JPH07261019A - Image reader - Google Patents

Image reader

Info

Publication number
JPH07261019A
JPH07261019A JP6325591A JP32559194A JPH07261019A JP H07261019 A JPH07261019 A JP H07261019A JP 6325591 A JP6325591 A JP 6325591A JP 32559194 A JP32559194 A JP 32559194A JP H07261019 A JPH07261019 A JP H07261019A
Authority
JP
Japan
Prior art keywords
color
image
wavelength area
color separation
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6325591A
Other languages
Japanese (ja)
Inventor
Makoto Kato
誠 加藤
Mitsuo Togashi
光夫 富樫
Tadashi Aoki
正 青木
Kazumasa Nomi
和正 能見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP6325591A priority Critical patent/JPH07261019A/en
Publication of JPH07261019A publication Critical patent/JPH07261019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a color image reader using an unmagnified image forming type optical system which can separate a clear color signal at a high speed without complicating a circuit system for a signal processing system. CONSTITUTION:The color image reader is provided with a bluish white fluorescent tube 7 whose spectroscopie intensity characteristic becomes low in the order of a short wavelength area having a peak value near 500nm, an intermediate wavelength area and a long wavelength area, a lens column 5 forming the image of light reflected on the surface of an original as an erected unmagnified image, an image sensor 4 whose spectroscopic sensitivity characteristic becomes low in the order of the long wavelength area, the intermediate wavelength area and the short wavelength area and a color separation filter 41 separating the color of the light reflected on the surface of the original. Then, when the white original is read, the outputs of the respective cells of the sensor 4 are balanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はカラー撮像を行うに際し
カラー信号の分離を効率よく行うことの出来る画像読取
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading apparatus capable of efficiently separating color signals when performing color image pickup.

【0002】[0002]

