to be used are carefully examined, and then the heating process, rubbing process, etc. are strictly controlled, but there is no display unevenness. There isn't.

【0006】(2)液晶の高純度の維持 縦電界方式と薄膜トランジスタのような微細なアクティ
ブマトリクス素子を組み合わせる場合に考慮すべき他の
物性は、液晶組成物材料の純度であり、その値は1013
Ω・cm以上と極めて高い値を維持することが不可欠であ
る。これは、画素に電荷を供給し、情報を表示する際に
ため込んだ電荷を少なくとも次の情報信号が供給される
まで保持しなくてはならないという駆動原理からの要請
による。一般に、この期間(1フレーム期間と称する)
内にどの程度電荷が保持されるかという度合いを、1フ
レーム期間内の輝度の保たれる割合で定義し電圧保持率
として表している。この電圧保持率は液晶の純度に極め
て敏感であり、そのため、液晶組成物材料を構成する化
合物もフッ素系の化合物群の中のほんの一部に限定され
ているのが現状である。また、配向膜材料に対する制約
も大きい。すなわち、もし液晶に直接接触する配向膜材
料そのものの純度が低い場合、セル形成後に徐々に液晶
組成物材料が汚染され、電圧保持率が著しく低下し、か
つその低下の度合いが場所によって分布し、均一な表示
が得られなくなる。現状では液晶汚染に対し使用設備の
クリーン化等により最大限の注意を払っているが、電圧
保持率は100%ではなく、表示むらは皆無にはなって
いない。
(2) Maintaining high purity of liquid crystal Another physical property to be considered when combining a vertical electric field system and a fine active matrix device such as a thin film transistor is the purity of the liquid crystal composition material, and its value is 10. 13
It is essential to maintain an extremely high value of Ω · cm or more. This is because of the driving principle that charges must be supplied to the pixels and the charges accumulated when displaying information must be retained at least until the next information signal is supplied. Generally, this period (called one frame period)
The degree to which electric charges are retained inside is defined as a voltage retention rate, which is defined as a rate at which luminance is maintained within one frame period. This voltage holding ratio is extremely sensitive to the purity of the liquid crystal, and therefore the compounds constituting the liquid crystal composition material are currently limited to only a part of the fluorine-based compound group. In addition, there are great restrictions on the alignment film material. That is, if the purity of the alignment film material itself that is in direct contact with the liquid crystal is low, the liquid crystal composition material is gradually contaminated after the cell formation, the voltage holding ratio is significantly reduced, and the degree of the reduction is distributed depending on the location. A uniform display cannot be obtained. At present, the utmost attention is paid to the liquid crystal contamination by making the equipment used clean, but the voltage holding ratio is not 100%, and the display unevenness is not completely eliminated.

【0007】(3)残像現象 メカニズムは不明であるが、固定した静止画像を表示し
た後、別の画像に切り替えても前の画像が残存するいわ
ゆる残像現象も配向膜と液晶材料の双方に強く依存して
いる。メカニズムが不明であるため、材料設計は困難を
極めている。
(3) Afterimage Phenomenon Although the mechanism is unknown, the so-called afterimage phenomenon in which the previous image remains even after a fixed still image is displayed and then switched to another image is strong in both the alignment film and the liquid crystal material. Depends on. Material design is extremely difficult because the mechanism is unknown.

【0008】以上のように、界面の精密な制御(所定の
傾き角の維持)、液晶の高純度の維持、残像の抑制等多
数の要求仕様を同時に満足させることは至難の技で、工
程を長くし、かつ極めて狭い範囲のプロセス条件下で無
理をして製造しているのが現状である。例えば、配向膜
の加熱工程では200℃以上の極めて高い温度で処理し
ている。このように、厳しいプロセス条件を設定せざる
を得ないことから、液晶セルを構成する他の材料の選択
範囲も狭くなり、このことが製造条件の裕度をさらに狭
め、ますます表示むらを引き起こしやすくしている。
As described above, it is extremely difficult to satisfy many required specifications at the same time, such as precise control of the interface (maintaining a predetermined tilt angle), maintaining high purity of the liquid crystal, and suppressing afterimages. The current situation is that the length of the manufacturing process is long and the manufacturing process is performed under extremely narrow process conditions. For example, in the heating process of the alignment film, the treatment is performed at an extremely high temperature of 200 ° C. or higher. Since the strict process conditions have to be set in this way, the selection range of other materials constituting the liquid crystal cell is narrowed, which further narrows the margin of manufacturing conditions and causes more uneven display. Making it easier.

【0009】本発明はこれらの課題を解決する手段を提
供するもので、その目的とするところは、アクティブ素
子と横電界方式とより低い温度のプロセスで処理出来る
溶剤に可溶なポリマの配向膜とを組み合わせることで、
表示むらのない高画質のアクティブマトリクス型液晶表
示装置の製造方法を提供することにある。
The present invention provides means for solving these problems, and an object thereof is to provide an alignment film of a solvent-soluble polymer which can be processed by an active element, a lateral electric field method and a process at a lower temperature. By combining and
An object of the present invention is to provide a method for manufacturing an active matrix type liquid crystal display device with high image quality without display unevenness.

【0010】[0010]

【課題を解決するための手段】前記課題を解決し、上記
目的を達成するために本発明では以下の手段を用いる。
In order to solve the above problems and achieve the above object, the present invention uses the following means.

【0011】〔手段1〕以下の工程からなることを特徴
とする液晶表示装置の製造方法。
[Means 1] A method for manufacturing a liquid crystal display device, which comprises the following steps.

【0012】(1)セルを構成する一対の基板の一方の
基板上に走査電極,共通電極,走査電極と交差する信号
電極,アクティブ素子,画素電極を有し、該画素電極と
該共通電極が主として液晶に対して基板面に平行な電界
を印加するように配置されたマトリクス素子を形成する
工程。
(1) A scan electrode, a common electrode, a signal electrode intersecting with the scan electrode, an active element, and a pixel electrode are provided on one of a pair of substrates forming a cell, and the pixel electrode and the common electrode are A step of forming a matrix element arranged so as to mainly apply an electric field parallel to the substrate surface to the liquid crystal.

【0013】(2)該基板上に、溶剤に可溶なポリマの
溶液を塗布する工程。
(2) A step of applying a solution of a polymer soluble in a solvent onto the substrate.

【0014】(3)該ポリマの溶液中の溶剤を除去する
工程。
(3) A step of removing the solvent in the solution of the polymer.

【0015】(4)該ポリマの表面に液晶分子配向能を
付与する工程。
(4) A step of imparting liquid crystal molecule aligning ability to the surface of the polymer.

【0016】(5)表面に液晶分子配向能を有する一対
の基板をスペーサと基板周辺部に形成されたシール部と
を介して、液晶分子配向能を有する表面どうしを相対向
させてセルを組み立てる工程。
(5) A cell is assembled by arranging a pair of substrates having liquid crystal molecule aligning ability on their surfaces, with spacers and a seal portion formed in the peripheral portion of the substrate so that the surfaces having liquid crystal molecule aligning ability face each other. Process.

【0017】(6)該セルに液晶組成物を注入,封止し
液晶セルを形成する工程。
(6) A step of injecting and sealing a liquid crystal composition into the cell to form a liquid crystal cell.

【0018】(7)該液晶セルに駆動回路,偏光手段を
接続しモジュール化する工程。
(7) A step of connecting a driving circuit and a polarizing means to the liquid crystal cell to form a module.

【0019】手段1は、アクティブ素子と横電界方式と
より低い温度のプロセスで処理出来る溶剤に可溶なポリ
マの配向膜とを組み合わせることで、表示むらのないよ
り高画質のアクティブマトリクス型液晶表示装置を得る
方法を提供する。
The means 1 is a combination of an active element, an in-plane switching method, and an alignment film of a polymer soluble in a solvent which can be processed by a process at a lower temperature, so that a high image quality active matrix liquid crystal display without display unevenness can be obtained. A method of obtaining a device is provided.

【0020】〔手段2〕前記アクティブ素子が薄膜トラ
ンジスタ素子であることを特徴とする手段1に記載の液
晶表示装置の製造方法。
[Means 2] The method for manufacturing a liquid crystal display device according to means 1, wherein the active element is a thin film transistor element.

【0021】〔手段3〕前記溶剤に可溶なポリマがポリ
イミドであることを特徴とする手段1に記載の液晶表示
装置の製造方法。
[Means 3] The method for manufacturing a liquid crystal display device according to means 1, wherein the solvent-soluble polymer is polyimide.

【0022】〔手段4〕前記溶剤に可溶なポリマがポリ
アミドであることを特徴とする手段1に記載の液晶表示
装置の製造方法。
[Means 4] The method for producing a liquid crystal display device according to the means 1, wherein the solvent-soluble polymer is polyamide.

【0023】手段2から手段4は、アクティブ素子及び
溶剤に可溶なポリマとしてより望ましい手段を提供して
いる。薄膜トランジスタ素子がアクティブ素子として優
れている。また、ポリイミド、及びポリアミドは液晶配
向能の高い緻密な高分子配向膜の中でも特に優れてい
る。
Means 2 to 4 provide more desirable means as active element and solvent soluble polymer. The thin film transistor element is excellent as an active element. Further, polyimide and polyamide are particularly excellent among dense polymer alignment films having high liquid crystal alignment ability.

【0024】〔手段5〕前記一対の基板のうち前記マト
リクス素子を有する基板に対向する基板が(2)から
(4)の工程を経ることを特徴とする手段1に記載の液
晶表示装置の製造方法。
[Means 5] Manufacturing of the liquid crystal display device according to means 1, wherein the substrate facing the substrate having the matrix element among the pair of substrates undergoes steps (2) to (4). Method.

【0025】〔手段6〕前記マトリクス素子を有する基
板に対向する基板上にカラーフィルタを形成し、液晶セ
ルとして複数の発色能を付与したことを特徴とする手段
5に記載の液晶表示装置の製造方法。
[Means 6] Manufacturing of a liquid crystal display device according to means 5, characterized in that a color filter is formed on a substrate facing the substrate having the matrix element, and a plurality of color-developing capabilities are imparted to the liquid crystal cell. Method.

