JPH07261141A - Polarization controller - Google Patents

Polarization controller

Info

Publication number
JPH07261141A
JPH07261141A JP6047526A JP4752694A JPH07261141A JP H07261141 A JPH07261141 A JP H07261141A JP 6047526 A JP6047526 A JP 6047526A JP 4752694 A JP4752694 A JP 4752694A JP H07261141 A JPH07261141 A JP H07261141A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
polarization control
polarization
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6047526A
Other languages
Japanese (ja)
Inventor
Masashi Watanabe
真史 渡邉
Akihiro Mochizuki
昭宏 望月
Shigeo Kasahara
滋雄 笠原
Hironori Shirato
博紀 白戸
Tetsuya Makino
哲也 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6047526A priority Critical patent/JPH07261141A/en
Publication of JPH07261141A publication Critical patent/JPH07261141A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a polarization controller which controls the polarization plane of input light and is capable of sufficiently rotating the polarization plane. CONSTITUTION:A ferroelectric liquid crystal material 15 is sealed with glass substrates 16, 17 having electrodes 18, 19 and oriented films 20, 21 formed on them. A double refractive plate 14 which is arranged to align the optical axis to the optical axis of one stable state of the two stable states common to two ferroelectric liquid crystal elements 12, 13 and has the refractiveness set with a retardation omega in such a manner that the polarized light component of the incident light in the same direction as the direction of the exit light at the time of rotation of the polarized light of the incident light attains <=5% of the incident light is arranged between the ferroelectric liquid crystal elements 12, 13 arranged in such a manner that the major axes of the molecules face the same direction by impression of electric fields of the same polarities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は偏光制御装置に係り、特
に入力光の偏光面を制御する偏光制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization controller, and more particularly to a polarization controller for controlling the plane of polarization of input light.

【0002】光コンピュータ、光交換機などの分野にお
いては光の偏光を利用した素子の研究・開発が活発に行
われている。液晶は二次元化可能な偏光制御素子であ
り、中でも強誘電性液晶はその高速応答性、メモリ性等
の優れた性質によりその利用が非常に期待されている。
このような偏光制御装置には効率良く偏光制御する技術
が望まれている。
In the fields of optical computers, optical exchangers, etc., research and development of elements utilizing polarization of light are being actively conducted. Liquid crystals are two-dimensional polarization control elements, and among them, ferroelectric liquid crystals are highly expected to be used because of their excellent properties such as high-speed response and memory.
A technique for efficiently controlling polarization is demanded for such a polarization controller.

【0003】[0003]

【従来の技術】従来、偏光制御素子としては強誘電性液
晶を用いたものが知られている。図7に従来の強誘電性
液晶を用いた偏光制御装置の構成図を示す。
2. Description of the Related Art Conventionally, a polarization control element using a ferroelectric liquid crystal is known. FIG. 7 shows a configuration diagram of a conventional polarization control device using a ferroelectric liquid crystal.

【0004】従来の偏光制御装置32は内面側に透明電
極33,34及び配向膜35,36が形成されたガラス
基板37,38で液晶39を挟持し、封入した構成とさ
れている。
The conventional polarization control device 32 has a structure in which a liquid crystal 39 is sandwiched and enclosed by glass substrates 37 and 38 having transparent electrodes 33 and 34 and alignment films 35 and 36 formed on the inner surface side.

【0005】透明電極33,34には偏光制御回路40
より偏光制御信号が供給されており、この偏光制御信号
の極性に応じて、液晶39の分子長軸方向を変化させ、
入射光Iの偏光面を回転させて、出射させる構成とされ
ていた。
A polarization control circuit 40 is provided on the transparent electrodes 33 and 34.
Further, a polarization control signal is supplied, and the molecular long axis direction of the liquid crystal 39 is changed according to the polarity of the polarization control signal.
The polarization plane of the incident light I is rotated and emitted.