【従来の技術】画像読取装置は、固体イメージセンサの
発展に伴って、高速化、高解像度化、高機能化および経
済化が図られつつある。最近では、テレビジョン用のカ
ラー撮像装置の開発をはじめとして、固体撮像装置のカ
ラー化方式、とりわけ単板カラー撮像装置の性能向上に
工夫がなされている。これらの性能向上化に当って解決
されるべき基本的課題の第1として、撮像光の利用効率
の向上を計る必要がある。従来のカラー撮像装置では、
固体撮像板の各画素を赤(R)、緑(G)、青(B)の
色分解フィルタで点順次にカラー信号を読取る方式が基
本になっているが、光の利用効率を改善して、輝度信号
成分を増大させるために、赤色通過フィルタ或は青色通
過フィルタのうち少なくとも一方に補色フィルタを用い
る方法が提案されている(例えば特開昭57−2697
8号公報)。また一方、単一のリニアイメージセンサを
用いてカラー書画を読取る方法として、例えばCCD
(Charge Coupled Device)リニ
アイメージセンサに、赤、緑、青の色分解フィルタをモ
ザイク状にオンチップした形で点順次のカラーコーディ
ングを施す構成が可能である。1はこの様な方式によ
る、原稿読取用のファクシミリ光学系の一従来例を概略
的に示す図である。この図に係る光学系は、原稿1を白
色光源(蛍光管)2で照明し、結像レンズ3を介してリ
ニアイメージセンサ4で読取る構成を有し、ファクシミ
リに用いられている。なお図中符号30はスリットであ
る。このような光学系において、イメージセンサ4にオ
ンチップ方式で形成される色分解フィルタ41は、図1
bに示すように、赤、緑、青、の3原色フィルタとすれ
ば色分解及び色分離及び色相補正処理が容易になる。し
かし、一般に固体イメージセンサの分光感度は、図2に
示すように、700(nm)付近の長波長域にピーク値
を持ち、600(nm)付近の中間波長域、500(n
m)付近の短波長域にかけて順次低くなっており、この
間において赤、緑、青色の各波長域を規定すると、赤、
緑、青色の各波長域順に低くなっているので、ホワイト
バランスをとることが困難である。色フィルタの分光透
過率を制御すると、白色読取時に比べて利用光量は極端
に低下(1/10程度)してしまう。これは、上記の様
なイメージセンサ4の分光感度に加え、白色蛍光管の分
光強度分布が図3に示す如く、赤、緑で高く、青で低い
ため、色バランスをとろうとすると、赤と緑とを抑えな
ければならなくなるからである。かかる事態に鑑み、上
記の如く補色フィルタを用いて光の利用効率を改善する
という方策が採られるが、図4は、補色フィルタとして
シアン(Cy)を用いた場合の設計例を示すものであ
る。
2. Description of the Related Art Image reading apparatuses are being made faster, higher in resolution, higher in function and more economical with the development of solid-state image sensors. Recently, various efforts have been made to develop a color image pickup device for a television, and to improve the performance of a solid-state image pickup device, in particular, a single-plate color image pickup device. As the first of the basic problems to be solved in improving these performances, it is necessary to improve the utilization efficiency of imaging light. In the conventional color imaging device,
The basic method is to read color signals in a dot-sequential manner from each pixel of the solid-state image pickup plate using color separation filters of red (R), green (G), and blue (B). In order to increase the luminance signal component, a method of using a complementary color filter for at least one of a red color pass filter and a blue color pass filter has been proposed (for example, JP-A-57-2697).
No. 8). On the other hand, as a method of reading a color document image using a single linear image sensor, for example, a CCD
(Charge Coupled Device) A linear image sensor may be configured to perform dot-sequential color coding in a form in which red, green, and blue color separation filters are on-chip in a mosaic pattern. FIG. 1 is a diagram schematically showing a conventional example of a facsimile optical system for reading an original by such a system. The optical system according to this drawing has a configuration in which an original 1 is illuminated by a white light source (fluorescent tube) 2 and is read by a linear image sensor 4 via an imaging lens 3, and is used in a facsimile. Reference numeral 30 in the figure is a slit. In such an optical system, the color separation filter 41 formed on the image sensor 4 by the on-chip method is shown in FIG.
As shown in b, if three primary color filters of red, green, and blue are used, color separation, color separation, and hue correction processing become easy. However, in general, the spectral sensitivity of a solid-state image sensor has a peak value in a long wavelength region near 700 (nm) and an intermediate wavelength region near 600 (nm) of 500 (n) as shown in FIG.
m) near the short wavelength region, the wavelength gradually decreases, and if the red, green, and blue wavelength regions are defined during this period, red,
Since the wavelengths of green and blue are lower in order, it is difficult to achieve white balance. When the spectral transmittance of the color filter is controlled, the amount of light used is extremely reduced (about 1/10) as compared with the case of reading white. This is because in addition to the spectral sensitivity of the image sensor 4 as described above, the spectral intensity distribution of the white fluorescent tube is high in red and green and low in blue as shown in FIG. This is because we have to suppress the green. In view of this situation, a measure is taken to improve the light utilization efficiency by using a complementary color filter as described above, but FIG. 4 shows a design example when cyan (Cy) is used as a complementary color filter. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな構成によると、赤、緑、青の各色成分を分離する信
号処理が必要となり、そのための回路系が複雑になる
他、微妙な色調の調整が困難となって混色が起るという
不都合が生じる。そして、この様な問題は、従来の撮像
装置が主として自然光、もしくはいわゆる「昼光色」光
源の照明下にある物体を対象にして設計されているとこ
ろから来るもので、光源、並びにセンサーの分光感度特
性を基準にして光学系を構成するという発想に由来して
いる。
However, according to such a configuration, signal processing for separating each of the red, green, and blue color components is required, which complicates the circuit system for that and makes delicate color tone adjustment. However, there is an inconvenience that color mixing becomes difficult. Such a problem arises from the fact that the conventional image pickup device is designed mainly for an object under the illumination of natural light or a so-called "daylight color" light source, and the spectral sensitivity characteristics of the light source and the sensor. It is derived from the idea of constructing an optical system with reference to.