【0026】〔手段7〕前記一対の基板のうち前記マト
リクス素子を有する基板が(2)から(4)の工程を経
ることを特徴とする手段1に記載の液晶表示装置の製造
方法。
[Means 7] The method for manufacturing a liquid crystal display device according to means 1, wherein the substrate having the matrix element among the pair of substrates goes through the steps (2) to (4).

【0027】〔手段8〕前記マトリクス素子を有する基
板上にカラーフィルタを形成し、液晶セルとして複数の
発色能を付与したことを特徴とする手段7に記載の液晶
表示装置の製造方法。
[Means 8] A method for manufacturing a liquid crystal display device according to means 7, characterized in that a color filter is formed on a substrate having the matrix element, and a plurality of color forming functions are provided as a liquid crystal cell.

【0028】手段5から手段8は一方の基板に限定して
溶剤に可溶なポリマを形成する手段を提供する。
Means 5 through 8 provide means for forming a solvent soluble polymer limited to one substrate.

【0029】〔手段9〕以下の工程からなることを特徴
とする手段6あるいは8に記載の液晶表示装置の製造方
法。
[Means 9] A method for manufacturing a liquid crystal display device according to means 6 or 8, which comprises the following steps.

【0030】(1)複数の発色層を有する膜を形成する
工程。
(1) A step of forming a film having a plurality of coloring layers.

【0031】(2)複数の色からなる光パターンを照射
しカラーフィルタを形成する工程。 〔手段10〕光照射工程が1回であることを特徴とする
手段9に記載の液晶表示装置の製造方法。
(2) A step of irradiating a light pattern having a plurality of colors to form a color filter. [Means 10] The method for manufacturing a liquid crystal display device according to means 9, wherein the light irradiation step is performed once.

【0032】〔手段11〕一対の高分子保護膜で挟まれ
た前記発色層からなるフィルムに光パターンを照射しカ
ラーフィルタを形成した後、前記一方の基板上に該フィ
ルムを貼付けすることを特徴とする手段9あるいは10
に記載の液晶表示装置の製造方法。
[Means 11] A film comprising the color-developing layer sandwiched between a pair of polymer protective films is irradiated with a light pattern to form a color filter, and then the film is attached onto the one substrate. Means 9 or 10
A method for manufacturing a liquid crystal display device according to item 1.

【0033】手段9から手段11は、従来はその後の配
向膜形成工程で高温加熱プロセスが存在する為に使用出
来なかった、より色の鮮やかな写真法によるカラーフィ
ルタの製造方法を提供するものである。
Means 9 to 11 provide a method for producing a color filter by a photographic method with a brighter color, which could not be used due to the presence of a high temperature heating process in the subsequent alignment film forming step. is there.

【0034】〔手段12〕前記液晶セル組立て時に複数
のカラーフィルタの境界部を遮光する遮光層を前記一対
の基板の少なくとも一方の基板上に形成することを特徴
とする手段6あるいは8に記載の液晶表示装置の製造方
法。
[Means 12] A means 6 or 8 is characterized in that a light-shielding layer for shielding the boundary between a plurality of color filters is formed on at least one of the pair of substrates when the liquid crystal cell is assembled. Liquid crystal display device manufacturing method.

【0035】〔手段13〕前記マトリクス素子を有する
基板上に前記遮光層を形成し、前記マトリクス素子に対
向する基板上に前記複数のカラーフィルタを形成するこ
とを特徴とする手段12に記載の液晶表示装置の製造方
法。
[Means 13] The liquid crystal according to the means 12, wherein the light-shielding layer is formed on a substrate having the matrix element, and the plurality of color filters are formed on the substrate facing the matrix element. Manufacturing method of display device.

【0036】〔手段14〕前記マトリクス素子を有する
基板上に前記遮光層と前記複数のカラーフィルタを形成
することを特徴とする手段12に記載の液晶表示装置の
製造方法。
[Means 14] The method for manufacturing a liquid crystal display device according to means 12, wherein the light shielding layer and the plurality of color filters are formed on a substrate having the matrix element.

【0037】手段12から手段14はより遮光性の高い
遮光層を得、より高画質のアクティブマトリクス型液晶
表示装置を得る方法を提供する。
Means 12 to 14 provide a method of obtaining a light-shielding layer having a higher light-shielding property to obtain an active matrix type liquid crystal display device having higher image quality.

【0038】[0038]

【作用】[Action]

(1)横電界方式の動作原理 先ず初めに、本発明の必須構成である横電界方式の動作
原理を説明する。図2は電界方向9に対する界面近傍で
の液晶分子長軸(光学軸)方向10のなす角φLC,偏光
板の偏光透過軸11のなす角φP の定義を示す。偏光板
及び液晶界面はそれぞれ上下に一対あるので必要に応じ
てφP1,φP2,φLC1,φLC2と表記する。尚、図2は後
述する図1の正面図に対応する。
(1) Operation principle of horizontal electric field method First, the operation principle of the horizontal electric field method, which is an essential configuration of the present invention, will be described. FIG. 2 shows the definition of the angle φ LC formed by the liquid crystal molecule major axis (optical axis) direction 10 near the interface with respect to the electric field direction 9 and the angle φ P formed by the polarization transmission axis 11 of the polarizing plate. Since there are a pair of the polarizing plate and the liquid crystal interface above and below, respectively, they are denoted as φ P1 , φ P2 , φ LC1 , and φ LC2 as necessary. 2 corresponds to the front view of FIG. 1 described later.

【0039】図1(a),(b)は本発明の液晶パネル内
での液晶の動作を示す側断面を、図1(c),(d)はそ
の正面図を表す。図1には薄膜トランジスタ素子部は省
略され配線電極構造の1部が示されている。また、本発
明の表示装置は複数の画素で構成されるが、ここでは一
画素の中の部分のみを示した。電圧無印加時のセル側断
面を図1(a)に、その時の正面図を図1(c)に示
す。透明な一対の基板の内側に線状の電極1,4が形成
され、その上に保護絶縁膜5が塗布及び配向処理されて
いる。この図では保護絶縁膜5は保護膜と配向制御膜が
一体化して描かれているが、ひとつの材料で兼用して
も、2つの材料を積層しても良い。間には液晶組成物が
挟持されている。棒状の液晶分子6は、電界無印加時に
は電極1,4の長手方向(図1(c)正面図)に対して
若干の角度、即ち45度≦|φLC|<90度、をもつよ
うに配向されている。図1,図2では界面上の液晶分子
長軸配向方向(ラビング方向)10を矢印で示した。上
下界面上での液晶分子配向方向は、望ましい1例として
平行、即ちφLC1=φLC2(=φLC)となっている。液晶
組成物の誘電異方性は正を想定している。
1 (a) and 1 (b) are side sectional views showing the operation of the liquid crystal in the liquid crystal panel of the present invention, and FIGS. 1 (c) and 1 (d) are front views thereof. In FIG. 1, the thin film transistor element part is omitted, and a part of the wiring electrode structure is shown. Further, although the display device of the present invention is composed of a plurality of pixels, only a part within one pixel is shown here. FIG. 1A shows a cross section of the cell side when no voltage is applied, and FIG. 1C shows a front view at that time. Linear electrodes 1 and 4 are formed inside a pair of transparent substrates, and a protective insulating film 5 is applied and oriented on the linear electrodes 1 and 4. In this figure, the protective insulating film 5 is illustrated with the protective film and the orientation control film integrated, but one material may be used together or two materials may be laminated. A liquid crystal composition is sandwiched between them. The rod-shaped liquid crystal molecules 6 should have a slight angle with respect to the longitudinal direction of the electrodes 1 and 4 (front view of FIG. 1C) when no electric field is applied, that is, 45 ° ≦ | φ LC | <90 °. It is oriented. In FIG. 1 and FIG. 2, the liquid crystal molecule major axis alignment direction (rubbing direction) 10 on the interface is indicated by an arrow. As a desirable example, the alignment directions of liquid crystal molecules on the upper and lower interfaces are parallel, that is, φ LC1 = φ LC2 (= φ LC ). The dielectric anisotropy of the liquid crystal composition is assumed to be positive.

【0040】ここで、画素電極4と共通電極1のそれぞ
れに異なる電位を与えそれらの間に電位差を与えて液晶
組成物層に電界方向9を印加すると、液晶組成物が持つ
誘電異方性と電界との相互作用により図1(b),(d)
に示したように液晶分子が反応して電界方向にその向き
を変える。この時液晶組成物層の屈折率異方性と偏光板
との相互作用により明るさが変わる。
Here, when different potentials are applied to the pixel electrode 4 and the common electrode 1 and a potential difference is applied between them to apply the electric field direction 9 to the liquid crystal composition layer, the dielectric anisotropy of the liquid crystal composition is Figure 1 (b), (d) due to interaction with the electric field
As shown in, the liquid crystal molecules react and change their direction to the direction of the electric field. At this time, the brightness changes due to the interaction between the refractive index anisotropy of the liquid crystal composition layer and the polarizing plate.

【0041】(2)配向膜材料および液晶材料の選択の
自由度 つぎに、本発明の必須構成である横電界方式を採用する
ことによって、配向膜材料および液晶材料の選択の自由
度が増大する作用について説明する。発明が解決しよう
とする課題のところで述べたように、配向膜材料および
液晶材料を選択する際には(1)界面の精密な制御、
(2)液晶の高純度の維持、(3)残像現象の抑制の3
点を考慮する必要がある。以下、これらの3点について
縦電界方式を横電界方式に変換することによる効果につ
いて、順次説明する。
(2) Freedom of Selection of Alignment Film Material and Liquid Crystal Material Next, by adopting the lateral electric field method which is an essential constitution of the present invention, the freedom of selection of the alignment film material and the liquid crystal material is increased. The operation will be described. As described in the problem to be solved by the invention, when selecting the alignment film material and the liquid crystal material, (1) precise control of the interface,
(2) Maintaining high purity of liquid crystal, (3) Suppressing afterimage phenomenon
It is necessary to consider the points. Hereinafter, effects of converting the vertical electric field method to the horizontal electric field method for these three points will be sequentially described.

