JPH07260870A - Method for measuring dc leak current of power cable - Google Patents

Method for measuring dc leak current of power cable

Info

Publication number
JPH07260870A
JPH07260870A JP7252194A JP7252194A JPH07260870A JP H07260870 A JPH07260870 A JP H07260870A JP 7252194 A JP7252194 A JP 7252194A JP 7252194 A JP7252194 A JP 7252194A JP H07260870 A JPH07260870 A JP H07260870A
Authority
JP
Japan
Prior art keywords
cable
measuring
conductor
terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7252194A
Other languages
Japanese (ja)
Inventor
Katsuhiro Hosoe
勝広 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7252194A priority Critical patent/JPH07260870A/en
Publication of JPH07260870A publication Critical patent/JPH07260870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To provide a method for measuring the deterioration of insulator in a CV cable by measuring the resistance of an insulator layer based on the measurement of DC leak current in which measurement error due to the leak current flowing on the interface between the insulator layer and an overcoating pipe is eliminated. CONSTITUTION:First, second and third electrodes 4, 5, 6 are disposed sequentially, at an interval, from the conductor side on the surface of a flexible pipe 1 at the terminal joint of a power cable where the electrodes 4, 6 serve as guard electrodes. A voltage is then applied from one terminal of a grounded DC high voltage power supply (P1+P2) having an intermediate joint to the cable conductor. The electrodes 4, 6 on each overcoating pipe 1 are connected with the intermediate joint and a voltage of opposite polarity is applied from the other terminal of the DC high voltage power supply to the electrode 5 thus measuring the DC leak current of an insulator layer in the power cable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高圧または特高CVケー
ブルの直流漏れ電流の測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring DC leakage current of a high voltage or extra high voltage CV cable.

【0002】[0002]

【従来の技術】CVケーブルの絶縁劣化度を検査するた
めに高絶縁抵抗測定計による絶縁抵抗法、耐電圧法、直
流漏れ電流測定法、誘電正接測定法(tanδ測定
法)、部分放電測定法(コロナ測定法)が用いられる。
本発明は上記の測定法のうち、直流漏れ電流の測定法に
関するものであるが、先ず、直流漏れ電流の測定に必要
とされる従来からのCVケーブルの端末処理法、測定回
路、測定法について説明する。なお、CVケーブルは基
本的に中心導体を具え、断面でみて前記導体の外周に順
に内部半導電層、架橋プラスチック絶縁体層、外部半導
電層、金属遮蔽層、シースを備える構成のものである。
2. Description of the Related Art In order to inspect the degree of insulation deterioration of a CV cable, an insulation resistance method using a high insulation resistance measuring instrument, a withstand voltage method, a DC leakage current measuring method, a dielectric loss tangent measuring method (tan δ measuring method), a partial discharge measuring method. (Corona measurement method) is used.
The present invention relates to a DC leakage current measuring method among the above measuring methods. First, the conventional CV cable terminal processing method, measuring circuit, and measuring method required for measuring DC leakage current are described. explain. The CV cable basically has a central conductor, and is provided with an inner semiconductive layer, a crosslinked plastic insulator layer, an outer semiconductive layer, a metal shielding layer, and a sheath in this order on the outer circumference of the conductor in cross section. .

【0003】[0003]

【ケーブルの端末処理】CVケーブルの場合、測定する
のは中心の導体とこれと絶縁体を介した金属遮蔽層との
間に直流電圧を印加して、この間に存在する絶縁体を通
過する漏れ電流のみを測定するものであるので、測定の
際、検査されるケーブルに処理を施し、その測定回路の
構成と相まって、絶縁体層中を通過しない電流が測定回
路の計測器にまぎれこまないことが必要である。そのた
め、図5に示すように従来ケーブルの一方、もしくは両
端末において、シース17より遮蔽層、外部半導電層、絶
縁体層、内部半導電層を階段状に剥ぎとり、中心導体1
5、絶縁体層16、外部半導電層13、金属遮蔽層14を露出
させ、端末部を形成し、前記絶縁体層16の表面に金属は
くを巻きつけてガード電極18を形成する。
[Termination of cable] In the case of CV cable, the measurement is to apply a DC voltage between the conductor in the center and the metal shielding layer via the insulator, and to leak through the insulator existing between them. Since only the current is measured, the cable to be inspected should be processed at the time of measurement, and the current that does not pass through the insulating layer should not be mixed up with the measuring circuit instrument due to the configuration of the measuring circuit. is necessary. Therefore, as shown in FIG. 5, in one or both ends of the conventional cable, the shielding layer, the outer semiconducting layer, the insulator layer, and the inner semiconducting layer are peeled off in a stepwise manner from the sheath 17, and the central conductor 1
5, the insulating layer 16, the outer semiconductive layer 13, and the metal shielding layer 14 are exposed to form a terminal portion, and a metal foil is wound around the surface of the insulating layer 16 to form the guard electrode 18.