【0004】本発明は、このような従来の問題点に着目
してなされたもので、その目的は、信号処理のための回
路系を複雑にすることなく、高速で鮮明なカラー信号の
分離を可能とするカラー画像読取装置を提供することで
ある。
The present invention has been made by paying attention to such a conventional problem, and an object thereof is to separate a color signal at high speed and sharply without complicating a circuit system for signal processing. It is to provide a color image reading device that enables the color image reading device.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、分光強度特性が500nm付近にピーク値
を持つ短波長域、中間波長域、長波長域の順に低くなる
青白色発光体から成る原稿照明用の単一の光源と、前記
原稿面からの反射光を正立等倍像として結像する結像レ
ンズと、分光感度特性が長波長域、中間波長域、短波長
域の順に低くなる固体イメージセンサと、所定の分光特
性を有し、前記原稿面からの反射光を色分解する色分解
フィルタとを備えたことを特徴とするものである。
In order to achieve the above object, the present invention provides a blue-white luminescent material having a spectral intensity characteristic having a peak value in the vicinity of 500 nm, which decreases in the order of a short wavelength region, an intermediate wavelength region and a long wavelength region. A single light source for illuminating a document, an imaging lens for forming the reflected light from the document surface as an erecting equal-magnification image, and spectral sensitivity characteristics of a long wavelength region, an intermediate wavelength region, and a short wavelength region. It is characterized by comprising a solid-state image sensor which becomes lower in order, and a color separation filter which has a predetermined spectral characteristic and color-separates the reflected light from the document surface.

【0006】[0006]

【作用】本発明は上述の構成によって、大型のイメージ
センサを用いた等倍結像型の光学系において、白原稿を
読取った時の固体イメージセンサからの出力をバランス
させることが可能となる。
With the above-described structure, the present invention makes it possible to balance the outputs from the solid-state image sensor when a white original is read in an equal-magnification imaging type optical system using a large image sensor.

【0007】[0007]

【実施例】以下、本発明の一実施例について説明する。
図5及び図6は本発明の一実施例に係るカラーの画像読
取装置に用いられる色分解フィルタの分光透過率特性
(以下、単に分光特性という)及び光源となる青白色蛍
光管の分光強度特性(以下、単に分光特性という)をそ
れぞれ示すグラフ図である。即ち本発明においては、図
1に示されたと同様の基本構成を有する光学系を作り、
この光学系のイメージセンサ4の分光感度特性(以下、
単に分光特性という)を図2に示すように設定し、この
イメージセンサ4の開口面に赤、緑、青点順次での色分
解信号が得られるようにモザイク状に組合せ配列され、
且つ図5に示す分光特性を有する色分解フィルタ41を
配置している。このとき、光源には、白色蛍光管2の代
りに、図6に示すような分光特性を有する青白色蛍光管
7(図9参照)が使用される。
EXAMPLES An example of the present invention will be described below.
5 and 6 show spectral transmittance characteristics (hereinafter, simply referred to as spectral characteristics) of a color separation filter used in a color image reading apparatus according to an embodiment of the present invention and spectral intensity characteristics of a blue-white fluorescent tube that serves as a light source. FIG. 6 is a graph showing respective (hereinafter, simply referred to as spectral characteristics). That is, in the present invention, an optical system having the same basic structure as that shown in FIG.
Spectral sensitivity characteristics of the image sensor 4 of this optical system (hereinafter,
2) is set as shown in FIG. 2, and the image sensor 4 is combined and arranged in a mosaic pattern so that color separation signals in the order of red, green, and blue dots are obtained on the opening surface of the image sensor 4.
Moreover, a color separation filter 41 having the spectral characteristic shown in FIG. 5 is arranged. At this time, instead of the white fluorescent tube 2, a blue-white fluorescent tube 7 (see FIG. 9) having a spectral characteristic as shown in FIG. 6 is used as the light source.

【0008】このような光学系によってカラー画像の読
取りを行なうと、図7aに示された様なイメージセンサ
4上の色分解フィルタ41の赤、緑、青、各画素に対応
する白画面の出力をみると、同図bに示されるようにほ
ぼバランスのとれた成分が得られる。なお、本実施例で
は、(1)イメージセンサ4の分光感度を図2に示すよ
うに設定し、(2)赤、緑、青の3原色分解の場合に望
ましい分光特性を基本に、更に白バランスを計算に入れ
た図5に示すような分光(透過率)特性を有する色分解
フィルタ41を補助的に使用し、(3)光源には図6に
示すように、500(nm)付近の短波長域にピーク値
を持ち、600(nm)付近の中間波長域、700(n
m)付近の長波長域にかけて順次低くなる分光特性を有
する単一の青白色発光灯7を用いることによって発明の
目的を達成せしめているが、このような態様に加えて、
整色フィルタとして図8に示すような分光特性を有する
赤外カットフィルタを上記色分解フィルタ41と併用す
ると、白バランスをさらに補正することが出来る。
When a color image is read by such an optical system, the red, green, blue and white screens corresponding to the respective pixels of the color separation filter 41 on the image sensor 4 as shown in FIG. 7A are output. As can be seen from FIG. 11, almost balanced components are obtained as shown in FIG. In the present embodiment, (1) the spectral sensitivity of the image sensor 4 is set as shown in FIG. 2, and (2) the spectral characteristics desired in the case of the three primary color separations of red, green, and blue are used as a basis, and further white A color separation filter 41 having a spectral (transmittance) characteristic as shown in FIG. 5 in which the balance is taken into account is additionally used, and (3) the light source has a wavelength of around 500 (nm) as shown in FIG. It has a peak value in the short wavelength range, an intermediate wavelength range near 600 (nm), and 700 (n
The object of the invention is achieved by using a single bluish white light-emitting lamp 7 having a spectral characteristic that gradually decreases in the long wavelength region near m), but in addition to such an aspect,
When an infrared cut filter having a spectral characteristic as shown in FIG. 8 is used as the color matching filter in combination with the color separation filter 41, the white balance can be further corrected.