【0042】縦電界方式においては、液晶分子が低電界
時にほぼ基板面に平行であったものを、基板面に垂直な
方向の電界(縦電界)と液晶分子との誘電的相互作用に
より液晶分子を立たせることで光学的なスイッチングを
行っている。この時、もし傾き角が完全にゼロであると
傾く方向としては2種類存在することになり、その2種
類のドメインの境界が配向不良領域(リバースチルトド
メインと称する)となり、画質を著しく低下させる。現
実の素子においては、画素の端部近傍には配線電極や薄
膜トランジスタ等段差構造が多数あるために4度程度の
ある程度大きな傾き角がないと、このリバースチルトド
メインを抑制することができない。縦電界方式における
傾き角の必要性はあらかじめ電界印加時の液晶分子の傾
く方向を一つに定めておく必要があることから生じてい
る。換言すると、電界方向と初期の液晶分子配向方向と
のなす角を90度より十分に小さくしなくてはならな
い。この角度は、経験的には最低でも88.5 度以下、
望ましくは86度以下である。即ち傾き角に換算する
と、最低でも1.5 度以上、望ましくは4度以上とな
る。一方、横電界の場合においても、同様に『配向不良
領域を防ぐためには、電界方向と初期の液晶分子配向方
向とのなす角を90度より十分に小さくすれば良い』と
いうルールが適用できる。よって、電界方向が縦から横
へ変わったために、縦電界方式における傾き角に対応す
る角度は基板面内の液晶分子の方位方向であり、縦電界
方式で必須であった界面と液晶分子とのなす角は問題で
はなく完全にゼロでも構わなくなる。傾き角を支配して
いるのは配向膜と液晶分子との分子レベルでの相互作用
であったのに対し、基板面内の液晶分子の方位方向を決
めるのはラビング方向という設計段階で自由に設定でき
るパラメータである。配向膜と液晶分子との分子レベル
での相互作用と一口に述べたが、現象は複雑で、材料の
1次構造のみならず分子コメフォメーション等の2次構
造も関与しており、プロセス条件依存性を避けることは
できない。従って、横電界方式を採用することにより傾
き角の制約から完全に開放され、この1点のみによって
も材料、プロセスの選択の自由度が著しく向上する。本
発明ではすでに重合した高分子配向膜を溶剤に溶かして
塗布するプロセスを用いており、基板上で重合反応させ
る必要がなく高分子量で緻密な膜質がプロセス変動によ
らず得られる。また、ドメインおよび表示むらの抑制効
果は光の利用効率の向上にも寄与する。即ち、薄膜トラ
ンジスタのような段差構造のある部分の近傍で生じてい
た配向不良部分を従来はブラックマトリクスで遮光して
いたものが、本方式では遮光部の面積を小さくすること
が出来る。その結果、開口率およびそれに伴い光の利用
効率が向上し、より明るいディスプレイが得られるとい
う効果も得られる。
In the vertical electric field system, the liquid crystal molecules that are substantially parallel to the substrate surface at the time of low electric field are converted into liquid crystal molecules by the dielectric interaction between the electric field in the direction perpendicular to the substrate surface (longitudinal electric field) and the liquid crystal molecules. The optical switching is performed by standing up. At this time, if the tilt angle is completely zero, there are two kinds of tilt directions, and the boundary between the two kinds of domains becomes an alignment defect area (referred to as a reverse tilt domain), which significantly deteriorates the image quality. . In an actual device, since there are many step structures such as wiring electrodes and thin film transistors in the vicinity of the end of the pixel, the reverse tilt domain cannot be suppressed unless there is a large inclination angle of about 4 degrees. The necessity of the tilt angle in the vertical electric field method arises from the fact that the tilt direction of the liquid crystal molecules when an electric field is applied must be determined in advance. In other words, the angle formed by the electric field direction and the initial liquid crystal molecule alignment direction must be sufficiently smaller than 90 degrees. This angle is empirically at least 88.5 degrees or less,
It is preferably 86 degrees or less. That is, when converted to a tilt angle, it is at least 1.5 degrees or more, preferably 4 degrees or more. On the other hand, also in the case of a lateral electric field, the same rule can be applied that "in order to prevent a defective alignment region, the angle between the electric field direction and the initial alignment direction of liquid crystal molecules should be sufficiently smaller than 90 degrees". Therefore, since the direction of the electric field changed from vertical to horizontal, the angle corresponding to the tilt angle in the vertical electric field method is the azimuth direction of the liquid crystal molecules in the substrate plane, and the interface between the interface and the liquid crystal molecules, which was essential in the vertical electric field method. The angle formed does not matter, and it does not matter if it is completely zero. The tilt angle is governed by the interaction between the alignment film and the liquid crystal molecules at the molecular level, whereas the azimuth direction of the liquid crystal molecules within the substrate plane can be freely determined at the design stage called the rubbing direction. It is a parameter that can be set. I briefly mentioned the interaction between the alignment film and liquid crystal molecules at the molecular level, but the phenomenon is complicated, and not only the primary structure of the material but also the secondary structure such as molecular conformation is involved. Sex cannot be avoided. Therefore, by adopting the lateral electric field method, the restriction of the tilt angle is completely released, and even with only this one point, the degree of freedom in selecting materials and processes is significantly improved. In the present invention, a process of dissolving a polymer alignment film that has already polymerized is applied by dissolving it in a solvent, and it is not necessary to cause a polymerization reaction on the substrate, and a high molecular weight and dense film quality can be obtained regardless of process variations. Further, the effect of suppressing domain and display unevenness also contributes to improvement of light use efficiency. That is, in the conventional method, the black matrix is used to shield the defective alignment portion generated near the portion having the step structure such as the thin film transistor, but in the present method, the area of the light shielding portion can be reduced. As a result, the aperture ratio and the light utilization efficiency associated therewith are improved, and a brighter display can be obtained.

【0043】次に第2の要請である、液晶の高純度の維
持に対しても横電界方式は極めて自由度が大きくなる作
用について説明する。薄膜トランジスタ型液晶表示装置
のようなアクティブマトリクス型液晶表示装置におい
て、液晶には走査選択時間内のみに画像情報信号が印加
され、他のラインが選択される非選択時間内には画素部
は回路的にはオープン状態となる。この間、信号配線電
極より供給された電荷は、つぎにそのラインが選択され
るまでの期間(1フレーム期間)保持されなくてはなら
ない。この電荷の保持期間である時定数は、主として画
素部全体の静電容量と電気抵抗の積で定まる。しかしな
がら、縦電界の場合、液晶が実現しうる電気抵抗の最大
値をもっても、液晶自体が保有する静電容量だけでは不
十分であり、画素ごとに配線等を引き回して容量部を付
加しているのが現状である。これに対し、縦電界の場合
は電極が線状になり、抵抗値を決める電界方向に垂直な
方向の断面積が著しく小さくなる。したがって、液晶組
成物の比抵抗が同一であっても液晶画素部の抵抗値は著
しく低減できる。一方容量の方は、逆に抵抗値に逆比例
して小さくなりこの点では不利になる。しかしながら、
抵抗値の増大が著しく(100倍以上)、そのため従来
形成していた付加容量と組み合わせることで、十分に電
圧を保持できる。むしろ、従来と同程度の付加容量素子
があれば液晶の抵抗値が10分の1ないし100分の1
に下がってもまったく問題無い。このように、液晶の耐
汚染性が著しく向上したことにより、液晶そのもののみ
ならず、液晶に接する配向膜,シール剤,封止剤といっ
た周辺部剤の選択の自由度およびそれらを形成するプロ
セス裕度が著しく増大する。本発明の溶剤に可溶なポリ
マを溶液状で塗布する工程では、従来のような高温加熱
が不要で表面状態をより均一にしやすい。また、残留溶
剤がしみだす等により多少液晶を汚染しても電圧保持率
を低下させず、この点でも表示むらになりにくい。
Next, a description will be given of the second requirement, that is, the lateral electric field method has an extremely large degree of freedom in maintaining the high purity of the liquid crystal. In an active matrix type liquid crystal display device such as a thin film transistor type liquid crystal display device, an image information signal is applied to the liquid crystal only during a scanning selection time, and a pixel portion is circuit-like during a non-selection time when another line is selected. Will be open. During this time, the electric charge supplied from the signal wiring electrode must be retained until the line is next selected (one frame period). The time constant, which is the holding period of this charge, is mainly determined by the product of the electrostatic capacity and the electric resistance of the entire pixel portion. However, in the case of a vertical electric field, even the maximum value of electric resistance that can be realized by the liquid crystal is not sufficient with the electrostatic capacity of the liquid crystal itself, and a wiring portion is laid out for each pixel to add a capacitance portion. is the current situation. On the other hand, in the case of a vertical electric field, the electrodes are linear, and the cross-sectional area in the direction perpendicular to the electric field direction that determines the resistance value is significantly reduced. Therefore, even if the liquid crystal composition has the same specific resistance, the resistance value of the liquid crystal pixel portion can be significantly reduced. On the other hand, the capacitance is inversely proportional to the resistance value and decreases, which is disadvantageous in this respect. However,
The resistance value is remarkably increased (100 times or more). Therefore, the voltage can be sufficiently held by combining with the additional capacitance which has been conventionally formed. Rather, the resistance value of the liquid crystal is 1/10 to 1/100 if there is an additional capacitance element of the same level as the conventional one.
There is no problem even if it goes down. Since the contamination resistance of the liquid crystal has been remarkably improved in this way, not only the liquid crystal itself, but also the degree of freedom in selecting peripheral materials such as an alignment film, a sealant, and a sealant in contact with the liquid crystal and the process latitude for forming them. The degree increases significantly. In the step of applying the solvent-soluble polymer of the present invention in the form of a solution, it is easy to make the surface state more uniform without the need for high-temperature heating as in the conventional case. Further, even if the liquid crystal is somewhat contaminated by the residual solvent exuding or the like, the voltage holding ratio is not lowered, and in this respect, uneven display is unlikely to occur.