【0006】[0006]

【発明が解決しようとする課題】しかるに、従来の偏光
制御装置では入射光を一つの強誘電性液晶素子で偏光制
御する構成であり、この場合、配向欠陥のないブックシ
ェルフ構造をもつ、強誘電性液晶素子を用いても偏光面
の充分な回転が起こらず偏光のS−P変換をこの素子で
行った場合に透過する光量が著しく減少するなどの問題
を生じていた。
However, in the conventional polarization control device, the polarization of incident light is controlled by one ferroelectric liquid crystal element. In this case, the ferroelectric liquid crystal having a bookshelf structure without alignment defects is used. Even if a liquid crystal liquid crystal element is used, sufficient rotation of the plane of polarization does not occur, and when the SP conversion of polarized light is performed with this element, there is a problem in that the amount of transmitted light is significantly reduced.

【0007】本発明は上記の点に鑑みてなされたもので
偏光面の充分な回転が可能となる偏光制御装置を提供す
ることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a polarization control device capable of rotating a polarization plane sufficiently.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理構成
図を示す。第1の偏光制御手段1は所定のリタデーショ
ンφを有し、外部電界に応じて光の偏光面を回転させ
る。
FIG. 1 is a block diagram showing the principle of the present invention. The first polarization control means 1 has a predetermined retardation φ and rotates the polarization plane of light according to an external electric field.

【0009】第2の偏光制御手段2は第1の偏光制御手
段1と平行に配置され、第1の偏光制御手段1と同一の
リタデーションを有し、外部電界に応じて光の偏光面を
回転させる。
The second polarization control means 2 is arranged in parallel with the first polarization control means 1, has the same retardation as the first polarization control means 1, and rotates the polarization plane of light according to an external electric field. Let

【0010】補償板3は第1の偏光手段と第2の偏光手
段との間に平行に配置され、全体のリタデーションが第
1の偏光手段及び第2の偏光手段2のリタデーションφ
と結合して入射光I及び出射光Fの互いに直交する成分
が略同一レベルで出射されるように補償するリタデーシ
ョン(ω)を示す。
The compensating plate 3 is arranged in parallel between the first polarizing means and the second polarizing means, and the total retardation is the retardation φ of the first polarizing means and the second polarizing means 2.
Retardation (ω) is shown to compensate for the components of the incident light I and the emitted light F, which are orthogonal to each other, to be emitted at substantially the same level.

【0011】請求項2は、第1及び第2の偏光制御手段
1,2の補償板3に対向する一面を補償板と共用する。
According to a second aspect, one surface of the first and second polarization control means 1 and 2 facing the compensating plate 3 is shared with the compensating plate.

【0012】請求項3は、第1及び第2の偏光制御手段
1,2を強誘電性液晶15を配向膜20,21及び透明
電極17,18が形成された透明基板16,17で挟持
してなる強誘電性液晶素子で構成してなる。
According to a third aspect of the present invention, the first and second polarization control means 1 and 2 sandwich the ferroelectric liquid crystal 15 between the alignment films 20 and 21 and the transparent substrates 16 and 17 on which the transparent electrodes 17 and 18 are formed. It is composed of a ferroelectric liquid crystal element.

【0013】[0013]

【作用】第1及び第2の偏光手段として強誘電性液晶素
子を考えたとき、強誘電性液晶素子単体での光軸に垂直
な偏光の光がこの強誘電性液晶素子を通過したときの位
相を1としたとき、光軸に平行な偏光の光がこの強誘電
性液晶素子を通過したときの位相は
When a ferroelectric liquid crystal element is considered as the first and second polarization means, when the polarized light perpendicular to the optical axis of the ferroelectric liquid crystal element alone passes through the ferroelectric liquid crystal element. When the phase is set to 1, the phase when polarized light parallel to the optical axis passes through this ferroelectric liquid crystal element is

【0014】[0014]

【外1】 [Outer 1]

【0015】とかくことにする。このとき、φが強誘電
性液晶素子のリタデーションとなる。同様に補償板とし
て複屈折のある板を考えると、光軸に垂直な偏光の光が
この複屈折面のある板を通過したときの位相を1とした
とき、光軸に平行な偏光の光がこの強誘電性液晶素子を
通過したときの位相は
Anyway, At this time, φ becomes the retardation of the ferroelectric liquid crystal element. Similarly, considering a plate having birefringence as the compensating plate, when the phase of light polarized perpendicular to the optical axis when passing through the plate having the birefringent surface is 1, the light polarized parallel to the optical axis is assumed. When passing through this ferroelectric liquid crystal element, the phase is