【0009】図7aに示された色分解フィルタ41で
は、その画素開口列411、412、413、………に
対応する光電変換出力S(j)(j=1、2、3、…
…)は、基準白画面に対して最大値を示す。この実施例
において、光学系は、図7bに示すようにイメージセン
サ41の飽和出力レベルE(mV)に対して、赤、緑、
青各色成分の最大の出力がそれぞれ0.7E(mV)程
度になる様に光量設計がなされており、イメージセンサ
41のノイズ成分に対して信号成分比(即ちS/N比)
を極大にするようにされている。
In the color separation filter 41 shown in FIG. 7a, photoelectric conversion outputs S (j) (j = 1, 2, 3, ...) Corresponding to the pixel aperture columns 411, 412, 413 ,.
...) indicates the maximum value with respect to the reference white screen. In this embodiment, the optical system is arranged so that the saturation output level E (mV) of the image sensor 41 with respect to red, green, and
The light quantity is designed so that the maximum output of each blue color component is about 0.7E (mV), and the signal component ratio (that is, S / N ratio) to the noise component of the image sensor 41.
Is to maximize.

【0010】なお、上記実施例では、図1に示すように
レンズ縮小型の光学系を構成しこれによってカラー画像
を読取るようにしているが、これに限らず他のタイプの
光学系を用いてもよい。図9は大型のイメージセンサを
用いて等倍結像型の光学系を作成した本発明の第2の実
施例を示す図である。
In the above embodiment, a lens reduction type optical system is constructed as shown in FIG. 1 to read a color image, but the present invention is not limited to this, and other types of optical systems may be used. Good. FIG. 9 is a diagram showing a second embodiment of the present invention in which an equal-magnification image-forming optical system is prepared by using a large image sensor.

【0011】この実施例において、符号5は正立等倍像
を結ぶレンズ列である。このレンズ列5には、分布屈折
率型ロッドレンズアレイ、平面状マイクロレンズアレ
イ、或は球面状マイクロレンズアレイを適宜用いること
が出来る。その他の構成については上記第1の実施例と
同様であり、原稿1へは青白色蛍光管7から成る光源か
ら照明光が当てられ、その反射光をレンズ列5によって
集光した後スリット30を通し、イメージセンサ4にて
光電変換するようになっている。イメージセンサ4は、
図9bのようなカラーフィルタ配置の開口列411、4
12、………を有している。この開口列411等におけ
る3色分解フィルタ41のモザイクパターンは、図7a
に示すような赤、緑、青の繰返しパターンに限られるも
のではなく、赤及び青成分(ピッチ:P2)がそれぞれ
緑成分(ピッチ:P1)の1/2の密度(図9bにおい
てP2=2P1)になる様配列してもよい。
In this embodiment, reference numeral 5 is a lens array forming an erecting equal-magnification image. For the lens array 5, a distributed index type rod lens array, a planar microlens array, or a spherical microlens array can be appropriately used. The rest of the configuration is the same as that of the first embodiment, and the original 1 is irradiated with illumination light from a light source composed of a blue-white fluorescent tube 7, and the reflected light is condensed by the lens array 5 and then the slit 30 is formed. Through the image sensor 4, photoelectric conversion is performed. The image sensor 4 is
A row of apertures 411, 4 with a color filter arrangement as in FIG. 9b.
12, ... The mosaic pattern of the three-color separation filter 41 in the aperture array 411 and the like is shown in FIG.
It is not limited to the repeating pattern of red, green, and blue as shown in FIG. 2, but the density of each of the red and blue components (pitch: P 2 ) is 1/2 that of the green component (pitch: P 1 ) (P in FIG. 9b). 2 = 2P 1 ) may be arranged.