【0044】第3の要請である残像現象の抑制にも本発
明は顕著な効果がある。残像現象も界面現象が視認され
たものである。一般に界面現象は、界面に垂直な方向の
性質として表れる。横電界方式の場合、電界の主成分は
界面に平行であり、このような一切の界面現象は表れに
くい。実際、後に実施例にて述べるように、いずれの実
施例においても残像現象は皆無であった。
The present invention has a remarkable effect in suppressing the afterimage phenomenon which is the third demand. The afterimage phenomenon is also a visual recognition of the interface phenomenon. The interfacial phenomenon generally appears as a property in a direction perpendicular to the interface. In the case of the lateral electric field method, the main component of the electric field is parallel to the interface, and any such interface phenomenon is unlikely to appear. In fact, as will be described later in the examples, there is no afterimage phenomenon in any of the examples.

【0045】以上のような3点にも及ぶ効果により、界
面現象や液晶内の微量の汚染が関与した種々の表示むら
が抑制され、均一な高画質の表示装置が実現できる。加
えて今までにはまったく不可能であった、新しいプロセ
スが可能となる。即ち、配向膜,シール剤,封止剤とい
った材料の選択の自由度が増大したことにより、例えば
加熱温度の大幅低減,加熱プロセス時間の短縮をもたら
す。またさらに、耐熱性,汚染防止能等の制約から使え
なかった周辺部剤であるカラーフィルタ,遮光用材料等
が使えるようになる。その結果、より表示むらを抑制し
画質を著しく引き上げることのできる構成材料が選択で
きるようになる。本発明はこれらの横電界方式の特徴を
活用して、配向膜材料としてより裕度の高い低温プロセ
スが適用出来る溶剤に可溶なポリマを採用し、配向膜の
膜質を安定化させ、表示むらのない液晶表示装置が得る
方法を提供するものである。加えて、加熱温度の大幅低
減,加熱プロセス時間の短縮といった低コストプロセス
の適用は、生産電力の著しい抑制にもつながり、製造コ
ストの低減,エネルギー資源の節約にも寄与する。
Due to the above three effects, various display irregularities due to the interface phenomenon and a slight amount of contamination in the liquid crystal are suppressed, and a display device having a uniform high image quality can be realized. In addition, it enables new processes that have never been possible before. That is, since the degree of freedom in selecting materials such as the alignment film, the sealant, and the sealant is increased, for example, the heating temperature is greatly reduced and the heating process time is shortened. Furthermore, color filters, light shielding materials, etc., which are peripheral agents that could not be used due to restrictions on heat resistance, pollution prevention ability, etc., can be used. As a result, it becomes possible to select a constituent material capable of further suppressing display unevenness and significantly improving the image quality. The present invention takes advantage of these characteristics of the horizontal electric field method, adopts a solvent-soluble polymer that can be applied to a low-temperature process with higher tolerance as an alignment film material, stabilizes the film quality of the alignment film, and displays uneven display. The present invention provides a method for obtaining a liquid crystal display device without a display device. In addition, the application of low-cost processes such as drastic reduction of heating temperature and shortening of heating process time leads to remarkable reduction of production power, which contributes to reduction of manufacturing cost and saving of energy resources.

【0046】[0046]

【実施例】本発明を実施例により具体的に説明する。EXAMPLES The present invention will be specifically described with reference to examples.

【0047】〔実施例1〕基板としては厚みが1.1mm
で表面を研磨した透明なガラス基板を2枚用いる。まず
これらの基板のうち一方の基板の上に薄膜トランジスタ
を下記の手順で形成した。なお、薄膜トランジスタおよ
び配線電極からなるマトリクス素子は横電界が印加出来
るものであれば何でも良くその製法は本発明の骨子には
関係しないので、記述は簡単化する。また、マトリクス
素子の製法に関するここでの記述は1例であって、これ
に限定されるものではない。以下1画素の構造を示す図
3のC−C′間の断面図を模式的に表した図7,図8,
図9を用いて本実施例を説明する。
[Example 1] A substrate having a thickness of 1.1 mm
Two transparent glass substrates whose surfaces have been polished by are used. First, a thin film transistor was formed on one of these substrates by the following procedure. The matrix element composed of the thin film transistors and the wiring electrodes may be any as long as a lateral electric field can be applied, and the manufacturing method thereof is not related to the essence of the present invention, and therefore the description will be simplified. Further, the description here regarding the manufacturing method of the matrix element is an example, and the present invention is not limited to this. 7, 8A and 8B schematically showing the cross-sectional view taken along the line CC ′ of FIG. 3 showing the structure of one pixel.
This embodiment will be described with reference to FIG.

【0048】透明なガラスの基板7の一方の上に、スパ
ッタ法によりクロム膜を形成し、次に、ホトリソグラフ
ィ法により走査電極12と共通電極1をパターン化した
(図7(a))。その後、その上にCVD(Chemical Va
por Deposition)法により窒化シリコン(SiN)から
なるゲート絶縁膜を形成し(図7(b))、更にその上
に同じくCVD法により、表面層がn型非晶質シリコン
(a−Si)膜であるa−Si13を作製した(図7
(c))。a−Si13の一部を覆い薄膜トランジスタ
を形成するようにクロムからなる信号電極3及び画素電
極4を、スパッタ法,ホトリソグラフィ法により形成し
た(図7(d))。その上に、SiNからなる絶縁保護
膜を形成した(図8(e))。その後、その上に遮光層
22と顔料のカラーフィルタ23cを形成し、更にその
上に樹脂の平坦化膜23bをスピンコートした(図8
(f))。遮光層としてはキャボット社製カーボン微粒
子(MONARCH800,粒径16nm)を1重量%混合したエ
ポキシ樹脂を用いた。カラーフィルタの発色用顔料とし
ては赤,緑,青の3原色に対してそれぞれフジハント社
製CR−6101,CG−5101,CB−6101を
用いた。スピンコートにより塗布し、85℃でプリベー
クした後、露光,現像を行い、最後に200℃でポスト
べークして膜状のカラーフィルタを形成した。本実施例
では、発色層として顔料を用いたが、本発明によればそ
の後の配向膜形成プロセスで高温に加熱する必要がない
ため、耐熱性の低いより色の鮮やかな染料タイプの発色
剤を使用しても良い。また、遮光層用材料としても本実
施例ではカーボンブラック微粒子のような液晶の比抵抗
を低下させる汚染源となる可能性のある材料を用いた
が、横電界方式そのものが汚染に強いため問題ない。む
しろ、カーボンブラック微粒子は遮光率に極めて優れる
ため、より高い画質が実現出来る。もちろん、カーボン
ブラック微粒子以外の顔料や染料等の他の絶縁製遮光剤
を用いてもなんら問題はない。またその上の平坦化用の
樹脂としてはエポキシ樹脂を用いたが、こちらもこの材
料に限定されるものではない。次に、イミド化率が10
0%である溶剤可溶型のポリイミドであるAL−105
1(日本合成ゴム社製)のポリマ溶液24aをスピンコ
ート法により塗布した(図8(g))。本実施例では、
溶剤としては極性溶媒であるジメチルホルムアミドと非
極性溶媒であるブチルセルソルブを重量比で8:2で混
合したものを用いたが、極性溶媒であればジメチルホル
ムアミド以外でもN−メチル−2−ピロリドンやジメチ
ルアセトアミドでも、また非極性溶媒であればブチルセ
ルソルブアセテートでも良い。また、本実施例では塗布
方法としてスピンコート法を採用したが、凸版印刷,オ
フセット印刷,スクリーン印刷等の各種の印刷法,ロー
ルコーティング法,ディップ法等均一な膜厚に塗布出来
る方法であればこれに限るものではない。その後、この
溶液を160℃まで加熱し、30分放置し溶剤を除去し
た。このようにして緻密なポリイミド配向膜であるポリ
マ24bを得た(図8(h))。次に、この表面をラビ
ング処理し、配向膜表面に液晶配向能を付与した(図9
(i))。本実施例では配向能を付与する方法として、
ラビング法を採用したが、それ以外の例えば微細な溝を
形成する方法等の他の方法も利用出来る。次に、同様の
材料とプロセスで配向膜表面に液晶配向能を付与した対
向側の基板と、それぞれの液晶分子配向能を有する表面
24dどうしを相対向させて、ポリマビーズからなるス
ペーサと周辺部のシール剤とを介在させてセルを組み立
てた(図9(j))。このセルに液晶分子6を真空で注
入し、紫外線硬化型樹脂からなる封止剤28で封止し
た。その後、このセルに駆動回路,偏光板,バックライ
ト等を接続してモジュール化し液晶表示装置を得た。
A chromium film was formed on one side of the transparent glass substrate 7 by the sputtering method, and then the scanning electrode 12 and the common electrode 1 were patterned by the photolithography method (FIG. 7A). Thereafter, CVD thereon (C hemical V a
por D eposition) method (a gate insulating film made of SiN) (FIG. 7 (b) silicon nitride), further similarly by CVD on the surface layer is n-type amorphous silicon (a-Si) A film of a-Si13 was prepared (FIG. 7).
(C)). The signal electrode 3 and the pixel electrode 4 made of chromium were formed by sputtering and photolithography so as to cover a part of the a-Si 13 and form a thin film transistor (FIG. 7D). An insulating protective film made of SiN was formed thereon (FIG. 8E). Thereafter, a light-shielding layer 22 and a pigment color filter 23c are formed thereon, and a resin flattening film 23b is spin-coated thereon (FIG. 8).
(F)). As the light-shielding layer, an epoxy resin containing 1% by weight of carbon fine particles (MONARCH800, particle size 16 nm) manufactured by Cabot Corporation was used. As the color-developing pigments of the color filter, CR-6101, CG-5101 and CB-6101 manufactured by Fuji Hunt Co. were used for the three primary colors of red, green and blue, respectively. It was applied by spin coating, prebaked at 85 ° C., exposed and developed, and finally post-baked at 200 ° C. to form a film-like color filter. In this example, a pigment was used as the color-developing layer, but according to the present invention, since it is not necessary to heat to a high temperature in the subsequent alignment film forming process, a dye-type coloring agent having a low heat resistance and a brighter color is used. You may use it. Further, as the material for the light-shielding layer, in the present embodiment, a material such as carbon black fine particles which may become a pollution source that lowers the specific resistance of the liquid crystal was used, but there is no problem because the lateral electric field method itself is resistant to pollution. Rather, since the carbon black fine particles have an extremely high light-shielding rate, higher image quality can be realized. Of course, there is no problem even if other insulating light-shielding agents such as pigments and dyes other than carbon black fine particles are used. An epoxy resin was used as the resin for flattening the surface, but the material is not limited to this material. Next, the imidization ratio is 10
AL-105, a 0% solvent-soluble polyimide
Polymer solution 24a of No. 1 (manufactured by Japan Synthetic Rubber Co., Ltd.) was applied by spin coating (FIG. 8 (g)). In this embodiment,
The solvent used was a mixture of dimethylformamide, which is a polar solvent, and butylcellosolve, which is a nonpolar solvent, in a weight ratio of 8: 2, but N-methyl-2-pyrrolidone other than dimethylformamide can be used as long as it is a polar solvent. Or dimethylacetamide, or butyl cellosolve acetate as long as it is a nonpolar solvent. Further, although the spin coating method is adopted as the coating method in the present embodiment, various printing methods such as letterpress printing, offset printing, screen printing, roll coating method, dip method, etc. can be applied as long as they can be applied to a uniform film thickness. It is not limited to this. Then, the solution was heated to 160 ° C. and left for 30 minutes to remove the solvent. Thus, a polymer 24b which is a dense polyimide alignment film was obtained (FIG. 8 (h)). Next, this surface was subjected to rubbing treatment to impart liquid crystal aligning ability to the surface of the alignment film (FIG. 9).
(I)). In this example, as a method of imparting the orientation ability,
Although the rubbing method is adopted, other methods such as a method of forming fine grooves other than the rubbing method can also be used. Next, a substrate on the opposite side whose liquid crystal aligning ability is imparted to the surface of the alignment film by the same material and process is made to face the surfaces 24d having the aligning ability of the liquid crystal molecules, and the spacer made of polymer beads and the peripheral portion A cell was assembled with a sealant interposed (FIG. 9 (j)). Liquid crystal molecules 6 were injected into this cell in a vacuum and sealed with a sealant 28 made of an ultraviolet curable resin. After that, a driving circuit, a polarizing plate, a backlight, etc. were connected to this cell to form a module, and a liquid crystal display device was obtained.