【0016】[0016]

【外2】 [Outside 2]

【0017】とかくことにする。このとき、ωが複屈折
のある板のリタデーションとなる。これを行列表現する
と次に示す式1及び式2となる。
Anyway, At this time, ω becomes the retardation of the plate having birefringence. When this is expressed in a matrix, the following Expressions 1 and 2 are obtained.

【0018】[0018]

【数1】 [Equation 1]

【0019】また、強誘電性液晶は印加電界の極性反転
による分子長軸の変化角(ティルト角)をθとおくとこ
の素子全体の行列表現Mは式3の様に表現できる。
In the ferroelectric liquid crystal, if the change angle (tilt angle) of the molecular long axis due to the polarity reversal of the applied electric field is set to θ, the matrix expression M of this entire element can be expressed as in Expression 3.

【0020】[0020]

【数2】 [Equation 2]

【0021】ここで、入射光を行列表現Here, the incident light is expressed in a matrix.

【0022】[0022]

【数3】 [Equation 3]

【0023】出射光を行列表現Matrix expression of emitted light

【0024】[0024]

【数4】 [Equation 4]

【0025】とすると、出射光Fは、 F=MI で表現できる。今x軸方向に偏光した光を(1,0)と
すると、強誘電性液晶素子の光軸がx軸に一致するとき
には光はこのまま透過するが(θ=0とおくと式からも
求められる。)、この状態から分子長軸がθ変化すると
出射光Fは式4の様に表される。
Then, the outgoing light F can be expressed by F = MI. Assuming that the light polarized in the x-axis direction is (1, 0), the light is transmitted as it is when the optical axis of the ferroelectric liquid crystal element coincides with the x-axis (when θ = 0, it is also calculated from the formula. .), The outgoing light F is expressed as in Equation 4 when the molecular long axis changes by θ.

【0026】[0026]

【数5】 [Equation 5]

【0027】このときの出射光Fのx軸方向の振幅が0
となれば、もとの入射光Iの偏光に直交することにな
る。そうなるように複屈折のある板の位相の変化
At this time, the amplitude of the emitted light F in the x-axis direction is 0.
Then, it is orthogonal to the polarization of the original incident light I. Change of phase of plate with birefringence

【0028】[0028]

【外3】 [Outside 3]

【0029】つまり、リタデーションωを設定すれば効
率的な偏光の制御が行える。
That is, setting the retardation ω enables efficient control of polarization.

【0030】請求項2によれば、第1及び第2の偏光制
御手段の補償板に対向する面と、補償板の両面とを共通
化することにより、例えば、液晶封入用のガラス基板の
枚数を減らすことができるため、光の減衰を低減できる
と共に、装置の薄型化が可能となる。
According to the second aspect, by making the surfaces of the first and second polarization control means facing the compensating plate and both surfaces of the compensating plate common, for example, the number of glass substrates for liquid crystal encapsulation. Therefore, the attenuation of light can be reduced, and the device can be thinned.

【0031】[0031]

【実施例】図2に本発明の一実施例の構成図を示す。本
実施例の偏光制御装置11は強誘電性液晶素子12,1
3及び複屈折板14よりなり、強誘電性液晶素子12,
13の間に複屈折板14が挟まれて配置された構成とさ
れている。
FIG. 2 shows a block diagram of an embodiment of the present invention. The polarization control device 11 of this embodiment includes ferroelectric liquid crystal elements 12, 1
3 and a birefringent plate 14, and a ferroelectric liquid crystal element 12,
A birefringent plate 14 is sandwiched between 13 and arranged.

【0032】強誘電性液晶素子12,13は強誘電性液
晶材料15をガラス基板16,17で挟持し、ガラス基
板16,17間に封止した構成とされている。
The ferroelectric liquid crystal elements 12 and 13 are structured such that the ferroelectric liquid crystal material 15 is sandwiched between glass substrates 16 and 17 and sealed between the glass substrates 16 and 17.