【0012】さらに、3色分解フィルタを、図7a、図
9bに示すようなモザイク状に配列せず、他の配列構成
をとることも可能である。図10は、フィルタの構造に
変更を加えた本発明の第3の実施例を示す図である。こ
の実施例においてはフィルタ6は軸部64と、この軸部
64から半径方向外方へ広がった円板部65とから成
り、円板部65が画像読取装置の光学経路に合致すると
共に、フィルタ6が回転中心軸0を中心として回転する
ように配置されている。フィルタ6の円板部65背面に
は誘電体多層膜60が形成され、この誘電体多層膜60
には図10bに示すように、必要に応じて所定の分光特
性を持つ扇形の色分解フィルタ領域61、62、63が
形成される。これらの色分解フィルタ領域のうち、例え
ば領域61は赤、領域62は緑、領域63は青というよ
うに区分けされ、フィルタ6が回転中心軸0を中心に回
転するに従って上記赤、緑、青の3色分解フィルタ領域
61、62、63を逐次光学系の経路内に挿入せしめ、
面順次に読取るようになっている。
Furthermore, it is also possible to adopt another arrangement configuration without arranging the three-color separation filters in a mosaic pattern as shown in FIGS. 7a and 9b. FIG. 10 is a diagram showing a third embodiment of the present invention in which the structure of the filter is changed. In this embodiment, the filter 6 is composed of a shaft portion 64 and a disc portion 65 that extends outward in the radial direction from the shaft portion 64. The disc portion 65 matches the optical path of the image reading apparatus, and 6 is arranged so as to rotate about the rotation center axis 0. A dielectric multilayer film 60 is formed on the back surface of the disc portion 65 of the filter 6, and the dielectric multilayer film 60 is formed.
As shown in FIG. 10B, fan-shaped color separation filter regions 61, 62 and 63 having predetermined spectral characteristics are formed as needed. Of these color separation filter regions, for example, the region 61 is divided into red, the region 62 is green, and the region 63 is divided into blue, and as the filter 6 rotates around the rotation center axis 0, the red, green, and blue regions are separated. The three color separation filter regions 61, 62, 63 are sequentially inserted into the path of the optical system,
It is designed to read in a frame-sequential manner.

【0013】なお、この第3の実施例において、画像読
取用の光学系は、原稿1が設けられる回転円筒体10
と、原稿1面上に光を照射する青白色蛍光管7と、フィ
ルタ6を透過した原稿1からの反射光を集光させる結像
レンズ3とイメージセンサ4とによって構成されてい
る。そして、原稿1面は光源である青白色蛍光管7で照
明され、その画像情報を読取るために光学系がスキャナ
を構成する点は従来の白黒画像読取光学系とほぼ同様で
あるが、この第3の実施例に係る光学系はカラー画像情
報を読取るものであるから、カラーの原稿1を保持固定
した回転円筒体10の運動を制御して赤、緑、青の3色
分解フィルタ領域61、62、63を切換えて逐次画信
号を読取るようになっている。
In the third embodiment, the image reading optical system is a rotary cylinder 10 on which the original 1 is provided.
And a bluish white fluorescent tube 7 for irradiating the surface of the original 1 with light, an imaging lens 3 for converging the reflected light from the original 1 that has passed through the filter 6, and an image sensor 4. The surface of the original 1 is illuminated by a blue-white fluorescent tube 7 serving as a light source, and the optical system constitutes a scanner for reading the image information, which is similar to the conventional black-and-white image reading optical system. Since the optical system according to the third embodiment reads color image information, the motion of the rotary cylinder 10 holding and fixing the color original document 1 is controlled, and the red, green, and blue three-color separation filter regions 61, By switching between 62 and 63, the image signals are sequentially read.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
等倍結像型の光学系を用いたカラー画像の高速読取りに
おいて、光源の分光強度特性とイメージセンサの分光感
度特性、並びに色分解フィルタの分光特性を整合し、各
色に対応した白画面出力の均一補正を、光源の分光強度
ピーク値から長波長側の範囲内において、主として光源
の分光強度特性により確保し、色分解フィルタ、整色フ
ィルタの分光特性により補助的に行なうことにより、カ
ラー画像を読取るに際して光利用率の極大化を図ること
ができ、イメージセンサにおけるS/N比を極大とし、
更に赤、緑、青の各色信号をほぼ忠実に読取ることがで
きるので、複雑なカラー信号処理回路を用いる必要がな
くなり、簡単な構成で鮮明なカラー画像情報が得られる
ようになる。
As described above, according to the present invention,
In high-speed reading of color images using the same-magnification optical system, the spectral intensity characteristics of the light source, the spectral sensitivity characteristics of the image sensor, and the spectral characteristics of the color separation filter are matched to produce a white screen output corresponding to each color. Uniform correction is ensured mainly by the spectral intensity characteristics of the light source within the range on the long wavelength side from the spectral intensity peak value of the light source, and is supplemented by the spectral characteristics of the color separation filter and color matching filter to obtain a color image. When reading, the light utilization rate can be maximized, and the S / N ratio in the image sensor can be maximized.
Furthermore, since the red, green, and blue color signals can be read almost faithfully, it is not necessary to use a complicated color signal processing circuit, and clear color image information can be obtained with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】白色光源と、3色分解フィルタをオンチップし
たイメージセンサとを用いた一般的なカラー画情報読取
装置の概略構成を示す図 (a)光学系の構成を示す図 (b)色分解フィルタの構成を示す図
FIG. 1 is a diagram showing a schematic configuration of a general color image information reading device using a white light source and an image sensor having a three-color separation filter on-chip. (A) A diagram showing the configuration of an optical system (b) Color Diagram showing the structure of the decomposition filter