【0049】次にこのようなプロセスで得た液晶表示装
置の構成について、より詳細に説明する。
Next, the structure of the liquid crystal display device obtained by the above process will be described in more detail.

【0050】上下界面上のラビング方向は互いにほぼ平
行で、かつ印加電界方向とのなす角度を88度(φLC1
=φLC2=88°)とした。これらの基板間に挟まれた
ネマチック液晶組成物の誘電異方性Δεは正でその値が
4.5 であり、屈折率異方性Δnは0.072(589n
m,20℃)である。またこの液晶組成物は当初その抵
抗値が1014Ω・cm以上あったが、その後汚染し、3.
6×1012Ω・cm まで低下した。本実施例ではこの汚
染したものを用いた。ギャップdは球形のポリマビーズ
を基板間に分散して挾持し、液晶封入状態で3.9μm
とした。よってΔn・dは0.281μm である。ま
た、同一の配向膜材料を同一プロセスでガラス基板上に
形成し、結晶回転法で液晶分子長軸の傾き角を測定した
ところ、僅かに1.2 度であった。2枚の偏光板〔日東
電工社製G1220DU〕でパネルを挾み、一方の偏光
板の偏光透過軸をラビング方向より若干小さな角度、即
ちφP1=80°(即ち、|φLC1−φP1|=8°)に設定
し、他方をそれに直交、即ちφP2=−12°とした。こ
れにより、画素に印加される電圧VLCをゼロから徐々に
増大させるにしたがい明るさが減少し最小値をとる特性
(図4)を得た。本実施例では低電圧(VOFF)で暗状
態、高電圧(VON)で明状態をとるノーマリクローズ特
性を採用した。VOFFは6.9V、VONは9.1Vであ
る。
The rubbing directions on the upper and lower interfaces are substantially parallel to each other, and the angle formed with the direction of the applied electric field is 88 degrees (φ LC1
= Φ LC2 = 88 °). The dielectric anisotropy Δε of the nematic liquid crystal composition sandwiched between these substrates is positive and its value is 4.5, and the refractive index anisotropy Δn is 0.072 (589n).
m, 20 ° C). Initially, the liquid crystal composition had a resistance value of 10 14 Ω · cm or more, but was subsequently contaminated.
It fell to 6 × 10 12 Ω · cm. In this example, this contaminated material was used. Gap d is 3.9 μm when liquid crystal is filled with spherical polymer beads dispersed and sandwiched between the substrates.
And Therefore, Δn · d is 0.281 μm. Further, when the same alignment film material was formed on the glass substrate by the same process and the tilt angle of the liquid crystal molecule long axis was measured by the crystal rotation method, it was only 1.2 degrees. A panel is sandwiched between two polarizing plates [G1220DU manufactured by Nitto Denko Corporation], and the polarization transmission axis of one polarizing plate is slightly smaller than the rubbing direction, that is, φ P1 = 80 ° (that is, | φ LC1 −φ P1 | = 8 °) and the other was orthogonal to it, that is, φ P2 = −12 °. As a result, as the voltage V LC applied to the pixel was gradually increased from zero, the brightness decreased and reached the minimum value (FIG. 4). In this embodiment, a normally closed characteristic is adopted in which a dark state is set at a low voltage (V OFF ) and a bright state is set at a high voltage (V ON ). V OFF is 6.9V and V ON is 9.1V.

【0051】薄膜トランジスタ及び各種電極の構造を図
3に示し、詳細に説明する。図3(a)は基板面に垂直
な方向から見た正面図、図3(b),(c)は側断面図を
表す。薄膜トランジスタ素子14は画素電極(ソース電
極)4,信号電極(ドレイン電極)3,走査電極(ゲー
ト電極)12、及びアモルファスシリコン13から構成
される。共通電極1と走査電極12、及び信号電極3と
画素電極4とはそれぞれ同一の金属層をパターン化して
構成した。容量素子16は、2本の共通電極1の間を結
合する領域(図3において点線で示した)において画素
電極4と共通電極1でゲ−ト絶縁膜2を挟む構造として
形成した。画素電極4は正面図(図3(a))におい
て、2本の共通電極1の間に配置されている。1画素ピ
ッチ15は横方向(すなわち信号電極間)は69μm、
縦方向(すなわち走査電極間)は207μmである。電
極幅は、複数画素間にまたがる配線電極である走査電
極,信号電極,共通電極配線部(走査電極に平行(図3
で横方向)に延びた部分)を広めにし、線欠陥を回避し
た。幅はそれぞれ10μmである。一方、開口率向上の
ために1画素単位で独立に形成した画素電極、及び共通
電極の信号配線電極の長手方向に伸びた部分の幅は若干
狭くし、それぞれ5μm,8μmとした。これらの電極
の幅を狭くしたことで異物等の混入により断線する可能
性が高まるが、この場合1画素の部分的欠落ですみ線欠
陥には至らない。加えて、更にできるだけ高い開口率を
実現するために絶縁膜を介して共通電極と信号電極を若
干(1μm)重ねた。これにより、信号配線に平行な方向
のブラックマトリクスは不要になる。そこで図3(c)
に示されているように、走査電極方向のみ遮光するブラ
ックマトリクス構造とした。このようにして、共通電極
と画素電極とのギャップが20μm、開口部の長手方向
の長さ157μmとなり、44.0% の高開口率が得ら
れた。画素数は320本の信号電極と160本の走査電
極とにより320×160個とした。複数画素から構成
されるパネルの部分を図5,図6に示す。図5ではブラ
ックマトリクスを省略し、図6ではブラックマトリクス
で遮光した状態を示した。
The structures of the thin film transistor and various electrodes are shown in FIG. 3 and will be described in detail. FIG. 3A is a front view seen from a direction perpendicular to the substrate surface, and FIGS. 3B and 3C are side sectional views. The thin film transistor element 14 is composed of a pixel electrode (source electrode) 4, a signal electrode (drain electrode) 3, a scan electrode (gate electrode) 12, and amorphous silicon 13. The common electrode 1 and the scan electrode 12, and the signal electrode 3 and the pixel electrode 4 are formed by patterning the same metal layer. The capacitive element 16 is formed as a structure in which the gate insulating film 2 is sandwiched between the pixel electrode 4 and the common electrode 1 in a region (indicated by a dotted line in FIG. 3) connecting the two common electrodes 1. The pixel electrode 4 is arranged between the two common electrodes 1 in the front view (FIG. 3A). One pixel pitch 15 is 69 μm in the lateral direction (that is, between signal electrodes),
The vertical direction (that is, between the scanning electrodes) is 207 μm. The electrode width is the scanning electrode, which is a wiring electrode extending over a plurality of pixels, the signal electrode, the common electrode wiring portion (parallel to the scanning electrode (see FIG.
The lateral extension) was widened to avoid line defects. Each width is 10 μm. On the other hand, in order to improve the aperture ratio, the widths of the pixel electrode formed independently for each pixel and the part of the common electrode extending in the longitudinal direction of the signal wiring electrode are slightly narrowed to 5 μm and 8 μm, respectively. By narrowing the width of these electrodes, the possibility of disconnection due to the inclusion of foreign matter or the like increases, but in this case, a partial defect of one pixel does not lead to a line defect. In addition, the common electrode and the signal electrode were slightly overlapped (1 μm) with an insulating film interposed therebetween in order to achieve the highest possible aperture ratio. As a result, the black matrix in the direction parallel to the signal wiring becomes unnecessary. Therefore, FIG. 3 (c)
As shown in (1), a black matrix structure that shields light only in the scanning electrode direction is adopted. Thus, the gap between the common electrode and the pixel electrode was 20 μm, the length of the opening in the longitudinal direction was 157 μm, and a high aperture ratio of 44.0% was obtained. The number of pixels was 320 × 160 with 320 signal electrodes and 160 scanning electrodes. A panel portion composed of a plurality of pixels is shown in FIGS. In FIG. 5, the black matrix is omitted, and in FIG. 6, the black matrix is used to block light.