【0033】ガラス基板16,17には夫々透明電極1
8,19が形成され、さらに透明電極18,19上には
配向膜20,21が形成されている。透明電極18,1
9には偏光制御回路22が接続されており、偏光制御回
路22は出射光の偏光状態に応じて透明電極18,19
に所定の電圧を印加する。
Transparent electrodes 1 are provided on the glass substrates 16 and 17, respectively.
8 and 19 are formed, and alignment films 20 and 21 are further formed on the transparent electrodes 18 and 19. Transparent electrode 18,1
A polarization control circuit 22 is connected to the polarization control circuit 22, and the polarization control circuit 22 transmits the transparent electrodes 18 and 19 in accordance with the polarization state of the emitted light.
A predetermined voltage is applied to.

【0034】また、強誘電性液晶素子12,13は液晶
材料15を光が通過したときの進相軸と遅相軸との位相
のずれ、すなわち、液晶を通過する間にその複屈折性に
より生じる常光、異常光間の位相差となるリタデーショ
ンφがφ=π/2,配向膜20,21のラビング方向R
を中心とした液晶分子のモーメントの方向の振れ角を意
味するティルト角θがθ=π/5となるように加工され
ている。
Further, the ferroelectric liquid crystal elements 12 and 13 have a phase shift between the fast axis and the slow axis when light passes through the liquid crystal material 15, that is, due to their birefringence while passing through the liquid crystal. The retardation φ, which is the phase difference between the ordinary light and the extraordinary light, is φ = π / 2, and the rubbing direction R of the alignment films 20 and 21.
The tilt angle θ, which means the deflection angle in the direction of the moment of the liquid crystal molecules centered at, is processed to be θ = π / 5.

【0035】複屈折板14は、スメクティックAの液晶
材料23を駆動用電極が形成されず、配向膜24,25
のみが形成されたガラス基板26,27の間に封入した
構成とされており、このとき、配向膜24,25のラビ
ング方向をR,リタデーションωをω=約−0.7 に設定
してなる。
In the birefringent plate 14, the liquid crystal material 23 of smectic A is not provided with a driving electrode, and the alignment films 24 and 25 are formed.
Only the glass substrates 26 and 27 are formed so as to be enclosed. At this time, the rubbing direction of the alignment films 24 and 25 is set to R, and the retardation ω is set to ω = about −0.7.

【0036】強誘電性液晶素子12,13は同じ極性の
電界の印加によって分子長軸が同じ方向を向くように配
置されている。複屈折板14はその光軸が、強誘電性液
晶素子12,13に共通する2つの安定状態のうち一方
の安定状態での光軸と一致して配置されている。
The ferroelectric liquid crystal elements 12 and 13 are arranged so that the major axes of their molecules are oriented in the same direction by the application of electric fields of the same polarity. The optical axis of the birefringent plate 14 is arranged so as to coincide with the optical axis in one stable state of the two stable states common to the ferroelectric liquid crystal elements 12 and 13.

【0037】この系で光の進行方向をz軸とし、複屈折
板14の光軸をx軸、z軸とx軸とに直交する軸をy軸
とすると入射光の偏光方向はx軸に一致するよう装置に
対して配置される。
In this system, when the light traveling direction is the z-axis, the optical axis of the birefringent plate 14 is the x-axis, and the axis orthogonal to the z-axis and the x-axis is the y-axis, the polarization direction of the incident light is the x-axis. Positioned against the device to match.

【0038】図3,図4に本発明の第1実施例の動作説
明図を示す。図3はx方向に偏光面をもつ入射光Iを回
転させずに出射光Fとして出力する場合の動作を説明す
るためのもので、このとき、偏光制御回路22により強
誘電性液晶素子12,13にローレベル信号を印加す
る。このとき、式(4)のθはθ=0となり、入射光I
がI=(1,0)であるとすれば、式(4)より出射光
FはF=(1,0)となる。
FIG. 3 and FIG. 4 show operation explanatory diagrams of the first embodiment of the present invention. FIG. 3 is for explaining the operation when the incident light I having a polarization plane in the x direction is output as the outgoing light F without being rotated. At this time, the polarization control circuit 22 causes the ferroelectric liquid crystal element 12, A low level signal is applied to 13. At this time, θ in the equation (4) becomes θ = 0, and the incident light I
Is I = (1,0), the output light F is F = (1,0) from the equation (4).