【0004】[0004]

【測定回路】図4aは測定回路の一例を示す。水抵抗を用
いた保護抵抗R、スイッチS1、高圧直流電源P、スイッ
チS2、分流器D、マイクロアンメータAが直列に接続さ
れ、分流器Dの端子間に電圧等を検出する記録計Mが並
列に接続される。ケーブルの一方の端末部で保護抵抗R
を介した高圧電源Pの負極性側端子に導体15が接続さ
れ、電源Pの正極性側端子に分流器D、マイクロアンメ
ータAを介して遮蔽層14が接続され、同時に接地され、
ガード電極18は高圧直流電源Pの正極性端子側に直接接
続される。また他方の端末部では、金属遮蔽層14は接地
され、ガード電極18は他の線心を使用して点線で示すよ
うに前記高圧直流電源Pの正極性側端子に直接接続され
る。
[Measurement Circuit] FIG. 4a shows an example of the measurement circuit. A recorder M for detecting a voltage or the like between the terminals of the shunt D, in which a protection resistor R using a water resistance, a switch S 1 , a high-voltage DC power supply P, a switch S 2 , a shunt D, and a microammeter A are connected in series. Are connected in parallel. Protective resistance R at one end of the cable
The conductor 15 is connected to the negative side terminal of the high-voltage power supply P via the, and the shielding layer 14 is connected to the positive side terminal of the power supply P via the shunt D and the microammeter A, and is simultaneously grounded.
The guard electrode 18 is directly connected to the positive terminal side of the high voltage DC power supply P. At the other end, the metal shield layer 14 is grounded, and the guard electrode 18 is directly connected to the positive terminal of the high-voltage DC power supply P using another wire core as shown by the dotted line.

【0005】上記の測定時における回路構成により、導
体15の先端より絶縁体層16の表面に沿って漏れる漏れ電
流はガード電極18によって更に絶縁体層の表面に沿って
金属遮蔽層14に到達することは防止できる。
Due to the circuit configuration at the time of the above measurement, the leakage current leaking from the tip of the conductor 15 along the surface of the insulator layer 16 reaches the metal shield layer 14 along the surface of the insulator layer by the guard electrode 18. Can be prevented.

【0006】図4bに示す測定回路では、ガード電極18が
接地電位にとられていることでa図に示す測定回路と構
成が異なるが、絶縁体表面を流れる漏れ電流を除外して
絶縁体中を流れる漏れ電流のみを測定するものであるこ
とに変りない。但し、aの構成とbの構成は迷走電流の
影響を受ける場合とそうでない場合等に選択して適用さ
れる。即ち、迷走電流の影響を受ける場合はaの構成、
受けない場合はbの構成にして測定する。そして絶縁体
層中を流れる漏れ電流は記録計Mによる電圧より求める
ことができる。なお、直流電圧印加の際、測定側端末部
と他の端末部における導体先端で生じる部分放電により
導体露出面と大地の間に生じる部分放電による測定結果
のバラツキを除外するため、導体露出面に合成樹脂製キ
ャップをかぶせてこれを防止することは特開昭 57-1861
77号公報において開示している。
The measuring circuit shown in FIG. 4b is different from the measuring circuit shown in FIG. A in that the guard electrode 18 is set to the ground potential, but the leakage current flowing on the surface of the insulator is excluded. There is no change in that it only measures the leakage current flowing through the device. However, the configuration of a and the configuration of b are selected and applied depending on whether or not the influence of the stray current is exerted. That is, the configuration of a when affected by the stray current,
When not receiving, measure in the configuration of b. The leakage current flowing in the insulator layer can be obtained from the voltage of the recorder M. When applying a DC voltage, in order to exclude the variation of the measurement result due to the partial discharge between the exposed surface of the conductor and the ground due to the partial discharge at the tip of the conductor at the measurement side end and the other end, To prevent this by covering with a synthetic resin cap, see JP-A-57-1861.
No. 77 publication.