【0052】次に、回路構成及び駆動波形にいついて説
明する。各走査電極12および各信号電極3にはそれぞ
れ信号電極駆動回路18および走査電極駆動回路19を
接続した。また、共通電極1にも共通電極駆動回路20
を接続した(図13)。信号電極3には情報を有する信
号波形が印加され、走査電極12には走査波形が信号波
形と同期をとって印加される。信号電極3から薄膜トラ
ンジスタ素子14を介して画素電極4に情報信号が伝達
され、共通電極1との間で液晶部分に電圧が印加され
る。図14には駆動電圧波形の具体例を示す。なお、本
実施例の場合の振幅は、 VD-CENTER=14.0,VGH=28.0,VGL=0,VDH
=15.1,VDL=12.9,VCH=20.4,VCL=4.
39 に設定し、その結果、ゲート電極とソース電極の間の寄
生容量による飛込み電圧ΔVGS(+),ΔVGS(-),画素電
極にかかる電圧VS,液晶にかかる電圧VLCは下表のよ
うになった。なお、電圧の単位は以後すべてボルトとす
Next, the circuit configuration and drive waveform will be described. A signal electrode drive circuit 18 and a scan electrode drive circuit 19 were connected to each scan electrode 12 and each signal electrode 3. Further, the common electrode drive circuit 20 is also provided for the common electrode 1.
Were connected (Fig. 13). A signal waveform having information is applied to the signal electrode 3, and a scanning waveform is applied to the scanning electrode 12 in synchronization with the signal waveform. An information signal is transmitted from the signal electrode 3 to the pixel electrode 4 through the thin film transistor element 14, and a voltage is applied to the liquid crystal portion between the signal electrode 3 and the common electrode 1. FIG. 14 shows a specific example of the drive voltage waveform. The amplitudes in this embodiment are V D-CENTER = 14.0, V GH = 28.0, V GL = 0, V DH
= 15.1, V DL = 12.9, V CH = 20.4, V CL = 4.
39, and as a result, the jump voltages ΔV GS (+) and ΔV GS (-) due to the parasitic capacitance between the gate electrode and the source electrode, the voltage V S applied to the pixel electrode, and the voltage V LC applied to the liquid crystal are shown in the table below. It became like. In addition, the unit of voltage is volt after this.

【0053】[0053]

【表1】 [Table 1]

【0054】図4に示すVON,VOFFはそれぞれ9.16
ボルト,6.85ボルトとなった。本実施例では、配向
膜の形成プロセス温度を溶剤を除去するために十分な16
0℃という従来に比べて非常に低い温度とした。また傾
き角は1.2 度という従来の縦電界方式では配向不良が
生じてしまうほど、低い値になったが、リバースチルト
ドメインのような配向不良はまったく生じなかった。ま
た、傾き角が低くなった効果として、配向の不均一性が
なくなり、表示の均一性も高まった。表示性能を輝度計
で測定したところ、十分に高いコントラスト比80が得
られた。また、液晶の汚染等に伴うような表示むらも一
切見られず、均一性の高い表示が得られた。さらに、固
定パターンを一時間表示した後、別のパターンに切り替
えたところ残像(焼き付き)現象はまったく視認され
ず、瞬時に新しいパターンに切り替わった。
V ON and V OFF shown in FIG. 4 are 9.16 respectively.
It became 6.85 volts. In this embodiment, the process for forming the alignment film is performed at a temperature sufficient to remove the solvent.
The temperature was 0 ° C, which is much lower than the conventional temperature. The tilt angle was 1.2 degrees, which was low enough to cause alignment defects in the conventional longitudinal electric field method, but alignment defects such as reverse tilt domains did not occur at all. Further, as an effect of reducing the tilt angle, the nonuniformity of the alignment is eliminated, and the uniformity of the display is improved. When the display performance was measured with a luminance meter, a sufficiently high contrast ratio of 80 was obtained. Further, no display unevenness due to contamination of the liquid crystal was observed, and a highly uniform display was obtained. Furthermore, when the fixed pattern was displayed for one hour and then switched to another pattern, the afterimage (burn-in) phenomenon was not visually recognized at all, and the pattern was immediately switched to a new pattern.

【0055】〔実施例2〕本実施例では実施例1のポリ
イミド配向膜を溶剤可溶型のポリアミドHTX−670
0(日立化成製)に変えた。実施例1と同様に、溶液状
態でポリアミドを塗布した後、この溶液を150℃まで
加熱し、30分放置し溶剤を除去し、緻密なポリアミド
配向膜を得た。傾き角は、1.0 度であった。他の構成
は実施例1と同じである。モジュール化して特性を評価
したところ、十分に高いコントラスト比100が得ら
れ、配向の不均一性やリバースチルトドメインのような
配向不良、液晶の汚染等に伴う表示むらも一切見られ
ず、均一性の高い表示が得られた。また、固定パターン
を一時間表示した後、別のパターンに切り替えたところ
残像(焼き付き)現象はまったく視認されず、瞬時に新
しいパターンに切り替わった。
[Embodiment 2] In this embodiment, a solvent-soluble polyamide HTX-670 is used as the polyimide alignment film of Embodiment 1.
Changed to 0 (manufactured by Hitachi Chemical). As in Example 1, after coating the polyamide in a solution state, the solution was heated to 150 ° C. and left for 30 minutes to remove the solvent, thereby obtaining a dense polyamide alignment film. The tilt angle was 1.0 degree. Other configurations are the same as those in the first embodiment. As a result of modularization and evaluation of characteristics, a sufficiently high contrast ratio of 100 was obtained, and no unevenness of alignment, misalignment such as reverse tilt domain, display unevenness due to liquid crystal contamination, etc. were observed at all, and uniformity was observed. High display was obtained. When the fixed pattern was displayed for one hour and then switched to another pattern, the afterimage (burn-in) phenomenon was not visually recognized at all, and the pattern was immediately switched to a new pattern.

【0056】〔比較例1〕従来型の縦電界方式用薄膜ト
ランジスタマトリクス基板上に実施例2と同様の方法で
配向膜を形成した。カラーフィルタは対向基板上に形成
された透明導電膜の下に形成した。表示方式はツイステ
ッドネマチック方式とした。また、液晶材料としては汚
染されておらず抵抗値が1014Ω・cmあるものを用い
た。これらの点以外は実施例2と同じようにした。
Comparative Example 1 An alignment film was formed on the conventional vertical electric field type thin film transistor matrix substrate in the same manner as in Example 2. The color filter was formed under the transparent conductive film formed on the counter substrate. The display system was a twisted nematic system. As the liquid crystal material, a material which was not contaminated and had a resistance value of 10 14 Ω · cm was used. Except for these points, the same procedure as in Example 2 was performed.

【0057】その結果、傾き角不足の為の配向不良ドメ
インが画素端部に発生し光散乱現象が起きコントラスト
比が25:1まで低下した。また、汚染した液晶を用い
た時に現れる表示むらも発生した。
As a result, a misalignment domain due to insufficient tilt angle was generated at the pixel edge, a light scattering phenomenon occurred, and the contrast ratio was lowered to 25: 1. In addition, display unevenness that occurs when a contaminated liquid crystal is used also occurs.

【0058】〔実施例3〕本実施例では、カラーフィル
タを対向基板側に形成した。本実施例の液晶表示装置の
断面模式図を図10に示す。対向側の基板7の上に、複
数の色を有するカラ−フィルタ23cを積層し、複数の
色の境界がマトリクス基板上の遮光層22の真上に配置
されている。遮光部の幅は50μmと一般的な液晶パネ
ル組立て装置の基板間のアライメント精度の3〜10μ
mに比べて大変に広いため、極めて簡便に組み立てられ
る。また、本実施例のカラーフィルタは、富士写真フィ
ルム社製のポジ型フィルムFUJICHROME,PROVIA,100DAY
LIGHT,RDPII135 に一回の光照射で複数の色のパターン
を形成して作製した。フィルムはあらかじめ2枚の保護
フィルムの間に複数の発色層を有し、そのため液晶表示
装置として必要な色のパターンに対応したフォトマスク
を通して光を照射すれば、1回の光照射でカラーフィル
タが得られる。この、カラーフィルタを対向基板の上に
エポキシ系接着剤により加圧しながら室温で接着した
後、実施例と同様の配向膜形成プロセスを経てセル化し
た。この際、溶剤は80℃で、10mmHgの減圧状態で
5時間かけて除去した。その他の条件は、実施例2と同
様である。
[Embodiment 3] In this embodiment, a color filter is formed on the counter substrate side. A schematic sectional view of the liquid crystal display device of this embodiment is shown in FIG. Color filters 23c having a plurality of colors are stacked on the substrate 7 on the opposite side, and boundaries of the plurality of colors are arranged right above the light shielding layer 22 on the matrix substrate. The width of the light-shielding portion is 50 μm, which is 3 to 10 μ which is the alignment accuracy between the substrates of a general liquid crystal panel assembling apparatus.
Since it is much wider than m, it is extremely easy to assemble. In addition, the color filter of this embodiment is a positive type film FUJICHROME, PROVIA, 100DAY manufactured by Fuji Photo Film Co., Ltd.
A pattern of multiple colors was formed on the LIGHT and RDPII135 by one irradiation. The film has a plurality of color-developing layers between two protective films in advance. Therefore, if light is irradiated through a photomask corresponding to a color pattern required for a liquid crystal display device, the color filter can be irradiated by one light irradiation. can get. The color filter was adhered onto the counter substrate at room temperature while being pressed with an epoxy adhesive, and then the cells were formed into cells through the same alignment film forming process as in the example. At this time, the solvent was removed at 80 ° C. under a reduced pressure of 10 mmHg for 5 hours. Other conditions are the same as those in the second embodiment.