【図2】本発明の一実施例による画像読取装置において
用いられるイメージセンサの分光特性を示す図
FIG. 2 is a diagram showing spectral characteristics of an image sensor used in an image reading apparatus according to an embodiment of the present invention.

【図3】従来の画像情報読取装置に用いられる白色光源
の分光特性を示す図
FIG. 3 is a diagram showing spectral characteristics of a white light source used in a conventional image information reading device.

【図4】画情報読取装置における光利用効率改善の為に
用いられる補色フィルタの分光特性を示す図
FIG. 4 is a diagram showing spectral characteristics of a complementary color filter used for improving light utilization efficiency in the image information reading device.

【図5】色分解フィルタの分光特性を示す図FIG. 5 is a diagram showing spectral characteristics of a color separation filter.

【図6】青白色光源の分光特性を示す図FIG. 6 is a diagram showing spectral characteristics of a blue-white light source.

【図7】(a)色分解フィルタの構成を示す図およびそ
の色分解フィルタの画素開口列に対応する光量変換出力
を示す図 (b)色分解フィルタの構成を示す図およびその色分解
フィルタの画素開口列に対応する光量変換出力を示す図
7A is a diagram showing a configuration of a color separation filter and FIG. 7B is a diagram showing a light amount conversion output corresponding to a pixel aperture row of the color separation filter. FIG. 7B is a diagram showing a configuration of the color separation filter and its color separation filter. The figure which shows the light quantity conversion output corresponding to the pixel aperture row

【図8】色分解フィルタと併用可能な赤外カットフィル
タの分光特性を示す図
FIG. 8 is a diagram showing spectral characteristics of an infrared cut filter that can be used together with a color separation filter.

【図9】(a)本発明の第2の実施例に係る画像読取装
置の概略構成図および色分解フィルタの構成を示す図 (b)本発明の第2の実施例に係る画像読取装置の概略
構成図および色分解フィルタの構成を示す図
FIG. 9A is a schematic configuration diagram of an image reading device according to a second embodiment of the present invention and a diagram showing a configuration of a color separation filter. FIG. 9B is an image reading device according to a second embodiment of the present invention. Schematic configuration diagram and diagram showing the configuration of the color separation filter

【図10】(a)本発明の第3の実施例に係る画像読取
装置の概略構成図および色分解フィルタの構成を示す図 (b)本発明の第3の実施例に係る画像読取装置の概略
構成図および色分解フィルタの構成を示す図
FIG. 10A is a schematic configuration diagram of an image reading device according to a third embodiment of the present invention and a diagram showing a configuration of a color separation filter. FIG. 10B is an image reading device according to a third embodiment of the present invention. Schematic configuration diagram and diagram showing the configuration of the color separation filter