【0039】図4はx方向に偏光面をもつ入射光Iを9
0°回転させて、出射光Fとして出力する場合の動作説
明図で、このとき、偏光制御回路22から強誘電性液晶
素子12,13にハイレベル信号が印加され、液晶の分
子がθだけ回転する。
FIG. 4 shows the incident light I having a polarization plane in the x direction
In the operation explanatory view in the case of rotating as 0 ° and outputting as the emitted light F, at this time, a high level signal is applied from the polarization control circuit 22 to the ferroelectric liquid crystal elements 12 and 13, and the molecules of the liquid crystal rotate by θ. To do.

【0040】本実施例によれば、x軸方向に偏光した光
をそのまま透過させたときの透過光のx軸成分の強度を
1としたとき、偏光面を回転させたときの透過光のy成
分の透過光強度は0.975 となる。また、強誘電性液晶素
子を単体で用いた場合は偏光面を回転させたときの透過
光のy軸成分の透過光強度は0.931 であった。このよう
に、強度が0.931 から0.975 に向上し、偏光を回転させ
る機能が向上する。
According to this embodiment, when the intensity of the x-axis component of the transmitted light when the light polarized in the x-axis direction is transmitted as it is, the y of the transmitted light when the polarization plane is rotated is set. The transmitted light intensity of the component is 0.975. When the ferroelectric liquid crystal element was used alone, the transmitted light intensity of the y-axis component of the transmitted light when the polarization plane was rotated was 0.931. In this way, the intensity is increased from 0.931 to 0.975, and the function of rotating the polarized light is improved.

【0041】このとき、強誘電性液晶素子12,13の
リタデーションをφ,複屈折板14のリタデーションを
ω,強誘電性液晶素子12,13の分極反転に伴う液晶
分子長軸の変化角をθとし入射光
At this time, the retardation of the ferroelectric liquid crystal elements 12 and 13 is φ, the retardation of the birefringent plate 14 is ω, and the change angle of the liquid crystal molecule long axis due to the polarization reversal of the ferroelectric liquid crystal elements 12 and 13 is θ. And incident light

【0042】[0042]

【数6】 [Equation 6]

【0043】つまり、X軸方向に偏光面をもつとき、出
射光
That is, when the polarization plane is in the X-axis direction, the emitted light

【0044】[0044]

【数7】 [Equation 7]

【0045】のX軸方向に偏光面をもつ偏光の強度とな
ることが望ましい。
It is desirable that the intensity of polarized light has a polarization plane in the X-axis direction.

【0046】[0046]

【数8】 [Equation 8]

【0047】つまり、偏光の回転時に入射光と同じ方向
の偏光成分が入射光の5%以下となるようにリタデーシ
ョンφ,ωを設定することが望ましい。
That is, it is desirable to set the retardations φ and ω so that the polarization component in the same direction as the incident light becomes 5% or less of the incident light when the polarized light is rotated.

【0048】以上説明した様に、本実施によれば良好な
分子配向を持つにも係わらず従来は印加電界の極性反転
による分子長軸の変化角が小さいためにS−P変換素子
としてやや不適当であったものを2枚の強誘電性液晶素
子及び補償板のリタデーションにより補償し、充分な変
換角度が得られ高効率に変換が行なえる。
As described above, according to the present embodiment, the angle of change of the molecular long axis due to the polarity reversal of the applied electric field is small in spite of having a good molecular orientation, so that it is slightly unsuitable as an SP conversion element. The suitable one is compensated by the retardation of the two ferroelectric liquid crystal elements and the compensating plate, a sufficient conversion angle is obtained, and the conversion can be performed with high efficiency.