【0007】[0007]

【発明が解決しようとする課題】前述のように絶縁体層
の表面にガード電極を設けることにより、絶縁体層の表
面に流れる電流の金属遮蔽層への漏れ電流除外は一応達
成できるように認められるが、このようなガード電極を
具えた端末部を用いて測定を繰返してみると端末部の絶
縁体表面の漏れ電流を完全に零とすることができず、直
流漏れ電流の計測誤差が問題になる場合があった。
As described above, by providing the guard electrode on the surface of the insulator layer, it is recognized that the leakage current of the current flowing on the surface of the insulator layer to the metal shielding layer can be excluded. However, when the measurement is repeated using the terminal part equipped with such a guard electrode, the leakage current on the insulator surface of the terminal part cannot be completely reduced to zero, and the measurement error of the DC leakage current is a problem. Sometimes became.

【0008】CVケーブルの場合、その現場設置におい
てケーブル端末に終端接続部碍子またはとう管を備えて
おり、この状態で直流漏れ電流の測定を行うと、碍子ま
たはとう管の内側とケーブル絶縁体層界面の漏れ電流ま
では除くことができなかった。この値は、通常数nA以
下の小さなものである場合が殆んどである。一方、例え
ば、 6.6kVCVケーブルで、劣化が著しく、貫通水トリ
ーが発生している場合などではケーブルの直流漏れ電流
が数μA以上となる。さきに示した僅少の漏れ電流は問
題にならないが、20kV以上のCVケーブルの場合、貫通
に至ってから水トリーを検出するのでは、ブレークダウ
ンしてしまう場合があって手遅れで、貫通以前の水トリ
ーを検出することが望ましい。この場合、直流漏れ電流
の検出感度として、nAオーダー以下であることが望ま
れる。このような感度で直流漏れ電流の計測を行う場
合、とう管等内側とケーブルの界面の漏えい電流の影響
をなくす必要が生じる。
[0008] In the case of a CV cable, the cable terminal is equipped with a terminal connecting portion insulator or a insulator tube at the site installation, and when the DC leakage current is measured in this state, the inside of the insulator or the insulator tube and the cable insulator layer are measured. The leakage current at the interface could not be removed. In most cases, this value is as small as a few nA or less. On the other hand, for example, in the case of a 6.6 kV CV cable, which is significantly deteriorated and a through water tree is generated, the DC leakage current of the cable is several μA or more. Although the slight leakage current shown above does not pose a problem, in the case of a CV cable of 20 kV or more, if the water tree is detected after reaching the penetration, it may cause a breakdown and it will be too late. It is desirable to detect trees. In this case, it is desired that the detection sensitivity of the DC leakage current be nA order or less. When measuring the DC leakage current with such sensitivity, it is necessary to eliminate the influence of the leakage current at the interface between the inside of the flexible tube and the cable.

【0009】[0009]

【発明の構成】本発明はガード電極を作り、図の計測器
により測定する場合のように前記ガード電極により漏れ
電流が測定回路に混入しないように逃す方式を採るが、
設ける電極は一つではない。即ち、ケーブル終端接続部
碍子又はとう管表面に、その導体側より順にある間隔を
とって、第1,2,3電極を設け、第1および第3電極
をガード電極とし、第2電極に導体に印加した極性とは
逆極性の電圧を印加し、ケーブルの長手方向の電界強度
を弱くして漏れ電流を直接防止して絶縁体層のみを通る
漏れ電流を測定するものである。
The present invention employs a method in which a guard electrode is formed and a leakage current is escaped by the guard electrode so as not to enter the measuring circuit as in the case of measuring with a measuring instrument shown in the figure.
The number of electrodes provided is not one. That is, the first, second, and third electrodes are provided on the surface of the cable terminating connection portion insulator or the surface of the flexible tube at certain intervals in order from the conductor side, and the first and third electrodes are used as guard electrodes, and the conductor is connected to the second electrode. A voltage having a polarity opposite to the polarity applied to is applied to weaken the electric field strength in the longitudinal direction of the cable to directly prevent the leakage current and measure the leakage current passing only through the insulating layer.