【0059】モジュール化して特性を評価したところ、
十分に高いコントラスト比100が得られ、配向の不均
一性やリバースチルトドメインのような配向不良、液晶
の汚染等に伴う表示むらも一切見られず、均一性の高い
表示が得られた。また、固定パターンを一時間表示した
後、別のパターンに切り替えたところ残像(焼き付き)現
象はまったく視認されず、瞬時に新しいパターンに切り
替わった。加えて、このようなポジ型フィルムから作製
したカラーフィルタの色調は非常に鮮やかで、これを用
いた本発明の液晶表示装置の色も鮮やかになった。
When the characteristics were evaluated by modularizing,
A sufficiently high contrast ratio of 100 was obtained, and display with high uniformity was obtained without any non-uniformity of alignment, alignment failure such as reverse tilt domain, and display unevenness due to liquid crystal contamination. When the fixed pattern was displayed for one hour and then switched to another pattern, the afterimage (burn-in) phenomenon was not observed at all, and the pattern was immediately switched to a new pattern. In addition, the color tone of the color filter made from such a positive type film is very vivid, and the color of the liquid crystal display device of the present invention using it is also vivid.

【0060】なお、本実施例では発色層を保護フィルム
の間にサンドイッチしたものを用い、カラーフィルタパ
ターンを形成した後にガラス基板と接着したが、初めか
らガラス基板上に発色層を形成しても構わない。また、
光露光は1回が製造コストの点では望ましいが、複数回
行っても構わない。
In this embodiment, a color-developing layer sandwiched between protective films was used and bonded to a glass substrate after forming a color filter pattern. However, even if the color-developing layer is formed on the glass substrate from the beginning. I do not care. Also,
The light exposure is preferably performed once, but it may be performed multiple times.

【0061】〔実施例4〕本実施例では、Kodak 社製
のポジ型フィルムEKTACHROME DYNA 100を用いて実施例
3と同様のプロセスでカラーフィルタを作製した。ま
た、カラーフィルタのパターンの中に遮光層を備え、ア
クティブ素子内には遮光層を形成しなかった。図12は
本実施例のカラーフィルタ内の遮光層の配列を示す。図
12(a)は側断面を、図12(b)正面から見たとき
のパターンを表す。
Example 4 In this example, a color filter was produced by using the positive type film EKTACHROME DYNA 100 manufactured by Kodak Company in the same process as in Example 3. In addition, the light shielding layer was provided in the color filter pattern, and the light shielding layer was not formed in the active element. FIG. 12 shows the arrangement of the light shielding layers in the color filter of this embodiment. FIG. 12A shows a pattern when the side cross section is viewed from the front of FIG. 12B.

【0062】同様に、モジュール化して特性を評価した
ところ、十分に高いコントラスト比90が得られ、配向
の不均一性やリバースチルトドメインのような配向不
良,液晶の汚染等に伴う表示むらも一切見られず、均一
性の高い表示が得られた。また、固定パターンを一時間
表示した後、別のパターンに切り替えたところ残像(焼
き付き)現象もまったく視認されず、瞬時に新しいパタ
ーンに切り替わった。実施例3と同じく、このようなポ
ジ型フィルムから作製したカラーフィルタの色調は非常
に鮮やかで、これを用いた本実施例の液晶表示装置の色
も鮮やかになった。
Similarly, when the characteristics were evaluated by modularization, a sufficiently high contrast ratio 90 was obtained, and there was no display unevenness due to alignment nonuniformity, reverse tilt domains such as reverse tilt domains, and liquid crystal contamination. It was not seen, and a highly uniform display was obtained. Also, when the fixed pattern was displayed for one hour and then switched to another pattern, the afterimage (burn-in) phenomenon was not observed at all, and the pattern was immediately switched to a new pattern. As in Example 3, the color tone of the color filter made from such a positive type film was very vivid, and the color of the liquid crystal display device of this example using it was also vivid.

【0063】以上実施例1から4により、薄膜トランジ
スタ素子のようなアクティブ素子において横電界方式と
溶剤に可溶なポリマを配向膜として採用することによ
り、液晶の汚染に対する裕度や、配向膜ワニスを塗布し
た後の加熱温度が低くて良い等配向プロセスに対する裕
度が増大し、表示むらのない高画質の液晶表示装置が得
られた。
According to Examples 1 to 4 described above, in the active element such as the thin film transistor element, the lateral electric field method and the polymer soluble in the solvent are used as the alignment film, so that the tolerance against liquid crystal contamination and the alignment film varnish can be improved. Since the heating temperature after coating is low and the tolerance for the equi-orientation process is increased, a high quality liquid crystal display device without display unevenness was obtained.

【0064】[0064]

【発明の効果】本発明によれば、薄膜トランジスタ素子
のようなアクティブマトリクス素子において横電界方式
と塗布後の加熱温度が低くて良い溶剤に可溶なポリマを
組み合わせることにより、液晶の汚染や、配向プロセス
に対する裕度が増大し、表示むらのない高画質の液晶表
示装置が得られる。
According to the present invention, in an active matrix device such as a thin film transistor device, by combining a lateral electric field system and a polymer soluble in a solvent which can be heated at a low heating temperature after coating, liquid crystal contamination and alignment can be achieved. A high-quality liquid crystal display device with no display unevenness can be obtained because of increased process margin.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示装置における液晶の動作を示
す図。
FIG. 1 is a diagram showing an operation of liquid crystal in a liquid crystal display device of the present invention.

【図2】電界方向に対する、界面上の分子長軸配向方向
(ラビング方向)φLC,偏光板偏光透過軸方向φP のな
す角を示す図。
FIG. 2 is a diagram showing an angle formed by a molecular long-axis orientation direction (rubbing direction) φ LC on the interface and a polarizing plate polarization transmission axis direction φ P with respect to an electric field direction.

【図3】本発明の液晶表示装置の薄膜トランジスタ,電
極,配線の構造を示す図。[(a)正面図、(b),
(c)側断面図。]
FIG. 3 is a diagram showing a structure of a thin film transistor, an electrode, and a wiring of the liquid crystal display device of the present invention. [(A) Front view, (b),
(c) Side sectional view. ]

【図4】本発明の液晶表示装置の電気光学特性を示す
図。
FIG. 4 is a diagram showing electro-optical characteristics of the liquid crystal display device of the present invention.

【図5】本発明の液晶表示装置の複数画素の配置を示す
図。
FIG. 5 is a diagram showing an arrangement of a plurality of pixels of the liquid crystal display device of the present invention.

【図6】本発明の液晶表示装置の複数画素の配置を示す
図。
FIG. 6 is a diagram showing an arrangement of a plurality of pixels in the liquid crystal display device of the present invention.

【図7】本発明の液晶表示装置の製造プロセスを示す
図。
FIG. 7 is a diagram showing a manufacturing process of the liquid crystal display device of the present invention.

【図8】本発明の液晶表示装置の製造プロセスを示す
図。
FIG. 8 is a diagram showing a manufacturing process of the liquid crystal display device of the present invention.

【図9】本発明の液晶表示装置の製造プロセスを示す
図。
FIG. 9 is a diagram showing a manufacturing process of the liquid crystal display device of the present invention.

【図10】カラーフィルタを搭載した本発明の液晶表示
装置の側断面図。
FIG. 10 is a side sectional view of a liquid crystal display device of the present invention equipped with a color filter.

【図11】本発明の液晶表示装置のカラーフィルタの製
法を示す図。
FIG. 11 is a diagram showing a method for manufacturing a color filter of the liquid crystal display device of the present invention.

【図12】本発明の液晶表示装置のカラーフィルタの別
の実施例。
FIG. 12 is another embodiment of the color filter of the liquid crystal display device of the present invention.

【図13】本発明の液晶表示装置の回路を示す図。FIG. 13 is a diagram showing a circuit of a liquid crystal display device of the present invention.

【図14】本発明の液晶表示装置の別の駆動波形を示す
図。
FIG. 14 is a diagram showing another drive waveform of the liquid crystal display device of the present invention.

【符号の説明】[Explanation of symbols]