【0049】図5に本発明の第1実施例の適用例の構成
図を示す。
FIG. 5 shows a block diagram of an application example of the first embodiment of the present invention.

【0050】入射光は偏光板23に供給される。偏光板
23は所定の偏光面を持つ、S光のみを透過させ、偏光
制御装置11に供給される。
Incident light is supplied to the polarizing plate 23. The polarizing plate 23 transmits only S light having a predetermined polarization plane and is supplied to the polarization control device 11.

【0051】偏光制御装置11では偏光制御回路22か
らの制御信号に応じて供給されたS光をそのまま透過さ
せるか、S光の偏光面を2/π回転させたP光に変換さ
せて出射するかが制御される。
In the polarization control device 11, the S light supplied according to the control signal from the polarization control circuit 22 is transmitted as it is, or the S light is converted into P light whose polarization plane is rotated by 2 / π and emitted. Is controlled.

【0052】偏光制御装置11から出射した光は偏光ビ
ームスプリッタ24に供給される。偏光ビームスプリッ
タ24では偏光制御装置11からの出射光がS光であれ
ば、そのまま透過させ、P光であれば、光の入射方向に
対してπ/2折曲させて出射する。したがって、偏光ビ
ームスプリッタ24の出射光のS又はP光は偏光制御装
置11により変調された光として出力される。
The light emitted from the polarization controller 11 is supplied to the polarization beam splitter 24. In the polarization beam splitter 24, if the light emitted from the polarization control device 11 is S light, it is transmitted as it is, and if it is P light, it is bent π / 2 with respect to the light incident direction and is emitted. Therefore, the S or P light emitted from the polarization beam splitter 24 is output as light modulated by the polarization controller 11.

【0053】このとき、本実施例の偏光制御装置11を
用いることにより、S光からP光への変換時の減衰を小
さくでき、大きな変調光信号が得られる。
At this time, by using the polarization control device 11 of this embodiment, the attenuation at the time of conversion from S light to P light can be reduced, and a large modulated optical signal can be obtained.

【0054】図6に本発明の第2実施例の構成図を示
す。同図中、図2と同一構成部分には同一符号を付し、
その説明は省略する。
FIG. 6 shows a block diagram of the second embodiment of the present invention. In the figure, the same components as those in FIG.
The description is omitted.

【0055】本実施例は図2の強誘電性液晶素子13,
14の補償板14に対向する側のガラス基板16,17
と補償板14のガラス基板24,25とに変えて、それ
らを共用したガラス基板30,31を有する構成とされ
ている。
In this embodiment, the ferroelectric liquid crystal element 13 of FIG.
Glass substrates 16 and 17 on the side facing the compensating plate 14
In place of the glass substrates 24 and 25 of the compensating plate 14, the glass substrates 30 and 31 sharing them are provided.

【0056】ガラス基板26には外面に強誘電性液晶素
子12の電極19及び配向膜21が形成され、内面に複
屈折板14の配向膜26が形成される。
On the outer surface of the glass substrate 26, the electrodes 19 and the alignment film 21 of the ferroelectric liquid crystal element 12 are formed, and on the inner surface thereof, the alignment film 26 of the birefringent plate 14 is formed.

【0057】また、ガラス基板26には外面に強誘電性
液晶素子13の電極16,及び、配向膜20が形成さ
れ、内面に複屈折板14の配向膜27が形成される。
The electrode 16 of the ferroelectric liquid crystal element 13 and the alignment film 20 are formed on the outer surface of the glass substrate 26, and the alignment film 27 of the birefringent plate 14 is formed on the inner surface.

【0058】本実施例によれば、4枚のガラス基板1
6,17,24,25を2枚のガラス基板30,31に
することができるため、ガラス基板の枚数を減少させる
ことができ、したがって、薄型化が可能になると共に、
光の減衰を低減でき、さらに高効率の変換が可能にな
る。
According to this embodiment, four glass substrates 1 are used.
Since 6, 17, 24, and 25 can be replaced by the two glass substrates 30 and 31, the number of glass substrates can be reduced, and therefore, thinning is possible and
The light attenuation can be reduced, and more efficient conversion becomes possible.