【0010】[0010]

【実施例】図1は本発明を適用するケーブル終端接続部
の一例を示す。図において1はケーブルの終端接続部と
う管を示し、2はとう管1の内側に下方より挿入し、上
端部のみ導体を露出させ導体端子3を形成した電力ケー
ブルを示す。導体端子3より下側にやや下ってとう管1
のひだ付外壁のなだらかな環状面に金属はくを密着して
巻き付け、第1の電極4を設け、これより下側に下り同
様にして第2の電極5を設け、更に下側に同様にして第
3の電極6を設け、前記第1、第3の電極をガード電極
として用いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a cable termination connecting portion to which the present invention is applied. In the figure, reference numeral 1 denotes a spiral tube at a terminal end of the cable, and 2 denotes a power cable which is inserted into the flexible tube 1 from below and has a conductor terminal 3 formed by exposing a conductor only at an upper end portion. Tube 1 that goes slightly below the conductor terminal 3
The metal foil is closely wound around the gentle annular surface of the pleated outer wall, the first electrode 4 is provided, and the second electrode 5 is similarly provided on the lower side of the first electrode 4 and further on the lower side. A third electrode 6 is provided, and the first and third electrodes are used as guard electrodes.

【0011】[0011]

【漏れ電流の測定】直流漏れ電流を測定するため、配電
系統中に接続されている電力ケーブルの両端末において
導体端子の接続を断ち、図1で説明したように終端接続
の碍子又はとう管の表面にその長さ方向で間隔をあけて
設けた三電極を具える電力ケーブルに次のように直流高
電圧源を印加して測定を行う。図2はその測定法を説明
するものであるが、電源は図示のように2台の直流高圧
電源P1、P2を用い、これを直列に接続し、その中間接続
点において接地する。図では負極性電圧がケーブル導体
に印加されるものについて説明するが、逆に正極性電圧
がケーブル導体に印加されることもある。ケーブル導体
に電源P1+P2負極性側端子より負極性の高電圧を印加
し、両方の碍子又はとう管の第1、第3のガード電極
4,6は電源P1とP2との中間接続点Nに接続され、接地
電位をとる。また両方の第2電極5には導体に印加され
た極性と反対の正極性の電圧が電源P1+P2の正極側端子
より印加される。電力ケーブルの遮蔽層14に分流抵抗10
を接続して電圧等記録計11を接続し、分流抵抗10を介し
て接地する。すなわち、電源P1の負極性側にケーブル導
体、ケーブル絶縁体層、外部半導電層、遮蔽層、分流抵
抗10が直列にあり、接地を介して漏れ電流が測定される
回路が形成されたことになる。そして分流抵抗10にかか
る電圧より漏れ電流を求める。 電源P1+P2をスイッチ
S1にて投入することによって、測定に入ることができる
が、その動作状態において、すでに説明した第1,2,
3の電極4,5,6の配置すなわち、図3aに本発明の電
極構造とした場合の等電位面を示しているが、導体に印
加された電圧と逆極性の電圧が第2電極に印加されてい
ることにより、端末での界面方向電界、つまりケーブル
長手方向の電界を弱めることができ、とう管内側と絶縁
体との界面電流が低減できる。なお、図3bは通常のガー
ド電極構造とした場合の等電位面を示している。
[Measurement of Leakage Current] In order to measure the DC leakage current, the conductor terminals are cut off at both ends of the power cable connected to the distribution system, and as shown in FIG. Measurement is performed by applying a DC high voltage source as follows to a power cable having three electrodes provided on the surface at intervals along the length direction. FIG. 2 explains the measuring method, but as shown in the figure, two high-voltage DC power supplies P 1 and P 2 are used as power supplies, which are connected in series and grounded at the intermediate connection point. In the figure, a negative voltage is applied to the cable conductor, but a positive voltage may be applied to the cable conductor. A high voltage of negative polarity is applied to the cable conductor from the power source P 1 + P 2 negative polarity side terminal, and the first and third guard electrodes 4 and 6 of both insulators or tubes are located between the power sources P 1 and P 2. It is connected to the connection point N and has a ground potential. Further, a positive voltage opposite to the polarity applied to the conductor is applied to both the second electrodes 5 from the positive terminal of the power source P 1 + P 2 . Shunt resistance 10 in the shielding layer 14 of the power cable
Is connected to a voltage recorder 11 and is grounded via a shunt resistor 10. That is, a cable conductor, a cable insulator layer, an external semiconductive layer, a shielding layer, and a shunt resistance 10 are connected in series on the negative side of the power source P 1 , and a circuit in which leakage current is measured via ground is formed. become. Then, the leakage current is obtained from the voltage applied to the shunt resistance 10. Switch power supply P 1 + P 2
The measurement can be started by turning on at S 1 , but in the operating state, the first, second, and
The arrangement of the electrodes 3, 5, 6 of FIG. 3, that is, the equipotential surface in the case of the electrode structure of the present invention is shown in FIG. 3a, but a voltage having the opposite polarity to the voltage applied to the conductor is applied to the second electrode. By this, the electric field in the interface direction at the terminal, that is, the electric field in the cable longitudinal direction can be weakened, and the interface current between the inside of the tube and the insulator can be reduced. Note that FIG. 3b shows an equipotential surface in the case of a normal guard electrode structure.