1…共通電極(コモン電極)、2…ゲート絶縁膜、3…
信号電極(ドレイン電極)、4…画素電極(ソース電
極)、5…保護絶縁膜、6…液晶組成物層中の液晶分
子、7…基板、8…偏光板、9…電界方向、10…界面
上の分子長軸配向方向(ラビング方向)、11…偏光板
偏光透過軸方向、12…走査電極(ゲート電極)、13
…アモルファスシリコン、14…薄膜トランジスタ素
子、15…1画素ピッチ、16…付加容量素子部、17
…コントロール回路、18…信号電極駆動回路、19…
走査電極駆動回路、20…共通電極駆動回路、21…表
示領域、22…遮光層、23a…発色層、23b…平坦
化膜、23c…カラーフィルタ、23d…高分子保護
膜、24a…ポリマ溶液、24b…ポリマ、24c…ラ
ビングローラ、24d…配向膜、25…フォトマスク、
26…光、27…シール剤、28…封止剤。
1 ... Common electrode (common electrode), 2 ... Gate insulating film, 3 ...
Signal electrode (drain electrode), 4 ... Pixel electrode (source electrode), 5 ... Protective insulating film, 6 ... Liquid crystal molecules in liquid crystal composition layer, 7 ... Substrate, 8 ... Polarizing plate, 9 ... Electric field direction, 10 ... Interface Upper molecular long axis alignment direction (rubbing direction), 11 ... Polarizing plate polarization transmission axis direction, 12 ... Scan electrode (gate electrode), 13
... amorphous silicon, 14 ... thin film transistor element, 15 ... 1 pixel pitch, 16 ... additional capacitance element section, 17
... Control circuit, 18 ... Signal electrode drive circuit, 19 ...
Scan electrode drive circuit, 20 ... Common electrode drive circuit, 21 ... Display area, 22 ... Light-shielding layer, 23a ... Coloring layer, 23b ... Flattening film, 23c ... Color filter, 23d ... Polymer protective film, 24a ... Polymer solution, 24b ... Polymer, 24c ... Rubbing roller, 24d ... Alignment film, 25 ... Photomask,
26 ... Light, 27 ... Sealing agent, 28 ... Sealing agent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒谷 介和 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keikazu Araya 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】以下の工程からなることを特徴とする液晶
表示装置の製造方法。 (1)セルを構成する一対の基板の一方の基板上に走査
電極,共通電極,走査電極と交差する信号電極,アクテ
ィブ素子,画素電極を有し、該画素電極と該共通電極が
主として液晶に対して基板面に平行な電界を印加するよ
うに配置されたマトリクス素子を形成する工程。 (2)該基板上に、溶剤に可溶なポリマの溶液を塗布す
る工程。 (3)該ポリマの溶液中の溶剤を除去する工程。 (4)該ポリマの表面に液晶分子配向能を付与する工
程。 (5)表面に液晶分子配向能を有する一対の基板をスペ
ーサと基板周辺部に形成されたシール部とを介して、液
晶分子配向能を有する表面どうしを相対向させてセルを
組み立てる工程。 (6)該セルに液晶組成物を注入,封止し液晶セルを形
成する工程。 (7)該液晶セルに駆動回路,偏光手段を接続しモジュ
ール化する工程。
1. A method of manufacturing a liquid crystal display device, comprising the following steps. (1) A scan electrode, a common electrode, a signal electrode intersecting with the scan electrode, an active element, and a pixel electrode are provided on one of a pair of substrates forming a cell, and the pixel electrode and the common electrode are mainly liquid crystals. A step of forming matrix elements arranged so as to apply an electric field parallel to the substrate surface. (2) A step of applying a solution of a polymer soluble in a solvent onto the substrate. (3) A step of removing the solvent in the solution of the polymer. (4) A step of imparting liquid crystal molecule aligning ability to the surface of the polymer. (5) A step of assembling a cell in which a pair of substrates having liquid crystal molecule aligning ability on their surfaces are opposed to each other with surfaces having liquid crystal molecule aligning ability facing each other through a spacer and a seal portion formed around the substrate. (6) A step of injecting and sealing a liquid crystal composition into the cell to form a liquid crystal cell. (7) A step of connecting a driving circuit and a polarizing means to the liquid crystal cell to form a module.
【請求項2】前記アクティブ素子が薄膜トランジスタ素
子であることを特徴とする請求項1に記載の液晶表示装
置の製造方法。
2. The method for manufacturing a liquid crystal display device according to claim 1, wherein the active element is a thin film transistor element.
【請求項3】前記溶剤に可溶なポリマがポリイミドであ
ることを特徴とする請求項1に記載の液晶表示装置の製
造方法。
3. The method of manufacturing a liquid crystal display device according to claim 1, wherein the solvent-soluble polymer is polyimide.
【請求項4】前記溶剤に可溶なポリマがポリアミドであ
ることを特徴とする請求項1に記載の液晶表示装置の製
造方法。
4. The method of manufacturing a liquid crystal display device according to claim 1, wherein the solvent-soluble polymer is polyamide.
【請求項5】前記一対の基板のうち前記マトリクス素子
を有する基板に対向する基板が(2)から(4)の工程を
経ることを特徴とする請求項1に記載の液晶表示装置の
製造方法。
5. The method of manufacturing a liquid crystal display device according to claim 1, wherein the substrate facing the substrate having the matrix element among the pair of substrates undergoes steps (2) to (4). .
【請求項6】前記マトリクス素子を有する基板に対向す
る基板上にカラーフィルタを形成し、液晶セルとして複
数の発色能を付与したことを特徴とする請求項5に記載
の液晶表示装置の製造方法。
6. The method for manufacturing a liquid crystal display device according to claim 5, wherein a color filter is formed on a substrate facing the substrate having the matrix element, and a plurality of color forming functions are provided as a liquid crystal cell. .
【請求項7】前記一対の基板のうち前記マトリクス素子
を有する基板が(2)から(4)の工程を経ることを特
徴とする請求項1に記載の液晶表示装置の製造方法。
7. The method of manufacturing a liquid crystal display device according to claim 1, wherein the substrate having the matrix element among the pair of substrates undergoes steps (2) to (4).
【請求項8】前記マトリクス素子を有する基板上にカラ
ーフィルタを形成し、液晶セルとして複数の発色能を付
与したことを特徴とする請求項7に記載の液晶表示装置
の製造方法。
8. The method of manufacturing a liquid crystal display device according to claim 7, wherein a color filter is formed on the substrate having the matrix element, and a plurality of color forming functions are provided as a liquid crystal cell.
【請求項9】以下の工程からなることを特徴とする請求
項6あるいは8に記載の液晶表示装置の製造方法。 (1)複数の発色層を有する膜を形成する工程。 (2)複数の色からなる光パターンを照射しカラーフィ
ルタを形成する工程。
9. The method for manufacturing a liquid crystal display device according to claim 6, which comprises the following steps. (1) A step of forming a film having a plurality of coloring layers. (2) A step of forming a color filter by irradiating a light pattern having a plurality of colors.
【請求項10】光照射工程が1回であることを特徴とす
る請求項9に記載の液晶表示装置の製造方法。
10. The method for manufacturing a liquid crystal display device according to claim 9, wherein the light irradiation step is performed once.
【請求項11】1対の高分子保護膜で挟まれた前記発色
層からなるフィルムに光パターンを照射しカラーフィル
タを形成した後、前記一方の基板上に該フィルムを貼付
けすることを特徴とする請求項9あるいは10に記載の
液晶表示装置の製造方法。
11. A film comprising the color-forming layer sandwiched between a pair of polymer protective films is irradiated with a light pattern to form a color filter, and then the film is attached onto the one substrate. The method for manufacturing a liquid crystal display device according to claim 9 or 10.
【請求項12】前記液晶セル組立て時に複数のカラーフ
ィルタの境界部を遮光する遮光層を前記一対の基板の少
なくとも一方の基板上に形成することを特徴とする請求
項6あるいは8に記載の液晶表示装置の製造方法。
12. The liquid crystal according to claim 6, wherein a light-shielding layer that shields a boundary between a plurality of color filters when forming the liquid crystal cell is formed on at least one of the pair of substrates. Manufacturing method of display device.
【請求項13】前記マトリクス素子を有する基板上に前
記遮光層を形成し、前記マトリクス素子に対向する基板
上に前記複数のカラーフィルタを形成することを特徴と
する請求項12に記載の液晶表示装置の製造方法。
13. The liquid crystal display according to claim 12, wherein the light shielding layer is formed on a substrate having the matrix element, and the plurality of color filters are formed on a substrate facing the matrix element. Device manufacturing method.
【請求項14】前記マトリクス素子を有する基板上に前
記遮光層と前記複数のカラーフィルタを形成することを
特徴とする手段12に記載の液晶表示装置の製造方法。
14. The method of manufacturing a liquid crystal display device according to claim 12, wherein the light shielding layer and the plurality of color filters are formed on a substrate having the matrix element.
JP6046810A 1994-03-17 1994-03-17 Production of liquid crystal display device Pending JPH07261181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6046810A JPH07261181A (en) 1994-03-17 1994-03-17 Production of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6046810A JPH07261181A (en) 1994-03-17 1994-03-17 Production of liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH07261181A true JPH07261181A (en) 1995-10-13

Family

ID=12757690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046810A Pending JPH07261181A (en) 1994-03-17 1994-03-17 Production of liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH07261181A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838037A (en) * 1996-11-15 1998-11-17 Mitsubishi Denki Kabushiki Kaisha TFT-array and manufacturing method therefor
US6621102B2 (en) 1995-11-04 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
JP2004038196A (en) * 2003-08-22 2004-02-05 Toray Ind Inc Liquid crystal display
KR100494638B1 (en) * 2001-03-15 2005-06-13 엔이씨 엘씨디 테크놀로지스, 엘티디. Active matrix type liquid crystal display device and method of manufacturing the same
JP2007256378A (en) * 2006-03-20 2007-10-04 Jsr Corp Vertical liquid crystal aligning agent and vertical liquid crystal display element
CN101676363A (en) * 2008-09-18 2010-03-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal display element and compound
US7692749B2 (en) 1995-12-20 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621102B2 (en) 1995-11-04 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving
US7692749B2 (en) 1995-12-20 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8040450B2 (en) 1995-12-20 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8339558B2 (en) 1995-12-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US9182642B2 (en) 1995-12-20 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US5838037A (en) * 1996-11-15 1998-11-17 Mitsubishi Denki Kabushiki Kaisha TFT-array and manufacturing method therefor
KR100494638B1 (en) * 2001-03-15 2005-06-13 엔이씨 엘씨디 테크놀로지스, 엘티디. Active matrix type liquid crystal display device and method of manufacturing the same
JP2004038196A (en) * 2003-08-22 2004-02-05 Toray Ind Inc Liquid crystal display
JP2007256378A (en) * 2006-03-20 2007-10-04 Jsr Corp Vertical liquid crystal aligning agent and vertical liquid crystal display element
CN101676363A (en) * 2008-09-18 2010-03-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal display element and compound

Similar Documents

Publication Publication Date Title
US10613390B2 (en) Liquid crystal display device and manufacturing method thereof
US6958799B2 (en) Liquid crystal display
KR101001520B1 (en) In Plane Switching mode liquid crystal display device and the fabrication method thereof
JP3339456B2 (en) Liquid crystal display
JP3161393B2 (en) Active matrix type liquid crystal display
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JPH07318940A (en) Liquid crystal display device
JPH07261181A (en) Production of liquid crystal display device
JPH08334786A (en) Liquid crystal display element and its production
WO2018101442A1 (en) Liquid crystal display device and method for producing same
JP4028633B2 (en) Liquid crystal display
JP2002214613A (en) Liquid crystal display
JP2003035905A (en) Liquid crystal display and color filter and array substrate for liquid crystal display
JP2000137229A (en) Liquid crystal display device
US20040105066A1 (en) Liquid crystal display panel and method of manufacturing the same
JP3395884B2 (en) Liquid crystal display panel and method of manufacturing the same
JPH0829790A (en) Liquid crystal display device
JP3207374B2 (en) Liquid crystal display device
JP3989575B2 (en) LCD panel
JPH07261169A (en) Liquid crystal display device
JPH095701A (en) Liquid crystal display device
JP2945893B1 (en) Liquid crystal display
JPH08179305A (en) Liquid crystal display element
JP2013003463A (en) Liquid crystal display device
JP3441999B2 (en) Liquid crystal display