【0059】なお、上記第1,第2本実施例では複屈折
板13を強誘電性液晶素子で構成したがこれに限ること
はなく、複屈折を有する固体の結晶で構成してもよい。
Although the birefringent plate 13 is composed of a ferroelectric liquid crystal element in the first and second embodiments, the invention is not limited to this, and it may be composed of a solid crystal having birefringence.

【0060】[0060]

【発明の効果】上述の如く、本発明の請求項1によれ
ば、第1及び第2の偏光制御手段、補償板のリタデーシ
ョンφ及びωにより入射光の偏光面の回転を補うことに
より分子長軸の変化角が小さい場合においても入射光の
充分な回転が得られるため、高効率な偏光制御が可能と
なる等の特長を有する。
As described above, according to claim 1 of the present invention, the rotation of the plane of polarization of incident light is compensated for by the first and second polarization control means and the retardations φ and ω of the compensating plate, thereby increasing the molecular length. Even if the change angle of the axis is small, the incident light can be sufficiently rotated, so that the polarization control can be performed with high efficiency.

【0061】請求項2によれば、第1,第2の偏光制御
手段の液晶等を封止するためのガラス基板を補償板の両
面と共用することにより、ガラス基板が不要となり、薄
型化することができると共に、ガラス基板による光の減
衰を低減できさらに高効率に偏光制御が行なえる等の特
長を有する。
According to the second aspect, the glass substrate for sealing the liquid crystal or the like of the first and second polarization control means is shared with both surfaces of the compensating plate, so that the glass substrate becomes unnecessary and the device is made thin. In addition to being able to reduce the light attenuation due to the glass substrate, the polarization control can be performed with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】本発明の第1実施例の構成図である。FIG. 2 is a configuration diagram of a first embodiment of the present invention.

【図3】本発明の第1実施例の動作説明図である。FIG. 3 is an operation explanatory diagram of the first embodiment of the present invention.

【図4】本発明の第1実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of the first embodiment of the present invention.

【図5】本発明の第1実施例の適用例の構成図である。FIG. 5 is a configuration diagram of an application example of the first embodiment of the present invention.

【図6】本発明の第2実施例の構成図である。FIG. 6 is a configuration diagram of a second embodiment of the present invention.