【0012】[0012]

【発明の効果】本発明によれば碍管、とう管とケーブル
絶縁体との界面の漏れ電流が小さくなり、ケーブルの直
流漏れ電流を高精度で測定することができる。
According to the present invention, the leakage current at the interface between the porcelain bushing, the flexible tube and the cable insulator is reduced, and the DC leakage current of the cable can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用するためのCVケーブルの端末部
処理の一例を示す。
FIG. 1 shows an example of terminal processing of a CV cable to which the present invention is applied.

【図2】本発明の測定法の説明図を示す。FIG. 2 shows an explanatory diagram of the measuring method of the present invention.

【図3】aは本発明の電極構造ならびに電気的接続とし
た場合の等電位線を示し、bは通常のガード電極ならび
に電気的接続とした場合の等電位線を示す。
FIG. 3A shows equipotential lines when the electrode structure of the present invention and electrical connection are used, and b shows equipotential lines when a normal guard electrode and electrical connection are used.

【図4】a,bは従来のCVケーブル直流漏れ電流の測
定回路をそれぞれ示す。
4A and 4B respectively show a conventional CV cable DC leakage current measuring circuit.

【図5】従来の処理によるケーブル端末部を示す。FIG. 5 shows a cable end according to conventional processing.

【符号の説明】[Explanation of symbols]

1 とう管 2 電力ケーブル 3 導体端子 4 第1電極 5 第2電極 6 第3電極 10 分流抵抗 11 電圧等記録計 14 遮蔽層 16 絶縁体層 1 Spiral tube 2 Power cable 3 Conductor terminal 4 First electrode 5 Second electrode 6 Third electrode 10 Shunt resistance 11 Voltage recorder 14 Shielding layer 16 Insulating layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブルの両終端接続部碍子または
とう管の表面に、導体側より順にある間隔をあけて、そ
れぞれ第1,2,3の電極を設け、中間に接続点を有
し、且つ該接続点を接地した直流高圧電源を用い、ケー
ブル導体と該ケーブルの遮蔽層との間に前記電源の一方
の端子と中間接続点より電圧を印加し、前記第1および
第3の電極をガード電極とし、前記接地した電源の中間
接続点に接続し、前記第2電極に前記電源の他方の端子
より、前記導体より印加した電圧と逆極性の電圧を印加
してケーブル絶縁体の漏れ電流を測定することを特徴と
する電力ケーブル直流漏れ電流の測定法。
1. A first, a second, and a third electrode are provided on a surface of an insulator or a porcelain tube at both ends of a power cable in order from the conductor side, and have connecting points in the middle. Further, a direct current high voltage power supply in which the connection point is grounded is used, and a voltage is applied between one terminal of the power supply and the intermediate connection point between the cable conductor and the shielding layer of the cable to connect the first and third electrodes. As a guard electrode, it is connected to an intermediate connection point of the grounded power supply, and a voltage having a polarity opposite to that applied from the conductor is applied to the second electrode from the other terminal of the power supply to leak current of the cable insulator. A method for measuring DC leakage current in a power cable, which is characterized by measuring
JP7252194A 1994-03-16 1994-03-16 Method for measuring dc leak current of power cable Pending JPH07260870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7252194A JPH07260870A (en) 1994-03-16 1994-03-16 Method for measuring dc leak current of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7252194A JPH07260870A (en) 1994-03-16 1994-03-16 Method for measuring dc leak current of power cable