【符号の説明】[Explanation of symbols]

1 原稿 2 白色蛍光管 3 結像レンズ 4 イメージセンサ 5 レンズ列 6 フィルタ 7 青白色蛍光管 41 色分解フィルタ 60 誘電体多層膜 61、62、63 色分解フィルタ領域 1 Original 2 White Fluorescent Tube 3 Imaging Lens 4 Image Sensor 5 Lens Row 6 Filter 7 Blue White Fluorescent Tube 41 Color Separation Filter 60 Dielectric Multilayer Film 61, 62, 63 Color Separation Filter Area

フロントページの続き (72)発明者 青木 正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 能見 和正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Tadashi Aoki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kazumasa Nomi, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分光強度特性が500nm付近にピーク
値を持つ短波長域、中間波長域、長波長域の順に低くな
る青白色発光体から成る原稿照明用の単一の光源と、前
記原稿面からの反射光を正立等倍像として結像する結像
レンズと、分光感度特性が長波長域、中間波長域、短波
長域の順に低くなる固体イメージセンサと、所定の分光
特性を有し、前記原稿面からの反射光を色分解する色分
解フィルタとを具備する画像読取装置。
1. A single light source for illuminating a document, which comprises a blue-white illuminant whose spectral intensity characteristics have a peak value in the vicinity of 500 nm and decreases in the order of a short wavelength region, an intermediate wavelength region and a long wavelength region, and the document surface. It has an imaging lens that forms the reflected light from the image as an erecting equal-magnification image, a solid-state image sensor whose spectral sensitivity characteristics gradually decrease in the long wavelength range, intermediate wavelength range, and short wavelength range, and the specified spectral characteristics. An image reading apparatus comprising: a color separation filter that separates light reflected from the document surface.
JP6325591A 1994-12-27 1994-12-27 Image reader Pending JPH07261019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6325591A JPH07261019A (en) 1994-12-27 1994-12-27 Image reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6325591A JPH07261019A (en) 1994-12-27 1994-12-27 Image reader

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59126057A Division JPH0618413B2 (en) 1984-06-19 1984-06-19 Image reader

Publications (1)

Publication Number Publication Date
JPH07261019A true JPH07261019A (en) 1995-10-13

Family

ID=18178597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6325591A Pending JPH07261019A (en) 1994-12-27 1994-12-27 Image reader

Country Status (1)

Country Link
JP (1) JPH07261019A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144847A (en) * 1982-02-22 1983-08-29 Canon Inc Illuminating device
JPS5990460A (en) * 1982-11-15 1984-05-24 Canon Inc Light source for color image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144847A (en) * 1982-02-22 1983-08-29 Canon Inc Illuminating device
JPS5990460A (en) * 1982-11-15 1984-05-24 Canon Inc Light source for color image sensor

Similar Documents

Publication Publication Date Title
US7057654B2 (en) Four color image sensing apparatus
EP1096785B1 (en) Method of scanning using a photosensor with multiple sensor areas of different sizes
JP5124003B2 (en) Multispectral imaging device
KR100314344B1 (en) Luminance priority color sensor and color image detection method
US6803955B1 (en) Imaging device and imaging apparatus
JP2004228662A (en) Image pickup apparatus
JP3083013B2 (en) Image sensor and image information processing device
JP3227249B2 (en) Image sensor
US20020093694A1 (en) Photosensor assembly with shared structures
EP0428884A1 (en) Colour filter arrangement for a solid-state imaging apparatus
JPS6128260B2 (en)
JPS6320953A (en) Image pickup device
JPH07261019A (en) Image reader
JPH07261020A (en) Image reader
JPH0618413B2 (en) Image reader
JPH10189930A (en) Solid-state image sensor
US6728009B1 (en) Charge coupled device scanning system and method
JPS583485A (en) Color image pickup device
JPS59188650A (en) Color balancing method in color scanner
JPH09265049A (en) Optically reading area limiting board, module and image reader applying the same
JP2000354133A (en) Image sensor and image information processor
JPS5957568A (en) Color picture reader
JPH06225316A (en) Color photoelectric conversion device
JP4342149B2 (en) Solid-state imaging device and imaging device
JPH0222993A (en) Photographic film player