【図7】従来の一例の構成図である。FIG. 7 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 第1の偏光制御手段 2 第2の偏光制御手段 3 補償板 φ,ω リタデーション I 入射光 F 出射光 12,13 強誘電性液晶素子 14 複屈折板 15,23 強誘電性液晶材料 16,17,24,25 ガラス板 18,19 電極 20,21 配向膜 22 偏光制御回路 DESCRIPTION OF SYMBOLS 1 1st polarization control means 2 2nd polarization control means 3 Compensation plate (phi), (omega) retardation I Incident light F Emission light 12,13 Ferroelectric liquid crystal element 14 Birefringent plate 15,23 Ferroelectric liquid crystal material 16,17 , 24, 25 Glass plate 18, 19 Electrode 20, 21 Alignment film 22 Polarization control circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G09G 3/36 (72)発明者 白戸 博紀 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 牧野 哲也 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location G09G 3/36 (72) Inventor Hiroki Shirato 1015 Ueodachu, Nakahara-ku, Kawasaki-shi, Kanagawa Within Fujitsu Limited (72) Inventor Tetsuya Makino 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定のリタデーション(φ)を有し、外
部電界に応じて光の偏光面を回転させる第1の偏光制御
手段(1)と、 前記第1の偏光制御手段(1)に平行に配置され、前記
第1の偏光制御手段(1)と同一のリタデーション
(φ)を有し、外部電界に応じて光の偏光面を回転させ
る第2の偏光制御手段(2)と、 前記第1の偏光制御手段(1)と前記第2の偏光制御手
段(2)との間に平行に配置され、前記第1の偏光制御
手段(1)及び第2の偏光制御手段(2)のリタデーシ
ョン(φ)と結合して、入射光(I)及び出射光(F)
の互いに直交する成分が略同一となるように補償するリ
タデーション(ω)を有する補償板(3)とを有するこ
とを特徴とする偏光制御装置。
1. A first polarization control means (1) having a predetermined retardation (φ) and rotating a polarization plane of light according to an external electric field; and a first polarization control means (1) parallel to the first polarization control means (1). A second polarization control means (2), which has the same retardation (φ) as that of the first polarization control means (1) and rotates the polarization plane of light according to an external electric field; The first polarization control means (1) and the second polarization control means (2) are arranged in parallel to each other, and the retardation of the first polarization control means (1) and the second polarization control means (2). Incoming light (I) and outgoing light (F) in combination with (φ)
And a compensator (3) having a retardation (ω) for compensating so that the components orthogonal to each other are substantially the same.
【請求項2】 前記第1及び第2の偏光制御手段(1,
2)の前記補償板(3)と対向する一面を前記補償板
(3)と共用したことを特徴とする請求項1記載の偏光
制御装置。
2. The first and second polarization control means (1,
2. The polarization control device according to claim 1, wherein one surface of 2) facing the compensating plate (3) is shared with the compensating plate (3).
【請求項3】 前記第1及び第2の偏光制御手段(1,
2)は強誘電性液晶(15)を配向膜(20,21)及
び透明電極(18,19)が形成された透明基板(1
6,17)で挟持してなる強誘電性液晶素子(12,1
3)より構成されたことを特徴とする請求項1又は2記
載の偏光制御装置。
3. The first and second polarization control means (1,
2) is a transparent substrate (1) on which a ferroelectric liquid crystal (15) is formed with an alignment film (20, 21) and transparent electrodes (18, 19).
Ferroelectric liquid crystal element (12, 1) sandwiched by 6, 17)
3. The polarization control device according to claim 1, wherein the polarization control device is composed of 3).
JP6047526A 1994-03-17 1994-03-17 Polarization controller Withdrawn JPH07261141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6047526A JPH07261141A (en) 1994-03-17 1994-03-17 Polarization controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6047526A JPH07261141A (en) 1994-03-17 1994-03-17 Polarization controller

Publications (1)

Publication Number Publication Date
JPH07261141A true JPH07261141A (en) 1995-10-13

Family

ID=12777573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6047526A Withdrawn JPH07261141A (en) 1994-03-17 1994-03-17 Polarization controller

Country Status (1)

Country Link
JP (1) JPH07261141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295152A (en) * 2002-04-04 2003-10-15 Citizen Watch Co Ltd Liquid crystal optical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295152A (en) * 2002-04-04 2003-10-15 Citizen Watch Co Ltd Liquid crystal optical switch

Similar Documents

Publication Publication Date Title
JP3321617B2 (en) IPS mode liquid crystal display device
US5126864A (en) Ferroelectric liquid crystal panel having a ferroelectric optical compensating liquid crystal cell
US5568283A (en) Optical modulation device and display apparatus with three birefringent films each acting as a half waveplate
JPH1164852A (en) Projection type liquid crystal display device
JPH1195188A (en) Normally white supertwisted nematic liquid crystal display
JPH024212A (en) Liquid crystal shutter element
JPH07261141A (en) Polarization controller
JP2777369B2 (en) Liquid crystal display device
US6933999B2 (en) Liquid crystal display device
JPH0498223A (en) Liquid crystal element
JPH0473712A (en) Variable direction optical isolator
JPH083584B2 (en) Liquid crystal optical shutter
JP3006289B2 (en) Antiferroelectric liquid crystal display device
JP2877152B2 (en) LCD display
JPS5834429A (en) Polarizing element
JP2913823B2 (en) Liquid crystal display device and driving method thereof
JPH0643449A (en) Liquid crystal optical device
JPH0695117A (en) Liquid crystal panel
JPH1172785A (en) Liquid crystal display device
JPH05142519A (en) Liquid crystal display device
JPH10104617A (en) Liquid crystal image display device
JPH0274925A (en) Optical switching element for multi-electrode type high speed liquid crystal
JPH02221919A (en) Liquid crystal display device
JPH036519A (en) Projection type display device
JPH0815696A (en) Color liquid crystal display element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605