Publications (1)

Publication Number Publication Date
JPH07260870A true JPH07260870A (en) 1995-10-13

Family

ID=13491724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7252194A Pending JPH07260870A (en) 1994-03-16 1994-03-16 Method for measuring dc leak current of power cable

Country Status (1)

Country Link
JP (1) JPH07260870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530681A (en) * 1998-11-23 2002-09-17 イー. オートン、ハリー A method for diagnosing poor insulation in underground cables.
CN106123952A (en) * 2016-06-16 2016-11-16 华北电力大学 The detection method of insulator interface quality, Apparatus and system
CN106324454A (en) * 2016-08-17 2017-01-11 华中科技大学 XLPE cable insulation detection device and anti-electromagnetic interference method thereof
WO2018035753A1 (en) * 2016-08-24 2018-03-01 张甘霖 Non-contact electric leakage detection device for high-voltage cable
CN116256543A (en) * 2023-05-15 2023-06-13 广东电网有限责任公司佛山供电局 System for shielding and measuring insulation resistance of 10kV cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530681A (en) * 1998-11-23 2002-09-17 イー. オートン、ハリー A method for diagnosing poor insulation in underground cables.
CN106123952A (en) * 2016-06-16 2016-11-16 华北电力大学 The detection method of insulator interface quality, Apparatus and system
CN106324454A (en) * 2016-08-17 2017-01-11 华中科技大学 XLPE cable insulation detection device and anti-electromagnetic interference method thereof
CN106324454B (en) * 2016-08-17 2019-05-03 华中科技大学 A kind of XLPE cable insulation detection device and its electromagnetism interference method
WO2018035753A1 (en) * 2016-08-24 2018-03-01 张甘霖 Non-contact electric leakage detection device for high-voltage cable
CN116256543A (en) * 2023-05-15 2023-06-13 广东电网有限责任公司佛山供电局 System for shielding and measuring insulation resistance of 10kV cable

Similar Documents

Publication Publication Date Title
JPH07260870A (en) Method for measuring dc leak current of power cable
JPH07198775A (en) Method for measuring dc leakage current from power cable
JP2674265B2 (en) Partial discharge detection method for prefabricated type connection part for CV cable
JPH0153428B2 (en)
JPH10201070A (en) Method of detecting abnormality of cv cable termination part
JPS63131079A (en) Inspection for connection of power cable
JPH03172777A (en) Diagnostic method for insulation deterioration of cv cable
JPH062518U (en) Power cable with tree detector
JP2644220B2 (en) Structure of power cable connection
JPH063404A (en) Partial discharge measuring instrument for transmission cable
Park et al. A study on detection of defects in cable splice by analysis of ultrasonic signal
JPS6373166A (en) Insulation measuring method of power-cable connecting part
JPH0567191B2 (en)
JPH0619413B2 (en) Partial discharge measurement method
JP2628738B2 (en) Power cable test equipment
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JPH08201455A (en) Method for measuring dielectric loss tangent of cable and detection electrode therefor
JP2677683B2 (en) Insulation diagnosis method for prefabricated type connection part for CV cable
JPS6073372A (en) Resistance separation structure in measurement of partial discharge of power cable
JPS6158481A (en) High voltage device
JP2612367B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0446219Y2 (en)
JPH11211783A (en) Method for diagnosing deterioration of power cable joint
JPS63281073A (en) Detecting method for water tree current of cv cable
JPH0820476B2 (en) Water tree current detection method for CV cable